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The most beautiful  
line you can draw  
with Kalman filter  



• Wouter Hulsbergen “Charged particle reconstruction and alignment” - all 
the math can be found here


• Jeroen Van Tilburg “Track Simulation and reconstruction in LHCb” - the 
to-go tracking thesis in LHCb, useful Kalman filter reference


• R.Frühwirth, A.Strandlie “Pattern Recognition, Tracking and Vertex 
Reconstruction” - the most full book on tracking I know of


• R.Frühwirth Application of Kalman Filtering to Tracking and Vertex Fitting 
- eternal classics


• X. Ai, G. Mania, H.Gray, M.Kuhn, N. Styles A GPU-based Kalman Filter for 
Track Fitting 


Based on/your read list
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https://www.nikhef.nl/~wouterh/topicallectures/TrackingAndVertexing/
https://cds.cern.ch/record/885750
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://www.sciencedirect.com/science/article/abs/pii/0168900287908874
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
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Introduction
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What is a track? 
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What is a track? 
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What is a track? 
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What is a track? 

Which hit belongs to which track? 
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Which hit belongs to which track

classifier
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Which hit belongs to which track

classifier

x

z x0

ti

Hough transform

mi(x, z) → ti =
x − x0

z
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Which hit belongs to which track

classifier

x

z x0

ti

•machine learning

•“seeding” algorithm (local patter recognition)

•etc. 
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aka track fitting
How do I draw a line?  
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Reminder: fitting

f1 f2
f3

f1 = ∑
n

αnzn f2 = ∑
n

βnzn f3 = ∑
n

γnzn

z

x

fitting = estimating parameters of the model  
13



Reminder: fitting 

14

two simple facts to spell out:

• choosing the model is purely subjective 
• if model “fits” it does not mean it is “true”

xkcd: curve fitting



Reminder: fitting

likelihoodprobability

model data 

data model 

know

how likely

𝒫 ℒ
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Maximum Likelihood Estimator 
Reminder: fitting

ℒ(α; z) = ∏
i

𝒫(zi; α)

max(ℒ) →
dℒ(α; z)

dα
= 0 → α̂

16



Maximum Likelihood Estimator 
Reminder: fitting

lnℒ(α; z) = ∑
i

ln𝒫(zi; α)

•  is easier than 

• minimisation and maximisation are the same, but 

the convention is to represent maximum 
likelihood estimation via minimisation

∑ ∏

min( − ℒ) →
d(−lnℒ)(α; z)

dα
= 0 → α̂
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Maximum Likelihood Estimator 
Reminder: fitting

lnℒ(α; z) = ∑
i

ln𝒫(zi; α)

V(α̂) = σ2 = [E( −
∂2lnℒ

∂α2 )]
−1

min( − ℒ) →
d(−lnℒ)(α; z)

dα
= 0 → α̂

 is variance aka spread aka uncertainty V
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Least Square Estimator : χ2
Reminder: fitting, example

What I see What I expect

How good my vision is

dχ2

dα
= 0 → α̂

What I see What I expect

How good my vision is

∑
i

ln𝒫 → χ2 = ∑
i

(zi − hi(α)
σi

)
2

If , then  𝒫(zi; α) = 𝒩(hi(α), σi)

min(∑
i

ln𝒫) ⇒
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linear case
 formalismχ2

χ2 = ∑
i

(zi − hi(α)
σi

)
2

= (z − h(α))T(σ2)−1(z − h(α))
What I see What I expect

How good my vision is
tensor form
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linear case
 formalismχ2

χ2 = ∑
i

(zi − hi(α)
σi

)
2

= (z − h(α))TV−1(z − h(α))
What I see What I expect

How good my vision is

h(α) = h0 + Hα H =
dh(α)

dα

tensor form

21



Solution

α̂ = (HTV−1H)−1HTV−1(z − h0)

 formalismχ2

H =
dh(α)

dα
h(α) = h0 + Hα

Are you worried about anything in this formula?   
(note variance matrix - is a positive definite and diagonal matrix by definition) 
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Solution

α̂ = (HTV−1H)−1HTV−1(z − h0)

 formalismχ2

H =
dh(α)

dα
h(α) = h0 + Hα
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Solution

α̂ = (HTV−1H)−1HTV−1(z − h0)

 formalismχ2

det(HTV−1H) ≠ 0

det(HTV−1H) = 0: Underconstrained problem

H =
dh(α)

dα
h(α) = h0 + Hα
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• some linear combination of elements of  have no finite variance 
 unconstrained degrees of freedom; can be isolated by 

diagonalizing the .


• the problem is always underconstrained for models with more 
parameters than data points

α
⇒

HTV−1H

det(HTV−1H) = 0

25



26
By Brian Douglas

Kalman filter

https://engineeringmedia.com/controlblog?author=5b2d7650a4f002252c406b3d


Apollo 11 mission

Apollo Guidance Computer 

Problem:  knowing trajectory of the spaceship with very limited computer resources 

and irregular measurements  
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter
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Kalman formalism

Global fit Kalman filter

 computation of -equation system 

inversion of the  matrix

1 M
M × M

 computations of -equation system 

inversion of the  matrix

M 1
1 × 1

M - is number of measurement

Note: measurements might be not 1D 
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Kalman formalism

Kalman filter

+ avoid inversion of  matrices 
easy to add noise and constraints  

M × M

- validity of linear approximation 
only last state benefits from all 

information 
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Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

FILTER 
the track state is updated based on 
the measurements using filter 
equations

repeat  
for all  

measurements
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Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

FILTER 
the track state is updated based on 
the measurements using filter 
equations

SMOOTHER 
predict track state at the current node 
based on track state at the previous 
node

repeat  
for all  

measurements

SMOOTHER 
estimate previous track states based 
on everything known from the current 
state
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Time scale
Track fitter based on Kalman filter

Predict: 
future state based on the current state 

“future”“past”

Filter: 
current state based on the current and past measurements 

Smoother: 
past states based on all measurements up to now 

FilterPredict

Smooth
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Prediction
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

k − 1 k

: track parameters

: track parameters variance 

α
C
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Prediction
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

k − 1 k

: track parameters

: track parameters variance 

α
C

αk−1; Ck−1
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Prediction
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

k − 1 k

fk(αk−1)

: track parameters

C: track parameters variance 

Note:  is a vector

α

α

αk−1; Ck−1 Uses filtered state from 

the previous step of the filter
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Prediction
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters

 : track parameters variance


  : propagation function

α
C
f

fk(αk−1)
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Prediction
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters

: measurement

: projection function

α
m
h

Goal: minimize χ2
+rk−1

k ; χ2
+

fk(αk−1)

rk−1
k = mk − hk(αk−1

k )
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Filter
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters

: track parameters variance 

α
C

Goal: minimize χ2
+rk−1

k ; χ2
+

αk = αk−1
k + Kkrk−1

k

Ck = (1 − KkHk)Ck−1
k

gain matrix

FILTER 
the track state is updated based on 
the measurements using filter 
equations

fk(αk−1)
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Gain matrix Kk

Track fitter based on Kalman filter
PREDICTION 

predict track state at the current node 
based on track state at the previous 
node

FILTER 
the track state is updated based on 
the measurements using filter 
equations

 Vk ↓ ⇒ Kk ↑  Ck−1
k ↓ ⇒ Kk ↓

Gain matrix tells us how much should our prediction change  
if adding the information about the measurement 

aka the weight of the prediction versus measurement

Very precise measurements: Very precise prediction:

*if  is small you might use the weighted mean formalism instead of gain matrix 
formalism (faster): more in R.Fruwirth A. of K.F. to T. and V.F.

dim(α)
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Track fitter based on Kalman filter

direction

• there are no global parameters in Kalman filter

• the best track estimate is the last point
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Smoother
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

FILTER 
the track state is updated based on 
the measurements using filter 
equations

SMOOTHER 
estimate precious track states based 
on everything known from the current 
state

run Kalman filter in reverse and 

take a weighted average 

at each plane


+ simpler math
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Smoother
Track fitter based on Kalman filter

PREDICTION 
predict track state at the current node 
based on track state at the previous 
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters
α

Goal: minimize χ2
+rn

k ; χ2
+

αn
k−1 = αk−1 + Ak−1(αn

k − αk−1
k )

smoother gain matrix

FILTER 
the track state is updated based on 
the measurements using filter 
equations

SMOOTHER 
estimate precious track states based 
on everything known from the current 
state

fk(αk−1)

weight of the prediction with 

information of all measurement 


versus current state
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alternative smoothing:



What is the track* we 
draw?   

52 *What is ?α



• Forward

Detector geometry
Track models

• Collider

Vertex detector

Tracking detector

Calorimeter

Muon chambers

We skip here particle identification detectors, like RICH 

⃗B⃗B
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Track models 

ez

x
y

ty
tx

- coordinate 
- coordinate 

- slope in x

- slope in y

- charge/momentum

α =

x
y
tx
ty

q/p

α =

d0
z0

ϕ
θ

q/p

-  impact param. ⊥

- azimuth 

- polar 

- charge/momentum

-  impact param. ∥
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d0

θ

z0

ϕ⃗p ⃗pT

ey

ez

ey

ex

 reference point  reference point 

⃗p



1. Check pulls of the input data: 


2. Check pull of the track parameters if you know “true” ones


3. Check hit residuals : ;   and 
residual pull :   

p =
xi − xtrue

σi

̂ri = mi − hi(α̂) var(r) = V − HCHT

p =
ri

var(ri)
∝ G(0,1)

A check list 
How good is my fitter? 

Track parameters correlate residuals! 
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• There is magnetic field/non-linear propagation 


• There is noise


• There is energy loss


• Residual is not a point-to-point residual, based on the 
measurement technique and detector design


• One fit is often not good enough

Reality

Will not cover details 
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• There is magnetic field/non-linear propagation - Taylor series 


• There is noise - inflate prediction uncertainty  


• There is energy loss - inflate prediction uncertainty  


• Residual is not a point-to-point residual, based on the 
measurement technique and detector design - correct projection 

• One fit is often not good enough - multiple iterations 

Reality                               Solution

Will not cover details 
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back on track…
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“second lecture”



Started with  

kk − 1 k + 1

mk−1 mk
mk+1
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Ended up with

kk − 1 k + 1

Prediction
Filtration

Measurement

Noise

Qk

mk−1 mk
mk+1

xk−1
k xk

k+1
xk+1

xkxk−1

Theoretically Kalman filter is an ideal fitter! 
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Kalman filter problems 
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1.  : matrix inversion is expensive -  and 
unstable 


2. Kalman filter is prone to numerical instabilities 


3. Kalman filter is prone to outlier biases 


4. Kalman filter assumes linearity and Gaussian errors 


5. Kalman filter uses given assumption on the “zero”-state 
(initialisation)

Kk ∝ (Rk−1
k )−1 𝒪(N3)

Reality bites back
Practical implementation
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  and  


1. computationally expensive :  😱


2. numerically unstable: prone to rounding errors - especially bad 
for ill-conditioned matrices 

For a typical tracking problem 


Kk = Ck−1
k HT

k (Rk−1
k )−1 χ2 ∝ R−1

k

𝒪(N3)

N = 5

Problem 1: Matrix inversion is still a pain

 -  gain matrix

 -  predicted variance matrix after propagation


- projected propagation state derivative matrix

 -  residuals variance

KK
Ck−1

k
Hk
Rk−1

k
64

https://mathworld.wolfram.com/Ill-ConditionedMatrix.html#:~:text=A%20matrix%20is%20ill-conditioned,singular%20if%20it%20is%20infinite).


Problem 1: Matrix inversion is still a pain

65

matrix size 

tim
e 

in
 s

ec
on

ds

Average time it takes to do 

np.linalg.inv of a randomly 

generated NxN matrix 



• Still a fascinating problem for mathematics (even if the results 
might be of questionable practical use): 

Computational costs 
Problem 1: Matrix inversion is a pain 

wikipedia 

General truth: avoid inverting matrix at all costs

See this great post

66

https://gregorygundersen.com/blog/2020/12/09/matrix-inversion/


•   “catastrophic cancellation”  

•  Often appears in the beginning of filter or when you encounter 
the first measurement that matters 

KkHk ≈ 1 ⇒

Part 1 : Catastrophic cancelation

Problem 2: Numerical stability of Kalman filter

Ck = (1 − KkHk)Ck−1
k

Catastrophic cancellation example 
 

 
Exact: 

 
Rounding:  

   

a = 5.34587; b = 5.34585

a2 − b2 = 28.5783260569 − 28.5781122225 = 0.0002138344

a2 − b2 = 28.57833 − 28.57811 = 0.00022

float: 7 decimal digits                                             double : 15 decimal digits 
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•   “catastrophic cancellation”  

Worse iteratively: example* evaluating 

KkHk ≈ 1 ⇒

sin2( π
4 )

Part 1 : Catastrophic cancelation

Problem 2: Numerical stability of Kalman filter

Ck = (1 − KkHk)Ck−1
k

68

χ2 Δχ2 χ2 Δχ2iteration

1 2189.6608022288765 2189.6608022288765 2189.6609616291444 2189.6609616291444
2 2205.8925415651697 16.2317393363932131 2205.7475274721887 16.086565843044355

3 2204.1624495187029 1.7300920464667797 2203.8047379025147 1.9427895696740052

4 2203.3737431764907 0.78870634221220826 2204.010212472562 0.20547457004795433

5 2203.7285494796347 0.35480630314395967 2203.94089768533 0.069314787229814101

6 2203.812855194968 0.084305715333812259 - -

0.5 − 2−53 0.5 − 2−52

*from S.Ponce



•  must be posdef matrix - otherwise not a valid covariance 
matrix


•   can become negdef  


• And convergence for fitter is harder


• Many attempts to solve numerical instabilities: choosing correct 
constraints on the errors (especially first state errors), robust 
extended Kalman filter [G.A. Einicke, L.B. White], square root 
filter [P. Kaminski, A. Bryson, S.Schmidt] 

Ck

Ck

Part 2: Stability under K + δK

Problem 2: Numerical stability of Kalman filter

Ck = (1 − KkHk)Ck−1
k
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Part 2 : Stability under K + δK

Ck = (1 − KkHk)Ck−1
k

Problem 2: Numerical stability of Kalman filter

K → K + δK

= (1 − (Kk + δK)Hk)Ck−1
k = CkCnew

k

Small deviations in gain matrix  might lead to negdef  K Ck

−δKHkCk−1
k
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Part 2 : Stability under K + δK

Ck = (1 − KkHk)Ck−1
k

Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k

This is just an error propagation of  αk = αk−1
k + Kkrk−1

k

Problem 2: Numerical stability of Kalman filter
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Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k

Ck = (1 − KkHk)Ck−1
k

unstable stable against  K + δK

Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + δK
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Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k 3N3 + 𝒪(N2)

Ck = (1 − KkHk)Ck−1
k N3 + 𝒪(N2)

unstable stable against  K + δK

Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + δK
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Ck = (1 − KkHk)Ck−1
k

Ck = Ck−1
k − Kk(2HkCk−1 − (Vk + HkCk−1

k HT
k )KT

k )

N3 + 𝒪(N2)

3N3 + 𝒪(N2)Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k

N3 + 𝒪(N2)

unstable

Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + δK

stable against  K + δK
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• Pattern recognition can make mistakes - it is a wrong track


• It can be an unfortunate event - see -rays for example


• Can be electronics noise (if it is often the case in LHCb VELO, 
you can safely blame me) 

δ

Problem 3: Outliers
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Problem 3: Outliers
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Problem 3: Outliers
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Problem 3: Outliers
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Problem 3: Outliers
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Problem 3: Outliers

with outlier

without outlier
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Solution: 

• If  is too big, reject the measurementχ2
+

Problem 3: Outliers

χ2
+

χ2
+, filterχ2

+,smoother

Which  is better to use?χ2
+
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Solution: 

• If  is too big, reject the measurementχ2
+

Problem 3: Outliers

χ2
+

χ2
+, filterχ2

+,smoother

refit, high precision
 on-flight, 

low precision,


first measurement might be

 an outlier

Can you already spot a problem with any outlier removal? 
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Problem 3: Outliers

Outlier removal increases hit purity but decreases hit efficiency

Hit purity: fraction of correct hits per track

Hit efficiency: fraction of all correct hits found   

This is by no means the entire story - there are advanced outlier removal 
techniques and outlier-robust Kalman filters [E. Chabanat, N. Estre], 
[G.Agamennoni, J.I. Nieto, E.M. Nebot]

83

https://cds.cern.ch/record/865587/files/p287.pdf
https://ieeexplore.ieee.org/abstract/document/5979605


• Basic assumption of Kalman filter - linear model for 
propagation, but 

Taylor expansion around reference state 

Part 1: linear propagation
Problem 4: Kalman filter assumptions

reality
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• Another assumption of Kalman filter - Gaussian errors


• In reality:


• Non-gausian noise


• Non-gaussian energy loss


• Non-gaussian scattering 

Part 2: non-Gaussian errors 
Problem 4: Kalman filter assumptions

Especially important for electrons in material heavy detectors,  
like ATLAS or CMS
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• Replace non-gaussian effect by a weighted sum of gaussians - 
gaussian sum filter

Part 2: non-Gaussian errors - Gaussian Sum Filter
Problem 4: Kalman filter assumptions

filtered state:  G(αk, Ck) ⇒
L

∑
i=0

biG(αi
k, Ci

k)

 - weights,  - number of the Gaussian components  bL L
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• Replace non-gaussian effect by a weighted sum of gaussians - 
gaussian sum filter

Part 2: non-Gaussian errors - Gaussian Sum Filter
Problem 4: Kalman filter assumptions

filtered state:  G(αk, Ck) ⇒
L

∑
i=0

biG(αi
k, Ci

k)

Problem:  
•  filtrated states per measurement - computations complexity 

increases as  
Solutions:  
• ignore low-weight Gaussians 
•merge Gaussians based on similarity (see Kullback-Leiber distance) 

L
Lk

 - weights,  - number of the Gaussian components  bL L
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Good first guess 
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Good first guess 
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Good first guess 
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Bad first guess 
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Bad first guess 
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Bad first guess 
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Bad first guess but acknowledging it is bad : assign bigger 
uncertainty
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Bad first guess but acknowledging it is bad : assign bigger 
uncertainty
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Bad first guess but acknowledging it is bad : assign bigger 
uncertainty
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Problem 5: initialisation 

• Kalman filter is a recursive algorithm : has to know state 0


• Bad first guess but acknowledging it is bad : assign bigger 
uncertainty

BUT not TOO big uncertainty  catastrophic cancellation in →
Ck = (1 − KkHk)Ck−1

k
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More things to keep in 
mind
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Everything gets older 
Detector aging 

• irradiation over years leads to worse detector performance


What you should make sure happens:


• continuous performance checks 


• there is an easy way to change filter hardcoded conditions, like 
outliers removal χ2
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More than a line

primary vertex 

secondary vertex candidate for 

a 2-body immediate decay

distance

101



A simple LHCb-like example 
Can I cheat?

⃗B
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A simple LHCb-like example 
Can I cheat?

⃗B

⃗B = ⃗0
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A simple LHCb-like example 
Can I cheat?

⃗B

⃗B = ⃗0

α |zi
=

x
y
tx
ty

q/p
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A simple LHCb-like example 
Can I cheat?

⃗B

⃗B = ⃗0

α |zi
=

x
y
tx
ty

  is not required in the computation but might still be associated to the track from the track finding algorithmq/p
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A simple LHCb-like example 
Can I cheat?

⃗B

⃗B = ⃗0

α |zi
= (y

ty)
 is not required in the computation but might still be associated to the track from the track finding algorithmq/p

α |zi
= (x

tx)
106
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Parallelisation 



Simply parallelizable?

PREDICTION FILTER SMOOTHER … Track 1
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Simply parallelizable?

PREDICTION FILTER SMOOTHER … Track 1

But in reality you have hundreds of tracks 
109



Simply parallelizable?

PREDICTION FILTER SMOOTHER … Track 1

PREDICTION FILTER SMOOTHER … Track 2

PREDICTION FILTER SMOOTHER … Track 3

PREDICTION FILTER SMOOTHER … Track N

…

110



CPU vs GPU

DRAM DRAM

cache

control
ALU ALU

ALU ALU

CPU GPU

• Serial-oriented

• Low-latency 

• Fewer cores, but powerful

• SIMD

• Parallel-oriented

•High-latency 

•More cores, but less powerful

• SIMT

111



GPU fitter

grid block

thread

• each block of threads has shared memory

• two parallelisations

• track level : each thread is a track

• intra-track : each block is a track, 

each thread is a parallelised operation
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GPU fitter

grid block

thread

• each block of threads has shared memory

• two parallelisations

• track level : each thread is a track

• intra-track : each block is a track, 
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Problems with GPU 
1. Handling code divergence 

2. Limited memory 

3. Slow transfer of data to/from GPU



• Single Instruction Multiple Thread : assumes commands are the 
same for all tracks, if not - inefficiency  

Problem 1 : command divergence
GPU fitter
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if-else blocks are dangerous 
for the same reason (branch divergence): 

PLANE 1 

FILTER 1 

TRACK 1 

TRACK 2 

TRACK 3 

TRACK 4 

TRACK 5 

PLANE 1 

PLANE 1 

PLANE 1 

PLANE 1 

FILTER 2 

PLANE 2 

PLANE 2 

PLANE 2 

FILTER 3 

PLANE 3 

PLANE 3 

PLANE 3 

FILTER 4 

PLANE 4 

PLANE 4 

PLANE 4 

PLANE 4 

wait

wait

Note: on modern GPUs there are ways to improve on divergence 

wait

wait

wait



Problem 2 : limited memory
GPU fitter
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grid 

block  block  

shared memory shared memory 

register register register register 

thread thread thread thread 

local 

memory 

local 

memory 

shared memory 

block  

global memory

constant memory

texture memory

local 

memory 

local 

memory 

• Limited memory per thread : 
especially problematic for 
recursive functions


• Numeric precision and 
rounding is typically worse 



Problem 2 : limited memory
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grid 

block  

shared memory 

register register 

thread thread 

shared memory 

block  

global memory

constant memory

texture memory

local 

memory 

local 

memory 

block  

shared memory 

register register 

thread thread 

local 

memory 

local 

memory 

global memory

constant memory

texture memory

grid 

memory

register 
 𝒪(0.1kB)

shared and local 

 𝒪(10 − 100kB)

global 
 𝒪(GB)

constant 

64kB

texture 



  
𝒪(kB)

size

Note: this is all approximate as concrete numbers depend on the card, but gives you a rough idea of orders

• Limited memory per thread : 
especially problematic for 
recursive functions


• Numeric precision and 
rounding is typically worse 

small
 big
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Problem 2 : limited memory
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grid 

block  

shared memory 

register register 

thread thread 

shared memory 

block  

global memory

constant memory

texture memory

local 

memory 

local 

memory 

block  

shared memory 

register register 

thread thread 

local 

memory 

local 

memory 

global memory

constant memory

texture memory

grid 

access

register 
 𝒪(0.1kB)

shared and local 

 𝒪(10 − 100kB)

global 
 𝒪(GB)

constant 

64kB

texture 



  
𝒪(kB)

size

Note: this is all approximate as concrete numbers depend on the card, but gives you a rough idea of orders

access 
register 

small
 big


slow
 fast


shared constant texture global and local 
300-800  

clock cycles

50-100 


clock cycles

1-3 

clock cycles

1-3 

clock cycles

0.5-1 

clock cycles




Problem 3 : costly transfer
GPU fitter

118

grid 

block  block  

shared memory shared memory 

register register register register 

thread thread thread thread 

local 

memory 

local 

memory 

shared memory 

block  

global memory

constant memory

texture memory

local 

memory 

local 

memory 

• Upload/download from/to 
GPU is slow - can take 
1000s clock cycles

host

device 

minimize host-device data transfer!

𝒪(10GB/s)

𝒪(100GB/s)

𝒪(1GB/s)

heterogeneous architecture



1. Kalman filter is a powerful fitting tool : problem is simplified to    
-equations solving for -times


2. Kalman filter implementation is tricky: numerical instabilities, 
outliers, initialisation, non-linearity etc.


3. Track fitting is a good candidate for parallelisation

1 M

Big ideas to take home
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The end?
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xkcd: snow tracking


