

Valerifa (Lera) Lukashenko
iCSC 2023

Based on/your read list

- Wouter Hulsbergen "Charged particle reconstruction and alignment" - all the math can be found here
- Jeroen Van Tilburg "Track Simulation and reconstruction in LHCb" - the to-go tracking thesis in LHCb, useful Kalman filter reference
- R.Frühwirth, A.Strandlie "Pattern Recognition, Tracking and Vertex Reconstruction" - the most full book on tracking I know of
- R.Frühwirth Application of Kalman Filtering to Tracking and Vertex Fitting - eternal classics
- X. Ai, G. Mania, H.Gray, M.Kuhn, N. Styles A GPU-based Kalman Filter for Track Fitting

What is a track?

What is a track?

What is a track?

What is a track?

Which hit belongs to which track?

Which hit belongs to which track

classifier

Which hit belongs to which track

Hough transform

$$
m_{i}(x, z) \rightarrow t_{i}=\frac{x-x_{0}}{z}
$$

Which hit belongs to which track

- machine learning
-"seeding" algorithm (local patter recognition) - etc.

How do I draw a line? aka track fitting

Reminder: fitting

fitting $=$ estimating p_{13} arameters of the model

Reminder: fitting

CURVE-FITTING METHODS
AND THE MESSAGES THEY SEND

"I HAVE A THEORY, AND THIS IS THE ONLY DATA I COULD FIND."

two simple facts to spell out:

- choosing the model is purely subjective
- if model "fits" it does not mean it is "true"

Reminder: fitting

\mathscr{P}

probability
likelihood

how likely
data
model

Reminder: fitting

Maximum Likelihood Estimator

$$
\begin{aligned}
\mathscr{L}(\alpha ; z) & =\prod_{i} \mathscr{P}\left(z_{i} ; \alpha\right) \\
\max (\mathscr{L}) & \rightarrow \frac{d \mathscr{L}(\alpha ; z)}{d \alpha}=0 \rightarrow \hat{\alpha}
\end{aligned}
$$

Reminder: fitting Maximum Likelihood Estimator

$$
\begin{aligned}
& \ln \mathscr{L}(\alpha ; z)=\sum_{i} \ln \mathscr{P}\left(z_{i} ; \alpha\right) \\
& \min (-\mathscr{L}) \rightarrow \frac{d(-\ln \mathscr{L})(\alpha ; z)}{d \alpha}=0 \rightarrow \hat{\alpha}
\end{aligned}
$$

- \sum is easier than \prod
- minimisation and maximisation are the same, but the convention is to represent maximum likelihood estimation via minimisation

Reminder: fitting Maximum Likelihood Estimator

$$
\begin{aligned}
& \ln \mathscr{L}(\alpha ; z)=\sum_{i} \ln \mathscr{P}\left(z_{i} ; \alpha\right) \\
& \min (-\mathscr{L}) \rightarrow \frac{d(-\ln \mathscr{L})(\alpha ; z)}{d \alpha}=0 \rightarrow \hat{\alpha} \\
& V(\hat{\alpha})=\sigma^{2}=\left[E\left(-\frac{\partial^{2} \ln \mathscr{L}}{\partial \alpha^{2}}\right)\right]^{-1}
\end{aligned}
$$

V is variance aka spread aka uncertainty

Reminder: fitting, example Least Square Estimator : χ^{2}

If $\mathscr{P}\left(z_{i} ; \alpha\right)=\mathscr{N}\left(h_{i}(\alpha), \sigma_{i}\right)$, then

$$
\sum_{i} \ln \mathscr{P} \rightarrow \chi^{2}=\sum_{i}\left(\frac{z_{i}-h_{i}(\alpha)}{\sigma_{i}}\right)^{2}
$$

$$
\min \left(\sum_{i} \ln \mathscr{P}\right) \Rightarrow \frac{d \chi^{2}}{d \alpha}=0 \rightarrow \hat{\alpha}
$$

χ^{2} formalism

linear case

What Isee Whatlexpect

$$
\chi^{2}=\sum_{i}\left(\frac{z_{i}-h_{i}(\alpha)}{\sigma_{i}}\right)^{2}=(z-h(\alpha))^{T}\left(\sigma^{2}\right)^{-1}(z-h(\alpha))
$$

tensor form
How good my vision is

χ^{2} formalism

linear case

What Isee Whatlexpect

$$
\chi^{2}=\sum_{i}\left(\frac{z_{i}-h_{i}(\alpha)}{\sigma_{i}}\right)^{2}=(z-h(\alpha))^{T} V^{-1}(z-h(\alpha))
$$

How good my vision is

$$
h(\alpha)=h_{0}+H \alpha \quad H=\frac{d h(\alpha)}{d \alpha}
$$

χ^{2} formalism

Solution

$$
\hat{\alpha}=\left(H^{T} V^{-1} H\right)^{-1} H^{T} V^{-1}\left(z-h_{0}\right)
$$

Are you worried about anything in this formula?
(note variance matrix - is a positive definite and diagonal matrix by definition)

$$
h(\alpha)=h_{0}+H \alpha \quad H=\frac{d h(\alpha)}{d \alpha}
$$

χ^{2} formalism
Solution

$$
\hat{\alpha}=\left(H^{T} V^{-1} H\right)^{-1} H^{T} V^{-1}\left(z-h_{0}\right)
$$

$$
h(\alpha)=h_{0}+H \alpha \quad H=\frac{d h(\alpha)}{d \alpha}
$$

χ^{2} formalism

Solution

$$
\begin{aligned}
& \quad \hat{\alpha}=\left(H^{T} V^{-1} H\right)^{-1} H^{T} V^{-1}\left(z-h_{0}\right) \\
& \operatorname{det}\left(H^{T} V^{-1} H\right) \neq 0
\end{aligned}
$$

$\operatorname{det}\left(H^{T} V^{-1} H\right)=0$: Underconstrained problem

$$
h(\alpha)=h_{0}+H \alpha \quad H=\frac{d h(\alpha)}{d \alpha}
$$

$\operatorname{det}\left(H^{T} V^{-1} H\right)=0$

- some linear combination of elements of α have no finite variance \Rightarrow unconstrained degrees of freedom; can be isolated by diagonalizing the $H^{T} V^{-1} H$.
- the problem is always underconstrained for models with more parameters than data points

Apollo 11 mission

Problem: knowing trajectory of the spaceship with very limited computer resources and irregular measurements

Kalman formalism

Kalman formalism

Global fit

Kalman filter

1 computation of M-equation system inversion of the $M \times M$ matrix
M computations of 1-equation system inversion of the 1×1 matrix
M - is number of measurement
Note: measurements might be not 1D

Kalman formalism

Track fitter based on Kalman filter

Track fitter based on Kalman filter

Track fitter based on Kalman filter

 Time scalePredict:
future state based on the current state
Filter:
current state based on the current and past measurements
Smoother:
past states based on all measurements up to now

Track fitter based on Kalman filter

 Prediction

PREDICTION
predict track state at the current node based on track state at the previous node
α : track parameters
C : track parameters variance

Track fitter based on Kalman filter

 Prediction

PREDICTION

predict track state at the current node based on track state at the previous node
α : track parameters
C : track parameters variance

Track fitter based on Kalman filter Prediction

PREDICTION
predict track state at the current node based on track state at the previous node

Uses filtered state from the previous step of the filter
α : track parameters
C: track parameters variance
Note: α is a vector

Track fitter based on Kalman filter

 Prediction

PREDICTION
predict track state at the current node based on track state at the previous node
α : track parameters
C : track parameters variance
f : propagation function

Track fitter based on Kalman filter

 Prediction

PREDICTION
predict track state at the current node based on track state at the previous node

Goal: minimize χ_{+}^{2}
$r_{k}^{k-1}=m_{k}-h_{k}\left(\alpha_{k}^{k-1}\right)$
α : track parameters
m : measurement
h : projection function

Track fitter based on Kalman filter

 Filter

FILTER
the track state is updated based on the measurements using filter equations

Goal: minimize χ_{+}^{2}

$$
\begin{aligned}
& \alpha_{k}=\alpha_{k}^{k-1}+K_{k} k_{k}^{k-1} \\
& C_{k}=\left(1-\boldsymbol{K}_{k} \boldsymbol{H}_{k}\right) C_{k}^{k-1}
\end{aligned}
$$

gain matrix
α : track parameters
C : track parameters variance

Track fitter based on Kalman filter

Gain matrix K_{k}

FILTER
the track state is updated based on the measurements using filter equations

Gain matrix tells us how much should our prediction change if adding the information about the measurement aka the weight of the prediction versus measurement

Very precise measurements:

$$
V_{k} \downarrow \Rightarrow K_{k} \uparrow
$$

$$
C_{k}^{k-1} \downarrow \Rightarrow K_{k} \downarrow
$$

*if $\operatorname{dim}(\alpha)$ is small you might use the weighted mean formalism instead of gain matrix formalism (faster): more in R.Fruwirth A. of K.F. to T. and V.F.

Track fitter based on Kalman filter

- there are no global parameters in Kalman filter
- the best track estimate is the last point

Track fitter based on Kalman filter

Smoother

run Kalman filter in reverse and take a weighted average

Track fitter based on Kalman filter

Smoother

SMOOTHER
estimate precious track states based on everything known from the current state

alternative smoothing:

Goal: minimize χ_{+}^{2}

$$
\alpha_{k-1}^{n}=\alpha_{k-1}+A_{k-1}\left(\alpha_{k}^{n}-\alpha_{k}^{k-1}\right)
$$

smoother gain matrix
weight of the prediction with information of all measurement
versus current state

What is the track* we draw?

Reminder: fitting

CURVE-FITING METHODS
AND THE MESSAGES THEY SEND

"I UANTED A CURVED LINE, SO I MADE ONE UITH MATH."

IM SOPHISTCATED, NO POLYNOMAL PEOPLE" POLYNOTIAL PEOPLE."

"LOOK, IT'S TAPERING OFF!"

"IM MAKING A SCATTER PLOT BUT I DON' WANT TO."

"I CUICKED 'SMOOTH LINES' IN EXCFL."

"I HAVE A THEORY, AND THIS IS THE ONCY DATA I COULD FIND."

"AS YOU CAN SEE, THIS MODEL SMOOTHLY FITS THE- WAIT NO NO DONT EXTEND IT AAAAAA!!"
two simple facts to spell out:

- choosing the model is purely subjective
- if model "fits" it does not mean it is "true"

Track models

Detector geometry

- Forward

- Collider

Calorimeter
Muon chambers

We skip here particle identification detectors, like RICH

Track models

$$
\alpha=\left(\begin{array}{ll}
x \\
y & \text { - coordinate } \\
t_{x} & \text { - coordinate } \\
t_{y} & \text { - slope in } \mathrm{x} \\
q / p & \text { - slope in y } \\
\text { - charge/momentum }
\end{array}\right.
$$

How good is my fitter?

A check list

1. Check pulls of the input data: $p=\frac{x_{i}-x_{\text {true }}}{\sigma_{i}}$
2. Check pull of the track parameters if you know "true" ones
3. Check hit residuals : $\hat{r}_{i}=m_{i}-h_{i}(\hat{\alpha}) ; \operatorname{var}(r)=V-H C H^{T}$ and residual pull : $p=\frac{r_{i}}{\sqrt{\operatorname{var}\left(r_{i}\right)}} \propto G(0,1)$

Track parameters correlate residuals!

Reality

- There is magnetic field/non-linear propagation
- There is noise
- There is energy loss
- Residual is not a point-to-point residual, based on the measurement technique and detector design
- One fit is often not good enough

Reality

- There is magnetic field/non-linear propagation - Taylor series
- There is noise - inflate prediction uncertainty
- There is energy loss - inflate prediction uncertainty
- Residual is not a point-to-point residual, based on the measurement technique and detector design - correct projection
- One fit is often not good enough - multiple iterations

Started with

Ended up with

Theoretically Kalman filter is an ideal fitter!

Kalman filter problems

Practical implementation Reality bites back

1. $K_{k} \propto\left(R_{k}^{k-1}\right)^{-1}$: matrix inversion is expensive $-\mathcal{O}\left(N^{3}\right)$ and unstable
2. Kalman filter is prone to numerical instabilities
3. Kalman filter is prone to outlier biases
4. Kalman filter assumes linearity and Gaussian errors
5. Kalman filter uses given assumption on the "zero"-state (initialisation)

Problem 1: Matrix inversion is still a pain

$$
K_{k}=C_{k}^{k-1} H_{k}^{T}\left(R_{k}^{k-1}\right)^{-1} \text { and } \chi^{2} \propto R_{k}^{-1}
$$

1. computationally expensive: $\mathcal{O}\left(N^{3}\right)$
2. numerically unstable: prone to rounding errors - especially bad for ill-conditioned matrices

For a typical tracking problem $N=5$

```
\(K_{K}\) - gain matrix
\(C_{k}^{k-1}\) - predicted variance matrix after propagation
\(H_{k}\) - projected propagation state derivative matrix
\(R_{k}^{k-1}\) - residuals variance
```


Problem 1: Matrix inversion is still a pain

Problem 1: Matrix inversion is a pain Computational costs

- Still a fascinating problem for mathematics (even if the results might be of questionable practical use):

Matrix inversion	One $n \times n$ matrix	One $n \times n$ matrix	Gauss-Jordan elimination	$O\left(n^{3}\right)$
			Strassen algorithm	$O\left(n^{2.807}\right)$
			Coppersmith-Winograd algorithm	$O\left(n^{2.376}\right)$
			Optimized CW-like algorithms	$O\left(n^{2.373}\right)$

wikipedia
General truth: avoid inverting matrix at all costs See this great post

Problem 2: Numerical stability of Kalman filter

Part 1 : Catastrophic cancelation

$$
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}
$$

- $K_{k} H_{k} \approx 1 \Rightarrow$ "catastrophic cancellation"
- Often appears in the beginning of filter or when you encounter the first measurement that matters

Catastrophic cancellation example

```
a=5.34587; b=5.34585
Exact:
a}\mp@subsup{a}{}{2}-\mp@subsup{b}{}{2}=28.5783260569-28.5781122225=0.000213834
Rounding:
a}\mp@subsup{a}{}{2}-\mp@subsup{b}{}{2}=28.57833-28.57811=0.0002
```

float: 7 decimal digits
double: 15 decimal digits

Problem 2: Numerical stability of Kalman filter

Part 1 : Catastrophic cancelation

$$
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}
$$

- $K_{k} H_{k} \approx 1 \Rightarrow$ "catastrophic cancellation"

Worse iteratively: example* evaluating $\sin ^{2}\left(\frac{\pi}{4}\right)$

$$
0.5-2^{-53} \quad+\quad 0.5-2^{-52}
$$

iteration	χ^{2}	$\Delta \chi^{2}$	χ^{2}	$\Delta \chi^{2}$
1	2189.6608022288765	2189.6608022288765	2189.6609616291444	2189.6609616291444
2	2205.8925415651697	16.2317393363932131	2205.7475274721887	16.086565843044355
3	2204.1624495187029	1.7300920464667797	2203.8047379025147	1.9427895696740052
4	2203.3737431764907	0.78870634221220826	2204.010212472562	0.20547457004795433
5	2203.7285494796347	0.35480630314395967	2203.94089768533	0.069314787229814101
6	2203.812855194968	0.084305715333812259	-	-

*from S.Ponce

Problem 2: Numerical stability of Kalman filter

Part 2: Stability under $K+\delta K$

$$
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}
$$

- C_{k} must be posdef matrix - otherwise not a valid covariance matrix
- C_{k} can become negdef
- And convergence for fitter is harder
- Many attempts to solve numerical instabilities: choosing correct constraints on the errors (especially first state errors), robust extended Kalman filter [G.A. Einicke, L.B. White], square root filter [P. Kaminski, A. Bryson, S.Schmidt]

Problem 2: Numerical stability of Kalman filter

Part 2 : Stability under $K+\delta K$

$$
\begin{aligned}
& C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1} \\
& K \rightarrow K+\delta K
\end{aligned}
$$

$$
C_{k}^{n e w}=\left(1-\left(K_{k}+\delta K\right) H_{k}\right) C_{k}^{k-1}=C_{k}-\delta K H_{k} C_{k}^{k-1}
$$

Small deviations in gain matrix K might lead to negdef C_{k}

Problem 2: Numerical stability of Kalman filter

Part 2 : Stability under $K+\delta K$

$$
\begin{aligned}
& C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1} \\
& C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}\left(1-K_{k} H_{k}\right)^{T}+K_{k} V_{k} K_{k}^{T}
\end{aligned}
$$

This is just an error propagation of $\alpha_{k}=\alpha_{k}^{k-1}+K_{k} r_{k}^{k-1}$

Problem 2: Numerical stability of Kalman filter

Part 2 : Stability under $K+\delta K$

$$
\begin{aligned}
& C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1} \\
& C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}\left(1-K_{k} H_{k}\right)^{T}+K_{k} V_{k} K_{k}^{T}
\end{aligned}
$$

Aunstable

Astable against $K+\delta K$

Problem 2: Numerical stability of Kalman filter

Part 2 : Stability under $K+\delta K$

$$
\begin{array}{ll}
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1} & N^{3}+\mathcal{O}\left(N^{2}\right) \\
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}\left(1-K_{k} H_{k}\right)^{T}+K_{k} V_{k} K_{k}^{T} & 3 N^{3}+\mathcal{O}\left(N^{2}\right)
\end{array}
$$

Aunstable

Astable against $K+\delta K$

Problem 2: Numerical stability of Kalman filter

Part 2 : Stability under $K+\delta K$

$$
\begin{array}{ll}
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1} & N^{3}+\mathcal{O}\left(N^{2}\right) \\
C_{k}=\left(1-K_{k} H_{k} C_{k}^{k-1}\left(1-K_{k} H_{k}\right)^{T}+K_{k} V_{k} K_{k}^{T}\right. & 3 N^{3}+\mathcal{O}\left(N^{2}\right) \\
C_{k}=C_{k}^{k-1}-K_{k}\left(2 H_{k} C_{k-1}-\left(V_{k}+H_{k} C_{k}^{k-1} H_{k}^{T}\right) K_{k}^{T}\right) & N^{3}+\mathcal{O}\left(N^{2}\right)
\end{array}
$$

Aunstable

stable against $K+\delta K$

Problem 3: Outliers

- Pattern recognition can make mistakes - it is a wrong track
- It can be an unfortunate event - see δ-rays for example
- Can be electronics noise (if it is often the case in LHCb VELO, you can safely blame me)

Problem 3: Outliers

Problem 3: Outliers

Problem 3: Outliers

Problem 3: Outliers

Problem 3: Outliers

with outlier
without outlier

Problem 3: Outliers

Solution: χ_{+}^{2}

- If χ_{+}^{2} is too big, reject the measurement

Problem 3: Outliers

Solution: χ_{+}^{2}

- If χ_{+}^{2} is too big, reject the measurement

Can you already spot a problem with any outlier removal?

Problem 3: Outliers

Outlier removal increases hit purity but decreases hit efficiency

Hit purity: fraction of correct hits per track
Hit efficiency: fraction of all correct hits found

This is by no means the entire story - there are advanced outlier removal techniques and outlier-robust Kalman filters [E. Chabanat, N. Estre], [G.Agamennoni, J.I. Nieto, E.M. Nebot]

Problem 4: Kalman filter assumptions

 Part 1: linear propagation- Basic assumption of Kalman filter - linear model for propagation, but

Taylor expansion around reference state

Problem 4: Kalman filter assumptions Part 2: non-Gaussian errors

- Another assumption of Kalman filter - Gaussian errors
- In reality:
- Non-gausian noise
- Non-gaussian energy loss
- Non-gaussian scattering

Especially important for electrons in material heavy detectors, like ATLAS or CMS

Problem 4: Kalman filter assumptions Part 2: non-Gaussian errors - Gaussian Sum Filter

- Replace non-gaussian effect by a weighted sum of gaussians gaussian sum filter
filtered state: $G\left(\alpha_{k}, C_{k}\right) \Rightarrow \sum_{i=0}^{L} b_{i} G\left(\alpha_{k}^{i}, C_{k}^{i}\right)$
b_{L} - weights, L - number of the Gaussian components

Problem 4: Kalman filter assumptions Part 2: non-Gaussian errors - Gaussian Sum Filter

- Replace non-gaussian effect by a weighted sum of gaussians gaussian sum filter
filtered state: $G\left(\alpha_{k}, C_{k}\right) \Rightarrow \sum_{i=0}^{L} b_{i} G\left(\alpha_{k}^{i}, C_{k}^{i}\right)$
b_{L} - weights, L - number of the Gaussian components

Problem:

- L filtrated states per measurement - computations complexity increases as L^{k}
Solutions:
- ignore low-weight Gaussians
- merge Gaussians based on similarity (see Kullback-Leiber distance)

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Good first guess

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Good first guess

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Good first guess

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Bad first guess

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Bad first guess

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Bad first guess

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Bad first guess but acknowledging it is bad : assign bigger uncertainty

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Bad first guess but acknowledging it is bad : assign bigger uncertainty

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Bad first guess but acknowledging it is bad : assign bigger uncertainty

Problem 5: initialisation

- Kalman filter is a recursive algorithm : has to know state 0
- Bad first guess but acknowledging it is bad : assign bigger uncertainty

BUT not TOO big uncertainty \rightarrow catastrophic cancellation in

$$
C_{k}=\left(1-K_{k} H_{k}\right) C_{k}^{k-1}
$$

More things to keep in mind

Detector aging

Everything gets older

- irradiation over years leads to worse detector performance

What you should make sure happens:

- continuous performance checks
- there is an easy way to change filter hardcoded conditions, like outliers removal χ^{2}

More than a line

secondary vertex

candidate for
a 2-body immediate decay
primary vertex

Can I cheat?

A simple LHCb-like example

Can I cheat?

A simple LHCb-like example

Can I cheat?

A simple LHCb-like example

Can I cheat?

A simple LHCb-like example

q / p is not required in the computation but might still be associated to the track from the track finding algorithm

Can I cheat?

A simple LHCb-like example

q / p is not required in the computation but might still be associated to the track from the track finding algorithm

Simply parallelizable?

PREDICTION

FILTER
$\ldots \quad$ SMOOTHER \longrightarrow Track 1

Simply parallelizable?

FILTER
SMOOTHER
\rightarrow
Track 1

But in reality you have hundreds of tracks

Simply parallelizable?

PREDICTION	FILTER	SMOOTHER
PREDICTION	FILTER	SMOOTHER
PREDICTION	FILTER	SMOOTHER

CPU vs GPU

- Serial-oriented
- Low-latency
- Fewer cores, but powerful
- SIMD

GPU

- Parallel-oriented
- High-latency
- More cores, but less powerful
- SIMT

GPU fitter

- each block of threads has shared memory - two parallelisations
- track level : each thread is a track
- intra-track : each block is a track, each thread is a parallelised operation

GPU fitter

- each block of threads has shared memory
- two parallelisations
- track level : each thread is a track
- intra-track : each block is a track, each thread is a parallelised operation

Problems with GPU

1. Handling code divergence
2. Limited memory
3. Slow transfer of data to/from GPU

GPU fitter

Problem 1 : command divergence

- Single Instruction Multiple Thread : assumes commands are the same for all tracks, if not - inefficiency

GPU fitter

Problem 2 : limited memory

- Limited memory per thread : especially problematic for recursive functions
- Numeric precision and rounding is typically worse

GPU fitter

Problem 2 : limited memory
memory

- Limited memory per thread : especially problematic for recursive functions
- Numeric precision and rounding is typically worse

GPU fitter

Problem 2 : limited memory
access

- Limited memory per thread : especially problematic for recursive functions
- Numeric precision and rounding is typically worse

Note: this is all approximate as concrete numbers depend on the card, but gives you a rough idea of orders

GPU fitter

Problem 3 : costly transfer

- Upload/download from/to GPU is slow - can take 1000s clock cycles
minimize host-device data transfer!
heterogeneous architecture

Big ideas to take home

1. Kalman filter is a powerful fitting tool : problem is simplified to 1 -equations solving for M-times
2. Kalman filter implementation is tricky: numerical instabilities, outliers, initialisation, non-linearity etc.
3. Track fitting is a good candidate for parallelisation

The end?

