
Cloud & Containers
- Everything you need to know

Jack Henschel
2023-03-06

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 2

Overview

● I. What is Cloud Computing?
● Motivation, Benefits, Drawbacks

● II. How to use “the Cloud”?
● Deployment and access models

● III. What are Containers?
● OS primitives and orchestration layers

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 3

I. Cloud Computing

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 4

What is Cloud Computing?
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing resources that can be rapidly provisioned and
released with minimal management effort or service provider interaction.”
— NIST

https://www.nist.gov/publications/nist-definition-cloud-computing

Essential Characteristics:

● On-demand self-service

● Broad network access

● Resource pooling

● Rapid elasticity

● Measured service

https://www.nist.gov/publications/nist-definition-cloud-computing

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 5

Why do we need a Cloud?

A “Cloud” decouples hardware and software by means of an API
 Virtual “machines” can be managed programmatically with API calls

 This also applies to other resources: access permissions, storage, containers etc.

 Operators vs. Users:
● Operators are responsible for the API, but are not concerned with applications
● Users consume the API, but are not concerned with the underlying hardware

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 6

Cloud Service Models

SaaS
Software-as-a-Service

PaaS
Platform-as-a-Service

IaaS
Infrastructure-as-a-Service

Routers & Firewalls
Virtual Machines

Disk-based Storage

Containers
Serverless
Sandboxes

Translation
Machine Learning

Blob Storage

Fl
ex

ib
ili

ty
, C

on
t ro

l, C
os

t
Ease of use, level of abstraction

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 7

Benefits of a Cloud

● Pay-as-you-go pricing model

● Simplified (removed) resource management

● Scale quickly and effortlessly

● Flexible deployment options

● Improved resource utilization (thanks to multiplexing)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 8

Drawbacks of a Cloud

● Abstraction layers (can) make troubleshooting difficult

● Vendor lock-in (when using specific services or features)

● Increased security risk (?)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 9

II. How to use “the Cloud”?

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 10

How to use a Cloud?

● Cloud enviroments strongly benefit from declarative deployments
→ Reproducability and easy scalability

● Resources in cloud environments are expensive! (CPU, memory, storage, network)
→ Use only what you need, scale up if necessary, scale down if possible

● Strategically decide if you want to use cloud-specific features
→ (substantially) cheaper, but at the cost of vendor lock-in

● Access control must be zero-trust (because everything is online)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 11

What is cloud-native?
“Cloud native technologies empower organizations to build and run scalable applications in modern,
dynamic environments such as public, private, and hybrid clouds. Containers, microservices, immutable
infrastructure, and declarative APIs exemplify this approach.
These techniques enable loosely coupled systems that are resilient, manageable, and observable.
Combined with robust automation, they allow engineers to make high-impact changes frequently and
predictably." — CNCF

● Resiliency: failures are treated as the norm; applications take advantage of dynamic environment
(“adapt”) and can recover from failure

● Agile: quick deployment and update cycles leveraging cloud-native infrastructure

● Observability: allow operators to reason about the application state

● Operability: it is easy to manage the application during its lifetime (not just during deployment);
facilitated by using industry standard tools, no weird hacks to keep the application happy

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 12

What is cloud-native NOT about?
These are not defining features of cloud-native:

● Running applications in a public cloud (example: “lift-and-shift”)

● Running applications in containers

● Using a fancy container orchestrator, e.g. Kubernetes

● Microservices (monolithic applications can also be cloud-native)

● Infrastructure as Code (Chef, Puppet etc. are IaC but not cloud-native)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 13

Best practices
“Cloud-native is a term describing software designed to run and scale reliably and predictably
on top of potentially unreliable cloud-based infrastructure."
— Duncan Winn

● Implement retry logic and make actions idempotent

● Don’t assume that application state will be persisted in memory

● Make as few assumptions as possible about the runtime environment

● Ensure that the application can be configured declaratively and restarted reproducible

● Don’t hard-code configuration (→ ideally use service discovery)

● Allow multiple-readers/multiple-writers

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 14

Practical examples (what not to do)

Interactive configuration is
taboo

→ use declarative
configuration from files or
environment variables
instead

(and make sure not to persist
them in the DB!)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 15

Practical examples (what not to do)

Do not rely on specific runtime /
environment

(or at least document all dependencies
and assumptions of your app)

→ makes it easy to run the
application in different
environments (local development
vs. production) and makes it more
portable

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 16

Practical examples (what not to do)

Avoid “process-local” state

All state must be persisted in
external systems (database,
shared storage, shared cache)

→ enables horizontal scaling
and fault tolerance

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 17

III. Containers

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 18

Image CImage B

What are Containers?
A.k.a. “OS-level virtualization”

Multiple processes share the same kernel, but have an isolated environment:
compute, memory, storage, networking

Image A

Kernel

OS libraries

App A App B App C

Physical / Virtual Machine

Runtime Dependencies

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 19

A brief history of containers

There has always been a desire to divide a single computer into smaller, flexible units:

~1960: Multi-tasking operating systems: time-sharing

1982: Restricting filesystem access of a process: Unix chroot

2000: Additional isolation and security: FreeBSD Jails

2002: First-class citizen: Solaris Zones

2008: Linux kernel gains equivalent features: Linux Containers (LXC)

2013: Docker launches easy-to-use tools for interacting with containers

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 20

Containers for everyone
Docker allows managing the entire life cycle of a container:

● building an image from a set of instructions (Dockerfile)

● sharing this container image over the Internet (DockerHub)

● creating, running and deleting containers based on images (Docker Daemon & CLI)

→ modern containers!

Containers provide a higher level of abstraction for the application lifecycle (starting/
stopping, upgrades, replication, scaling)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 21

Containers for everyone
Dockerfile:
FROM node:18-alpine
COPY src/ /app
RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000

Application lifecycle:
docker image build -t my-app .

docker container run my-app \
 --name=app-1 --publish 3000:3000

docker container logs app-1

docker container stop app-1

docker container rm app-1

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 22

Container Orchestration

We have so many containers … now what?

An Orchestrator automates the deployment, management, scaling, and
networking of containers

2014-2017: Orchestration Wars (Apache Mesos, Docker Swarm, HashiCorp Nomad,
Kubernetes)

Kubernetes became the de-facto standard (on-premises and public cloud)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 23

What makes Kubernetes so powerful?

● Simple, declarative and extensible API

● Continuous resource consiliation

● Design and experience based on Google’s internal Borg task scheduler

● Flexible and extensible (container runtime, networking etc.)

● Active and open community

● Comprehensive software ecosystem

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 24
https://landscape.cncf.io

https://landscape.cncf.io/

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 25

Kubernetes 101: Pods

● Smallest unit of compute in Kubernetes

● Composed of multiple containers
(one process/function per container)

● Shared networking stack

● All containers in the pod run on the same host

● Ephemeral!

Web server
(Nginx)

Log Sidecar
(Fluentd)

Config Reload
(Bash)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 26

Kubernetes 101: Pods
kubectl run my-server --image docker.io/library/nginx
kubectl get pod my-server -o yaml
apiVersion: v1
kind: Pod
metadata:
 name: my-server
spec:
 containers:
 - image: docker.io/library/nginx
 imagePullPolicy: Always
 name: my-server
 nodeName: test-jack-r7smtryv6dfb-node-0
status:
 conditions:
 - lastTransitionTime: "2023-02-03T15:24:42Z"
 status: "True"
 type: ContainersReady
 phase: Running
 podIP: 10.100.180.137

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 27

Kubernetes 101: Deployments
Abstraction to continously run and scale ephemeral pods (of the same kind)
Each pod is fully independent and isolated from the others

Other ways to scale pods on Kubernetes: StatefulSets, DaemonSets

Node 1

Pod A-1

Pod B-2

Pod A-2

Node 2

Pod B-1 Pod B-3

Node 3

Pod A-3

Pod C-1

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 28

Kubernetes 101: Deployments
kubectl create deployment my-cache --image docker.io/library/redis --replicas=3
kubectl get deploy my-cache -o yaml
apiVersion: apps/v1
kind: Deployment
metadata:
 name: my-cache
spec:
 replicas: 3
 selector:
 matchLabels:
 app: my-cache
 strategy:
 type: RollingUpdate
 template:
 metadata:
 labels:
 app: my-cache
 spec:
 containers:
 - image: docker.io/library/redis
 name: redis
status:
 availableReplicas: 3

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 29

Kubernetes 101: Services
Provides a stable endpoint (IP) for a
collection of pods (usually replicas of
a Deployment)

Services are a pure network
abstraction

Pods are selected via labels

Endpoint can be internal (ClusterIP)
or external (LoadBalancer)

kubectl create service clusterip my-cache
--tcp=6379
kubectl get svc my-cache -o yaml
apiVersion: v1
kind: Service
metadata:
 name: my-cache
spec:
 clusterIP: 10.254.52.144
 ports:
 - name: "6379"
 port: 6379
 protocol: TCP
 targetPort: 6379
 selector:
 app: my-cache
 type: ClusterIP
status:
 loadBalancer: {}

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 30

Kubernetes 101: Ingress
Provides an external entrypoint for
HTTP services

Layer 7 based → “smart”

Offers routing, API gateway, TLS
termination, certificate renewal ...

kubectl create ingress my-http \
--rule="example.com/*=my-server:80"
kubectl get ingress my-http -o yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: my-http
spec:
 rules:
 - host: example.com
 http:
 paths:
 - backend:
 service:
 name: my-server
 port:
 number: 80
 path: /

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 31

Overview – what have we just built?

Ingress Service

Pod A-1

Pod A-2

Pod A-3

Deployment

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 32

Deploying on Kubernetes

● kubectl

● Kustomize

● Helm

● Flux

● ArgoCD

+ many more that wrap around these tools (Terraform, Pulumi, Ansible ...)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 33

Deployment B

Deployment A

Storage Volume

Tool Kubernetes

Deploying on Kubernetes: Under the Hood

Input
Configuration

Package / Module

...

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 34

Cloud-native Observability

● Cloud-native environments change rapidly – static configuration à la Nagios
doesn’t cut it

● The monitoring tool needs to be able to automatically (re-)configure itself
→ Service discovery

● Different dimensions:
metrics, logs, tracing, alerting

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 35

Metrics & Prometheus

Time-series database + query language + automatic ingestion

● OpenMetrics: the exposition format
http_requests_total{instance="pod-abc123",method="post",code="200"} 1027
http_requests_total{instance="pod-abc123",method="post",code="400"} 420

● Prometheus regularly scrapes this exported data (HTTP request + ingestion)

● Extremely efficient storage of time-series values (1-2 bytes per sample)

2023-03-06 iCSC2023: Cloud & Containers - Everything you need to know 36

PromQL example

https://cern.ch/csc

https://indico.cern.ch/e/iCSC-2023

https://cern.ch/csc
https://indico.cern.ch/e/iCSC-2023

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 45

