
Valeriia (Lera) Lukashenko iCSC 2023
by david ivanishvili

The most beautiful

line you can draw

with Kalman filter

• Wouter Hulsbergen “Charged particle reconstruction and alignment” - all
the math can be found here

• Jeroen Van Tilburg “Track Simulation and reconstruction in LHCb” - the
to-go tracking thesis in LHCb, useful Kalman filter reference

• R.Frühwirth, A.Strandlie “Pattern Recognition, Tracking and Vertex
Reconstruction” - the most full book on tracking I know of

• R.Frühwirth Application of Kalman Filtering to Tracking and Vertex Fitting
- eternal classics

• X. Ai, G. Mania, H.Gray, M.Kuhn, N. Styles A GPU-based Kalman Filter for
Track Fitting

Based on/your read list

2

https://www.nikhef.nl/~wouterh/topicallectures/TrackingAndVertexing/
https://cds.cern.ch/record/885750
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://www.sciencedirect.com/science/article/abs/pii/0168900287908874
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796

3

Introduction

4

What is a track?

5

What is a track?

6

What is a track?

7

What is a track?

Which hit belongs to which track?

8

Which hit belongs to which track

classifier

9

Which hit belongs to which track

classifier

x

z x0

ti

Hough transform

mi(x, z) → ti =
x − x0

z

10

Which hit belongs to which track

classifier

x

z x0

ti

•machine learning

•“seeding” algorithm (local patter recognition)

•etc.

11

aka track fitting
How do I draw a line?

12

Reminder: fitting

f1 f2
f3

f1 = ∑
n

αnzn f2 = ∑
n

βnzn f3 = ∑
n

γnzn

z

x

fitting = estimating parameters of the model
13

Reminder: fitting

14

two simple facts to spell out:

• choosing the model is purely subjective
• if model “fits” it does not mean it is “true”

xkcd: curve fitting

Reminder: fitting

likelihoodprobability

model data

data model

know

how likely

𝒫 ℒ

15

Maximum Likelihood Estimator
Reminder: fitting

ℒ(α; z) = ∏
i

𝒫(zi; α)

max(ℒ) →
dℒ(α; z)

dα
= 0 → α̂

16

Maximum Likelihood Estimator
Reminder: fitting

lnℒ(α; z) = ∑
i

ln𝒫(zi; α)

• is easier than

• minimisation and maximisation are the same, but

the convention is to represent maximum
likelihood estimation via minimisation

∑ ∏

min(− ℒ) →
d(−lnℒ)(α; z)

dα
= 0 → α̂

17

Maximum Likelihood Estimator
Reminder: fitting

lnℒ(α; z) = ∑
i

ln𝒫(zi; α)

V(α̂) = σ2 = [E(−
∂2lnℒ

∂α2)]
−1

min(− ℒ) →
d(−lnℒ)(α; z)

dα
= 0 → α̂

 is variance aka spread aka uncertainty V
18

Least Square Estimator : χ2
Reminder: fitting, example

What I see What I expect

How good my vision is

dχ2

dα
= 0 → α̂

What I see What I expect

How good my vision is

∑
i

ln𝒫 → χ2 = ∑
i

(zi − hi(α)
σi

)
2

If , then 𝒫(zi; α) = 𝒩(hi(α), σi)

min(∑
i

ln𝒫) ⇒

19

linear case
 formalismχ2

χ2 = ∑
i

(zi − hi(α)
σi

)
2

= (z − h(α))T(σ2)−1(z − h(α))
What I see What I expect

How good my vision is
tensor form

20

linear case
 formalismχ2

χ2 = ∑
i

(zi − hi(α)
σi

)
2

= (z − h(α))TV−1(z − h(α))
What I see What I expect

How good my vision is

h(α) = h0 + Hα H =
dh(α)

dα

tensor form

21

Solution

α̂ = (HTV−1H)−1HTV−1(z − h0)

 formalismχ2

H =
dh(α)

dα
h(α) = h0 + Hα

Are you worried about anything in this formula?
(note variance matrix - is a positive definite and diagonal matrix by definition)

22

Solution

α̂ = (HTV−1H)−1HTV−1(z − h0)

 formalismχ2

H =
dh(α)

dα
h(α) = h0 + Hα

23

Solution

α̂ = (HTV−1H)−1HTV−1(z − h0)

 formalismχ2

det(HTV−1H) ≠ 0

det(HTV−1H) = 0: Underconstrained problem

H =
dh(α)

dα
h(α) = h0 + Hα

24

• some linear combination of elements of have no finite variance
 unconstrained degrees of freedom; can be isolated by

diagonalizing the .

• the problem is always underconstrained for models with more
parameters than data points

α
⇒

HTV−1H

det(HTV−1H) = 0

25

26
By Brian Douglas

Kalman filter

https://engineeringmedia.com/controlblog?author=5b2d7650a4f002252c406b3d

Apollo 11 mission

Apollo Guidance Computer

Problem: knowing trajectory of the spaceship with very limited computer resources

and irregular measurements

27

Kalman formalism

Global fit Kalman filter

28

Kalman formalism

Global fit Kalman filter

29

Kalman formalism

Global fit Kalman filter

30

Kalman formalism

Global fit Kalman filter

31

Kalman formalism

Global fit Kalman filter

32

Kalman formalism

Global fit Kalman filter

33

Kalman formalism

Global fit Kalman filter

34

Kalman formalism

Global fit Kalman filter

35

Kalman formalism

Global fit Kalman filter

36

Kalman formalism

Global fit Kalman filter

 computation of -equation system

inversion of the matrix

1 M
M × M

 computations of -equation system

inversion of the matrix

M 1
1 × 1

M - is number of measurement

Note: measurements might be not 1D

37

Kalman formalism

Kalman filter

+ avoid inversion of matrices

easy to add noise and constraints

M × M

- validity of linear approximation

only last state benefits from all

information

38

Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

FILTER

the track state is updated based on
the measurements using filter
equations

repeat
for all

measurements

39

Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

FILTER

the track state is updated based on
the measurements using filter
equations

SMOOTHER

predict track state at the current node
based on track state at the previous
node

repeat
for all

measurements

SMOOTHER

estimate previous track states based
on everything known from the current
state

40

Time scale
Track fitter based on Kalman filter

Predict:
future state based on the current state

“future”“past”

Filter:
current state based on the current and past measurements

Smoother:
past states based on all measurements up to now

FilterPredict

Smooth

41

Prediction
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

k − 1 k

: track parameters

: track parameters variance

α
C

42

Prediction
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

k − 1 k

: track parameters

: track parameters variance

α
C

αk−1; Ck−1

43

Prediction
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

k − 1 k

fk(αk−1)

: track parameters

C: track parameters variance

Note: is a vector

α

α

αk−1; Ck−1 Uses filtered state from

the previous step of the filter

44

Prediction
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters

 : track parameters variance

 : propagation function

α
C
f

fk(αk−1)

45

Prediction
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters

: measurement

: projection function

α
m
h

Goal: minimize χ2
+rk−1

k ; χ2
+

fk(αk−1)

rk−1
k = mk − hk(αk−1

k)

46

Filter
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters

: track parameters variance

α
C

Goal: minimize χ2
+rk−1

k ; χ2
+

αk = αk−1
k + Kkrk−1

k

Ck = (1 − KkHk)Ck−1
k

gain matrix

FILTER

the track state is updated based on
the measurements using filter
equations

fk(αk−1)

47

Gain matrix Kk

Track fitter based on Kalman filter
PREDICTION

predict track state at the current node
based on track state at the previous
node

FILTER

the track state is updated based on
the measurements using filter
equations

 Vk ↓ ⇒ Kk ↑ Ck−1
k ↓ ⇒ Kk ↓

Gain matrix tells us how much should our prediction change
if adding the information about the measurement

aka the weight of the prediction versus measurement

Very precise measurements: Very precise prediction:

*if is small you might use the weighted mean formalism instead of gain matrix
formalism (faster): more in R.Fruwirth A. of K.F. to T. and V.F.

dim(α)

48

Track fitter based on Kalman filter

direction

• there are no global parameters in Kalman filter

• the best track estimate is the last point

49

Smoother
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

FILTER

the track state is updated based on
the measurements using filter
equations

SMOOTHER

estimate precious track states based
on everything known from the current
state

run Kalman filter in reverse and

take a weighted average

at each plane

+ simpler math

50

Smoother
Track fitter based on Kalman filter

PREDICTION

predict track state at the current node
based on track state at the previous
node

k − 1 k

αk−1
k ; Ck−1

k

: track parameters
α

Goal: minimize χ2
+rn

k ; χ2
+

αn
k−1 = αk−1 + Ak−1(αn

k − αk−1
k)

smoother gain matrix

FILTER

the track state is updated based on
the measurements using filter
equations

SMOOTHER

estimate precious track states based
on everything known from the current
state

fk(αk−1)

weight of the prediction with

information of all measurement

versus current state

51

alternative smoothing:

What is the track* we
draw?

52 *What is ?α

• Forward

Detector geometry
Track models

• Collider

Vertex detector

Tracking detector

Calorimeter

Muon chambers

We skip here particle identification detectors, like RICH

⃗B⃗B

53

Track models

ez

x
y

ty
tx

- coordinate
- coordinate

- slope in x

- slope in y

- charge/momentum

α =

x
y
tx
ty

q/p

α =

d0
z0

ϕ
θ

q/p

- impact param. ⊥

- azimuth

- polar

- charge/momentum

- impact param. ∥

54

d0

θ

z0

ϕ⃗p ⃗pT

ey

ez

ey

ex

 reference point reference point

⃗p

1. Check pulls of the input data:

2. Check pull of the track parameters if you know “true” ones

3. Check hit residuals : ; and
residual pull :

p =
xi − xtrue

σi

̂ri = mi − hi(α̂) var(r) = V − HCHT

p =
ri

var(ri)
∝ G(0,1)

A check list
How good is my fitter?

Track parameters correlate residuals!

55

56

• There is magnetic field/non-linear propagation

• There is noise

• There is energy loss

• Residual is not a point-to-point residual, based on the
measurement technique and detector design

• One fit is often not good enough

Reality

Will not cover details
57

• There is magnetic field/non-linear propagation - Taylor series

• There is noise - inflate prediction uncertainty

• There is energy loss - inflate prediction uncertainty

• Residual is not a point-to-point residual, based on the
measurement technique and detector design - correct projection

• One fit is often not good enough - multiple iterations

Reality Solution

Will not cover details
58

back on track…

59

“second lecture”

Started with

kk − 1 k + 1

mk−1 mk
mk+1

60

Ended up with

kk − 1 k + 1

Prediction
Filtration

Measurement

Noise

Qk

mk−1 mk
mk+1

xk−1
k xk

k+1
xk+1

xkxk−1

Theoretically Kalman filter is an ideal fitter!

61

Kalman filter problems

62

1. : matrix inversion is expensive - and
unstable

2. Kalman filter is prone to numerical instabilities

3. Kalman filter is prone to outlier biases

4. Kalman filter assumes linearity and Gaussian errors

5. Kalman filter uses given assumption on the “zero”-state
(initialisation)

Kk ∝ (Rk−1
k)−1 𝒪(N3)

Reality bites back
Practical implementation

63

 and

1. computationally expensive : 😱

2. numerically unstable: prone to rounding errors - especially bad
for ill-conditioned matrices

For a typical tracking problem

Kk = Ck−1
k HT

k (Rk−1
k)−1 χ2 ∝ R−1

k

𝒪(N3)

N = 5

Problem 1: Matrix inversion is still a pain

 - gain matrix

 - predicted variance matrix after propagation

- projected propagation state derivative matrix

 - residuals variance

KK
Ck−1

k
Hk
Rk−1

k
64

https://mathworld.wolfram.com/Ill-ConditionedMatrix.html#:~:text=A%20matrix%20is%20ill-conditioned,singular%20if%20it%20is%20infinite).

Problem 1: Matrix inversion is still a pain

65

matrix size

tim
e

in
 s

ec
on

ds

Average time it takes to do

np.linalg.inv of a randomly

generated NxN matrix

• Still a fascinating problem for mathematics (even if the results
might be of questionable practical use):

Computational costs
Problem 1: Matrix inversion is a pain

wikipedia

General truth: avoid inverting matrix at all costs

See this great post

66

https://gregorygundersen.com/blog/2020/12/09/matrix-inversion/

• “catastrophic cancellation”

• Often appears in the beginning of filter or when you encounter
the first measurement that matters

KkHk ≈ 1 ⇒

Part 1 : Catastrophic cancelation

Problem 2: Numerical stability of Kalman filter

Ck = (1 − KkHk)Ck−1
k

Catastrophic cancellation example

 

Exact:

Rounding:

a = 5.34587; b = 5.34585

a2 − b2 = 28.5783260569 − 28.5781122225 = 0.0002138344

a2 − b2 = 28.57833 − 28.57811 = 0.00022

float: 7 decimal digits double : 15 decimal digits

67

• “catastrophic cancellation”

Worse iteratively: example* evaluating

KkHk ≈ 1 ⇒

sin2(π
4)

Part 1 : Catastrophic cancelation

Problem 2: Numerical stability of Kalman filter

Ck = (1 − KkHk)Ck−1
k

68

χ2 Δχ2 χ2 Δχ2iteration

1 2189.6608022288765 2189.6608022288765 2189.6609616291444 2189.6609616291444
2 2205.8925415651697 16.2317393363932131 2205.7475274721887 16.086565843044355

3 2204.1624495187029 1.7300920464667797 2203.8047379025147 1.9427895696740052

4 2203.3737431764907 0.78870634221220826 2204.010212472562 0.20547457004795433

5 2203.7285494796347 0.35480630314395967 2203.94089768533 0.069314787229814101

6 2203.812855194968 0.084305715333812259 - -

0.5 − 2−53 0.5 − 2−52

*from S.Ponce

• must be posdef matrix - otherwise not a valid covariance
matrix

• can become negdef

• And convergence for fitter is harder

• Many attempts to solve numerical instabilities: choosing correct
constraints on the errors (especially first state errors), robust
extended Kalman filter [G.A. Einicke, L.B. White], square root
filter [P. Kaminski, A. Bryson, S.Schmidt]

Ck

Ck

Part 2: Stability under K + δK

Problem 2: Numerical stability of Kalman filter

Ck = (1 − KkHk)Ck−1
k

69

Part 2 : Stability under K + δK

Ck = (1 − KkHk)Ck−1
k

Problem 2: Numerical stability of Kalman filter

K → K + δK

= (1 − (Kk + δK)Hk)Ck−1
k = CkCnew

k

Small deviations in gain matrix might lead to negdef K Ck

−δKHkCk−1
k

70

Part 2 : Stability under K + δK

Ck = (1 − KkHk)Ck−1
k

Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k

This is just an error propagation of αk = αk−1
k + Kkrk−1

k

Problem 2: Numerical stability of Kalman filter

71

Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k

Ck = (1 − KkHk)Ck−1
k

unstable stable against K + δK

Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + δK

72

Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k 3N3 + 𝒪(N2)

Ck = (1 − KkHk)Ck−1
k N3 + 𝒪(N2)

unstable stable against K + δK

Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + δK

73

Ck = (1 − KkHk)Ck−1
k

Ck = Ck−1
k − Kk(2HkCk−1 − (Vk + HkCk−1

k HT
k)KT

k)

N3 + 𝒪(N2)

3N3 + 𝒪(N2)Ck = (1 − KkHk)Ck−1
k (1 − KkHk)T + KkVkKT

k

N3 + 𝒪(N2)

unstable

Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + δK

stable against K + δK

74

• Pattern recognition can make mistakes - it is a wrong track

• It can be an unfortunate event - see -rays for example

• Can be electronics noise (if it is often the case in LHCb VELO,
you can safely blame me)

δ

Problem 3: Outliers

75

Problem 3: Outliers

76

Problem 3: Outliers

77

Problem 3: Outliers

78

Problem 3: Outliers

79

Problem 3: Outliers

with outlier

without outlier

80

Solution:

• If is too big, reject the measurementχ2
+

Problem 3: Outliers

χ2
+

χ2
+, filterχ2

+,smoother

Which is better to use?χ2
+

81

Solution:

• If is too big, reject the measurementχ2
+

Problem 3: Outliers

χ2
+

χ2
+, filterχ2

+,smoother

refit, high precision
 on-flight,

low precision,

first measurement might be

 an outlier

Can you already spot a problem with any outlier removal?
82

Problem 3: Outliers

Outlier removal increases hit purity but decreases hit efficiency

Hit purity: fraction of correct hits per track

Hit efficiency: fraction of all correct hits found

This is by no means the entire story - there are advanced outlier removal
techniques and outlier-robust Kalman filters [E. Chabanat, N. Estre],
[G.Agamennoni, J.I. Nieto, E.M. Nebot]

83

https://cds.cern.ch/record/865587/files/p287.pdf
https://ieeexplore.ieee.org/abstract/document/5979605

• Basic assumption of Kalman filter - linear model for
propagation, but

Taylor expansion around reference state

Part 1: linear propagation
Problem 4: Kalman filter assumptions

reality

84

• Another assumption of Kalman filter - Gaussian errors

• In reality:

• Non-gausian noise

• Non-gaussian energy loss

• Non-gaussian scattering

Part 2: non-Gaussian errors
Problem 4: Kalman filter assumptions

Especially important for electrons in material heavy detectors,
like ATLAS or CMS

85

• Replace non-gaussian effect by a weighted sum of gaussians -
gaussian sum filter

Part 2: non-Gaussian errors - Gaussian Sum Filter
Problem 4: Kalman filter assumptions

filtered state: G(αk, Ck) ⇒
L

∑
i=0

biG(αi
k, Ci

k)

 - weights, - number of the Gaussian components bL L

86

• Replace non-gaussian effect by a weighted sum of gaussians -
gaussian sum filter

Part 2: non-Gaussian errors - Gaussian Sum Filter
Problem 4: Kalman filter assumptions

filtered state: G(αk, Ck) ⇒
L

∑
i=0

biG(αi
k, Ci

k)

Problem:
• filtrated states per measurement - computations complexity

increases as

Solutions:
• ignore low-weight Gaussians

•merge Gaussians based on similarity (see Kullback-Leiber distance)

L
Lk

 - weights, - number of the Gaussian components bL L

87

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

88

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Good first guess

89

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Good first guess

90

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Good first guess

91

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Bad first guess

92

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Bad first guess

93

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Bad first guess

94

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Bad first guess but acknowledging it is bad : assign bigger
uncertainty

95

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Bad first guess but acknowledging it is bad : assign bigger
uncertainty

96

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Bad first guess but acknowledging it is bad : assign bigger
uncertainty

97

Problem 5: initialisation

• Kalman filter is a recursive algorithm : has to know state 0

• Bad first guess but acknowledging it is bad : assign bigger
uncertainty

BUT not TOO big uncertainty catastrophic cancellation in →
Ck = (1 − KkHk)Ck−1

k

98

More things to keep in
mind

99

Everything gets older
Detector aging

• irradiation over years leads to worse detector performance

What you should make sure happens:

• continuous performance checks

• there is an easy way to change filter hardcoded conditions, like
outliers removal χ2

100

More than a line

primary vertex

secondary vertex candidate for

a 2-body immediate decay

distance

101

A simple LHCb-like example
Can I cheat?

⃗B

102

A simple LHCb-like example
Can I cheat?

⃗B

⃗B = ⃗0

103

A simple LHCb-like example
Can I cheat?

⃗B

⃗B = ⃗0

α |zi
=

x
y
tx
ty

q/p
104

A simple LHCb-like example
Can I cheat?

⃗B

⃗B = ⃗0

α |zi
=

x
y
tx
ty

 is not required in the computation but might still be associated to the track from the track finding algorithmq/p
105

A simple LHCb-like example
Can I cheat?

⃗B

⃗B = ⃗0

α |zi
= (y

ty)
 is not required in the computation but might still be associated to the track from the track finding algorithmq/p

α |zi
= (x

tx)
106

107

Parallelisation

Simply parallelizable?

PREDICTION
 FILTER
 SMOOTHER
… Track 1

108

Simply parallelizable?

PREDICTION
 FILTER
 SMOOTHER
… Track 1

But in reality you have hundreds of tracks
109

Simply parallelizable?

PREDICTION
 FILTER
 SMOOTHER
… Track 1

PREDICTION
 FILTER
 SMOOTHER
… Track 2

PREDICTION
 FILTER
 SMOOTHER
… Track 3

PREDICTION
 FILTER
 SMOOTHER
… Track N

…

110

CPU vs GPU

DRAM DRAM

cache

control
ALU ALU

ALU ALU

CPU GPU

• Serial-oriented

• Low-latency

• Fewer cores, but powerful

• SIMD

• Parallel-oriented

•High-latency

•More cores, but less powerful

• SIMT

111

GPU fitter

grid block

thread

• each block of threads has shared memory

• two parallelisations

• track level : each thread is a track

• intra-track : each block is a track,

each thread is a parallelised operation

112

GPU fitter

grid block

thread

• each block of threads has shared memory

• two parallelisations

• track level : each thread is a track

• intra-track : each block is a track,

each thread is a parallelised operation

113

Problems with GPU
1. Handling code divergence

2. Limited memory

3. Slow transfer of data to/from GPU

• Single Instruction Multiple Thread : assumes commands are the
same for all tracks, if not - inefficiency

Problem 1 : command divergence
GPU fitter

114

if-else blocks are dangerous
for the same reason (branch divergence):

PLANE 1

FILTER 1

TRACK 1

TRACK 2

TRACK 3

TRACK 4

TRACK 5

PLANE 1

PLANE 1

PLANE 1

PLANE 1

FILTER 2

PLANE 2

PLANE 2

PLANE 2

FILTER 3

PLANE 3

PLANE 3

PLANE 3

FILTER 4

PLANE 4

PLANE 4

PLANE 4

PLANE 4

wait

wait

Note: on modern GPUs there are ways to improve on divergence

wait

wait

wait

Problem 2 : limited memory
GPU fitter

115

grid

block block

shared memory shared memory

register register register register

thread thread thread thread

local

memory

local

memory

shared memory

block

global memory

constant memory

texture memory

local

memory

local

memory

• Limited memory per thread :
especially problematic for
recursive functions

• Numeric precision and
rounding is typically worse

Problem 2 : limited memory
GPU fitter

116

grid

block

shared memory

register register

thread thread

shared memory

block

global memory

constant memory

texture memory

local

memory

local

memory

block

shared memory

register register

thread thread

local

memory

local

memory

global memory

constant memory

texture memory

grid

memory

register
 𝒪(0.1kB)

shared and local

 𝒪(10 − 100kB)

global
 𝒪(GB)

constant

64kB

texture

𝒪(kB)

size

Note: this is all approximate as concrete numbers depend on the card, but gives you a rough idea of orders

• Limited memory per thread :
especially problematic for
recursive functions

• Numeric precision and
rounding is typically worse

small
 big

• Limited memory per thread :
especially problematic for
recursive functions

• Numeric precision and
rounding is typically worse

Problem 2 : limited memory
GPU fitter

117

grid

block

shared memory

register register

thread thread

shared memory

block

global memory

constant memory

texture memory

local

memory

local

memory

block

shared memory

register register

thread thread

local

memory

local

memory

global memory

constant memory

texture memory

grid

access

register
 𝒪(0.1kB)

shared and local

 𝒪(10 − 100kB)

global
 𝒪(GB)

constant

64kB

texture

𝒪(kB)

size

Note: this is all approximate as concrete numbers depend on the card, but gives you a rough idea of orders

access
register

small
 big

slow
 fast

shared constant texture global and local
300-800

clock cycles

50-100

clock cycles

1-3

clock cycles

1-3

clock cycles

0.5-1

clock cycles

Problem 3 : costly transfer
GPU fitter

118

grid

block block

shared memory shared memory

register register register register

thread thread thread thread

local

memory

local

memory

shared memory

block

global memory

constant memory

texture memory

local

memory

local

memory

• Upload/download from/to
GPU is slow - can take
1000s clock cycles

host

device

minimize host-device data transfer!

𝒪(10GB/s)

𝒪(100GB/s)

𝒪(1GB/s)

heterogeneous architecture

1. Kalman filter is a powerful fitting tool : problem is simplified to
-equations solving for -times

2. Kalman filter implementation is tricky: numerical instabilities,
outliers, initialisation, non-linearity etc.

3. Track fitting is a good candidate for parallelisation

1 M

Big ideas to take home

119

The end?

120

xkcd: snow tracking

