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Based on/your read list

Wouter Hulsbergen “Charged particle reconstruction and alignment” - all
the math can be found here

* Jeroen Van Tilburg “Track Simulation and reconstruction in LHCb” - the
to-go tracking thesis in LHCDb, useful Kalman filter reference

R.Frahwirth, A.Strandlie “Pattern Recognition, Tracking and Vertex
Reconstruction” - the most full book on tracking | know of

R.Frahwirth Application of Kalman Filtering to Tracking and Vertex Fitting
- eternal classics

* X. Ai, G. Mania, H.Gray, M.Kuhn, N. Styles A GPU-based Kalman Filter for
Track Fitting



https://www.nikhef.nl/~wouterh/topicallectures/TrackingAndVertexing/
https://cds.cern.ch/record/885750
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://link.springer.com/book/10.1007/978-3-030-65771-0
https://www.sciencedirect.com/science/article/abs/pii/0168900287908874
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
https://arxiv.org/abs/2105.01796
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What is a track?
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What is a track?




What is a track?




What is a track?

Which hit belongs to which track?



Which hit belongs to which track

classifier



Which hit belongs to which track

Hough transform
X — )CO

mx,z) — t; =
<



Which hit belongs to which track

*machine learning
*“seeding” algorithm (local patter recognition)
ectc.



How do | draw a line?
aka track fitting




Reminder: fitting
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fitting = estimating parameters of the model



Reminder: fitting

CURVE-FITTING METHODS
AND THE. MESSAGES THEY SEND

"HEY, I DDA
REGRESSION.

“LOOK, IT'S GROVING
UNCONTROLLABLY"

"I \UANTED A CURVED
LINE, 50 T MADE ONE
UITH MATH"

"TM SOPHISTICATED, NOT
LIKE THOSE BUMBLING
POLYNOMIAL PEOPLE "

LOOK, ITS
TAPERING OFF"

“TM MAKING A
SCATTER PLOT BUT
T DONT WANT TO!

xked: curve fitting

I NEED TO CONNECT THESE ~ “UISTEN, SCENCE IS HARD.

TWO LINES, BUT MY FIRST IDEA  BUT IM A SERIOUS

DIDN'T HAVE ENOUGH MATH""

T CLICKED ‘SMOOTH
LINES IN EXCELY

two simple facts to spell out:
* choosing the model is purely subjective

e if model “fits” it does not mean it is “true”

14
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"I HAVE A THEORY,
AND THIS IS THE ONLY
PERSON DOING MY BEST." DATA I COULD FIND®
LI o

"I HAD AN IDEA FOR HOU

—

S YOU CPN SEE, THIS

TO CLEAN UP THE DATA. MODEL SMOOTHLY FiTS
WHAT DO YOU THINK?" THE- WAIT MO MO DONT
EXTEND IT ARARAA!




Reminder: fitting

P 7
probability likelihood
KNnow model data

how likely data model

15



Reminder: fitting

Maximum Likelihood Estimator

L(a;20) = | | Pz )

d<L(a; )
> p—
do

— O

rnax(&?)



Reminder: fitting

Maximum Likelihood Estimator

nL(a;2) = ) InP(z;a)

Va\

00—

L d=indNaz)
da -

min( — EZ)

. Z IS easier than H

 minimisation and maximisation are the same, but
the convention is to represent maximum
likelihood estimation via minimisation

17



Reminder: fitting

Maximum Likelihood Estimator

nL(a;2) = ) InP(z;a)

L d=indNaz)

min( — EZ)

V(&) = 6% =

£

da
A

dar?

)

—1

Va\

00—

V' is variance aka spread aka uncertainty

18



Reminder: fitting, example

Least Square Estimator : y°

If P(z;; a) = N (h(a),o;), then

What | see What | expect

Zi:ln@ Ly = Z (Zi —:i(a) >2

l' l

How good my vision is

mm(Zln@) = L—O—>a

da



~* formalism

linear case

What | see  What | expect

B\ 2
){2 _ Z (Zz l(“)) _ (Z - h(a))T(Gz)_l(Z B h(a))

O;

tensor form
How good my vision is

20



~* formalism

linear case

What | see  What | expect

)(2 _ 2 (Zi — hi(a) >2 _ (Z B h(a))TV‘l(z B h(a))

O;

tensor form
- dh(a)
- da

How good my vision is

h(a) = hy+ Ho H

21



~* formalism

Solution

a=HVIEH'V (7 - hy)

Are you worried about anything in this formula?
(note variance matrix - is a positive definite and diagonal matrix by definition)

ha) = hy+ Ha  H = 219
da

22



~* formalism

Solution

a =|(H'VIH)\H'v-1(z - hy)

- dh(a)

do

23



~* formalism

Solution

o =V v iy
"4
det(H'V='H) # 0

det(H'V='H) = 0: Underconstrained problem

ha) = hy+ He | = 2D
da

24



dettH'V™'H) =0

« some linear combination of elements of a have no finite variance
= unconstrained degrees of freedom; can be isolated by
diagonalizing the H'V~1H.

e the problem is always underconstrained for models with more
parameters than data points

25



Measure

£ ﬁé folsan

\Kalman filter

. The time is
- y.ag pm!

—

flowed

pr‘edicﬁon
———

By Brian Douglas
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https://engineeringmedia.com/controlblog?author=5b2d7650a4f002252c406b3d

Apollo 11 mission

Apollo Guidance Computer

Problem: knowing trajectory of the spaceship with very limited computer resources
and irregular measurements

27



Kalman formalism

Global fit Kalman filter



Kalman formalism

Global fit Kalman filter
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Global fit Kalman filter
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Global fit Kalman filter
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Global fit Kalman filter
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Global fit Kalman filter



Kalman formalism

Global fit Kalman filter



Kalman formalism

4 . 4
LS .
) ~e ‘rt-... | LI-Twe i-...
LI . .' ° . ..’ °
Global fit Kalman filter
1 computation of M-equation system M computations of 1-equation system
inversion of the M X M matrix inversion of the 1 X 1 matrix

M - is number of measurement
Note: measurements might be not 1D

37



Kalman formalism

avoid inversion of M X M matrices
easy to add noise and constraints

validity of linear approximation
only last state benefits from all
information

38

Kalman filter



Track fitter based on Kalman filter

PREDICTION

predict track state at the current node

based on track state at the previous <4 \
Tode repeat N\

for all \

measurements
FILTER
the track state is updated based on

the measurements using filter
equations

39



Track fitter based on Kalman filter

PREDICTION

predict track state at the current node

based on track state at the previous <4 \
Tode repeat N\

for all \

measurements

FILTER
the track state is updated based on
the measurements using filter
equations

SMOOTHER
estimate previous track states based
on everything known from the current
state

40



Track fitter based on Kalman filter

Time scale

Predict:
future state based on the current state
Filter:

current state based on the current and past measurements
Smoother:
past states based on all measurements up to now

Predict Filter

past “future”
Smooth

41



Track fitter based on Kalman filter

Prediction
PREDICTION
predict track state at the current node
based on track state at the previous
node
k—1 k

a: track parameters
C: track parameters variance

42



Track fitter based on Kalman filter

Prediction
PREDICTION
predict track state at the current node
based on track state at the previous
node
—_11Ch—y
k—1 k

a: track parameters
C: track parameters variance
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Track fitter based on Kalman filter

Prediction

PREDICTION
predict track state at the current node

based on track state at the previous
node

Jilog_y)
D N
O 13C_T S N Uses filtered state from

the previous step of the filter

a: track parameters
C: track parameters variance

Note: a Is a vector

44



Track fitter based on Kalman filter

Prediction
PREDICTION
predict track state at the current node
based on track state at the previous
node
Jilog_y)
N
N ~ N
N
k—1 k

a: track parameters
C : track parameters variance
. f : propagation function



Track fitter based on Kalman filter

Prediction

k—1
”n

s X+

46

PREDICTION
predict track state at the current node

based on track state at the previous
node

Goal: minimize)ﬁr

k—1 __ k—1
rk — mk — hk(ak )

a: track parameters
. measurement
h: projection function



Track fitter based on Kalman filter

Filter

k—1
”n

s X+

47

FILTER
the track state is updated based on

the measurements using filter
equations

Goal: minimize)ﬁr

OZk — a]];_l + Kkrlf_l
.= k)le_l

gain matrix

a: track parameters
C: track parameters variance



Track fitter based on Kalman filter

Gain matrix K,

FILTER
the track state is updated based on

the measurements using filter
equations

Gain matrix tells us how much should our prediction change
if adding the information about the measurement
aka the weight of the prediction versus measurement

Very precise measurements: Very precise prediction:

Vil =K1 C, 'l =K

*if dim(a) is small you might use the weighted mean formalism instead of gain matrix

formalism (faster): more in R.Fruwirth A. of K.F. to T. and V.F.
48



Track fitter based on Kalman filter

direction

* there are no global parameters in Kalman filter
* the best track estimate is the last point



Track fitter based on Kalman filter

Smoother
. SMOOTHER
.. estimate precious track states based
5 on everything known from the current
5 . state
~ ~ b e ® ©
Ny
~ [ I
~ 0N
~ run Kalman filter in reverse and

take a weighted average
at each plane

+ simpler math

50‘.



Track fitter based on Kalman filter

Smoother

SMOOTHER
estimate precious track states based

on everything known from the current
state

alternative smoothing:

Goal: minimize)ﬁr

no _ n k—1

smoother gain matrix

k—1 k weight of the prediction with
iInformation of all measurement
vVersus current state

ne .2
s X+

a:. track parameters

51



What is the track™ we
draw?

Reminder: fitting

CURVE-FITTING METHODS xked: curve fitting
AND THE MESSAGES THEY SEND

“HEY, I DDA “L UANTED A CURVED LOOK, IT'S "I NEED TO CONNECT THESE  “LISTEN, SCIENCE 1S HARD. “I HAVE A THEORY,
REGRESSION. LINE, 50 T MADE ONE TAPERING OFF" TWO UNES, BUT MY FIRST IDEA  BUT IM A SERIOUS AND THIS 1S THE ONLY
UITH MATH" DIDN'T HAVE ENOUGH MATH!  PERSON DOING MY BEST." DATA I COULD FIND®

“LOOK, ITS GROUVING *I™M SOPHISTICATED, NOT ‘M MAKING A “T CLICKED "SMOOTH “I HAD AN IDEA FOR HOU 'PS YOU CAN SEE, THIS

UNCONTROLLABLY™ LIKE THOSE BUMBLING SCATTER PLOT BUT LINES W EXCEL’ TO CLEAN UP THE DATA. MODEL SMOOTHLY FITS
POLYNOMIAL PEOPLE I DON'T WANT TO! \WHAT DO YOU THINK?" THE- WAIT MONO DONT
EXTEND IT ARARAA!"

two simple facts to spell out:
* choosing the model is purely subjective
e if model “fits” it does not mean it is “true”

. *What is a?



Track models

Detector geometry

* Forward * Collider

: - ! 1 b .
] [ 0 [1

] [1 0 []

] [1 0 [1
* - [ i 0
] [1 0 []

] [1 0 [1

] [ 0 [1

] [1 0 []
QR i :
‘ Il BN BN BB BB BB BB BB BB BN e '

Vertex detector - Calorimeter

- Tracking detector Muon chambers

We skip here particle identification detectors, like RICH

53



Track models

SHST 2=

q/p

O reference point

- coordinate
- coordinate

- slope in x
- slope iny

- charge/momentum

54

I J O reference point
dO - 1 impact param.
20 | - || impact param.
o = ¢ - azimuth
@ | -polar

q/p - charge/momentum



How good is my fitter?
A check list

Xi = Xprye

1. Check pulls of the input data: p =

O;

2. Check pull of the track parameters if you know “true” ones

3. Check hit residuals : ffir= m, — h(@&); var(r) =V — HCH" and

residual pull : p = : x G(0,1)
\/ var(r;)

Track parameters correlate residuals!

55



Expeclations W



Reality

There is magnetic field/non-linear propagation
There Is noise

There Is energy loss

Residual is not a point-to-point residual, based on the

measurement technique and detector design

One fit is often not good enough

57

Will not cover details



Reality Solution

* There is magnetic field/non-linear propagation - Taylor series
* There is noise - inflate prediction uncertainty
* There is energy loss - inflate prediction uncertainty

* Residual is not a point-to-point residual, based on the
measurement technique and detector design - correct projection

* One fit is often not good enough - multiple iterations

- Will not cover details



back on track...
“second lecture”



Started with

k—1 k k+1




Ended up with

Theoretically Kalman filter is an ideal fitter!

k—1 O, k k+1
X1
__—
: F— Xk+1
Mhe-11 1 Mgy

- Prediction - Noise
- Filtration
- Measurement

61




Kalman filter problems



Practical implementation
Reality bites back

~1
1. K, (R,f_l) . matrix inversion is expensive - O(N>) and
unstable

Kalman filter is prone to numerical instabilities

Kalman filter is prone to outlier biases

LD

Kalman filter assumes linearity and Gaussian errors

5. Kalman filter uses given assumption on the “zero”-state
(initialisation)

63



Problem 1: Matrix inversion is still a pain

K, = C/,i‘_lHkT(R]f_l)_1 and y? Rk_1
1. computationally expensive : O(N°)

2. numerically unstable: prone to rounding errors - especially bad
for ill-conditioned matrices

For a typical tracking problem N = 5

Ky - gain matrix

C,f_l - predicted variance matrix after propagation
H,- projected propagation state derivative matrix
R]f_l - residuals variance

64


https://mathworld.wolfram.com/Ill-ConditionedMatrix.html#:~:text=A%20matrix%20is%20ill-conditioned,singular%20if%20it%20is%20infinite).

Problem 1: Matrix inversion is still a pain

Average time it takes to do
np.linalg.inv of a randomly

0.1501 generated NxN matrix

0.175 -

0.125 -

0.100 -

S

0.075 -

time in seconds

0.050 -

0.025 -

0.000 -

| | | |

0 100 200 300 400 500
N matrix size
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Problem 1: Matrix inversion is a pain
Computational costs

« Still a fascinating problem for mathematics (even if the results
might be of questionable practical use):

Gauss—Jordan elimination

Onen X n Strassen algorithm
Matrix inversion One . X m matrix

matrix Coppersmith—Winograd algorithm

Optimized CW-like algorithms

wikipedia

General truth: avoid inverting matrix at all costs
See this great post

66


https://gregorygundersen.com/blog/2020/12/09/matrix-inversion/

Problem 2: Numerical stability of Kalman filter

Part 1 : Catastrophic cancelation

— k—1
C,=U-KH)C

« K H, ~ 1 = “catastrophic cancellation”

 Often appears in the beginning of filter or when you encounter
the first measurement that matters

Catastrophic cancellation example

a = 5.34587; b = 5.34585

Exact:

a’? — b? =28.5783260569 — 28.5781122225 = 0.0002138344
Rounding:

a? — b? =28.57833 — 28.57811 = 0.00022

float: 7 decimal digits double : 15 decimal digits

67



Problem 2: Numerical stability of Kalman filter

Part 1 : Catastrophic cancelation

C,= (1 - KH)C!

« K H, ~ 1 = “catastrophic cancellation”

T
Worse iteratively: example* evaluating Sinz(z)

0.5 — 27> 0.5 —27>
iteration )(2 A){Z )(2 A)(Z
1 2189.6608022288765 2189.6608022288765 2189.6609616291444 2189.6609616291444
2205.8925415651697 16.2317393363932131 2205.7475274721887 16.086565843044355

o O A W DN

2204.1624495187029

2203.3737431764907

2203.7285494796347
2203.812855194968

1.7300920464667797
0.78870634221220826
0.35480630314395967

0.084305715333812259

2203.8047379025147
2204.010212472562
2203.94089768533

1.9427895696740052
0.20547457004795433
0.069314787229814101

68

*from S.Ponce




Problem 2: Numerical stability of Kalman filter

Part 2: Stability under K + 6K
C,= (1 - KH)C!

« (), must be posdef matrix - otherwise not a valid covariance
matrix

 (, can become negdef

* And convergence for fitter is harder

 Many attempts to solve numerical instabillities: choosing correct
constraints on the errors (especially first state errors), robust
extended Kalman filter , square root
filter

69



Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + 6K

C, = (1 - KHYC™!
K — K+ 6K
Ci= (1 — (K, + 6K)H)C, ' = C,—S6KH,C™!

Small deviations in gain matrix K might lead to negdef C,

70



Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + 6K

C,= (1 - KH)CT!

This is just an error propagation of o, = (X,’C‘_l + Kkl”k_l

71



Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + 6K

A C. =0-KH)C™!

A unstable A\ stable against K + 6K

72



Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + 6K

A C =(1-KH)C™! N3 + O(N?)
A C=(010- Kka)C/f_l(l — Kka)T + KkaKkT 3N? 4+ O(N?)

A unstable A\ stable against K + 6K
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Problem 2: Numerical stability of Kalman filter
Part 2 : Stability under K + 6K

A C =(1-KH)C™! N3 + O(N?)
A C=(010- K]J'Ik)cllcC 1(1 — Kka)T + KkaKkT 3N? 4+ O(N?)

A C=C""-K(2HC_, - (Vi+ HCTHHK!) N+ 6V

A unstable A\ stable against K + 6K

74



Problem 3: Outliers

* Pattern recognition can make mistakes - it is a wrong track

* It can be an unfortunate event - see 0-rays for example

* Can be electronics noise (if it is often the case in LHCb VELO,
you can safely blame me)

75



Problem 3: Outliers



Problem 3: Outliers
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Problem 3: Outliers



Problem 3: Outliers



Problem 3: Outliers

Solution: )(_|2_

o If )(er IS too big, reject the measurement

N

2 2
A+ smoother )(+,filf€7’

Which )(er IS better to use?
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Problem 3: Outliers

Solution: )(_|2_

o If )(er IS too big, reject the measurement

RN

2 2
A+ smoother )(+,fl'lt€7’

refit, high precision on-flight,
low precision,
first measurement might be
an outlier

Can you already spot a problem with any outlier removal?

82



Problem 3: Outliers

Outlier removal increases hit purity but decreases hit efficiency

Hit purity: fraction of correct hits per track
Hit efficiency: fraction of all correct hits found

This is by no means the entire story - there are advanced outlier removal
techniques and outlier-robust Kalman filters

83


https://cds.cern.ch/record/865587/files/p287.pdf
https://ieeexplore.ieee.org/abstract/document/5979605

Problem 4: Kalman filter assumptions
Part 1: linear propagation

* Basic assumption of Kalman filter - linear model for
propagation, but

reality

Taylor expansion around reference state
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Problem 4: Kalman filter assumptions

Part 2: non-Gaussian errors

* Another assumption of Kalman filter - Gaussian errors
* |n reality:

 Non-gausian noise

 Non-gaussian energy loss

 Non-gaussian scattering

Especially important for electrons in material heavy detectors,
like ATLAS or CMS
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Problem 4: Kalman filter assumptions

Part 2: non-Gaussian errors - Gaussian Sum Filter

* Replace non-gaussian effect by a weighted sum of gaussians -
gaussian sum filter

L
filtered state: G(«, C,) = Z b.G(a, C})

=0
b; - weights, L - number of the Gaussian components
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Problem 4: Kalman filter assumptions

Part 2: non-Gaussian errors - Gaussian Sum Filter

* Replace non-gaussian effect by a weighted sum of gaussians -
gaussian sum filter

L
filtered state: G(a;, C,) = Z b.G(a, C})

=0
b; - weights, L - number of the Gaussian components

Problem:
e /| filtrated states per measurement - computations complexity
increases as L*

Solutions:
® ignore low-weight Gaussians
® merge Gaussians based on similarity (see Kullback-Leiber distance)
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Problem 5: initialisation

 Kalman filter is a recursive algorithm : has to know state O
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 Good first guess
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Problem 5: initialisation

 Kalman filter is a recursive algorithm : has to know state O

 Bad first guess



Problem 5: initialisation

« Kalman filter is a recursive algorithm : has to know state O

e Bad first guess
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Problem 5: initialisation

 Kalman filter is a recursive algorithm : has to know state O

 Bad first guess



Problem 5: initialisation

 Kalman filter is a recursive algorithm : has to know state O

e Bad first guess but acknowledqging it is bad : assign bigger
uncertainty

{
} IIH
{1
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Problem 5: initialisation

 Kalman filter is a recursive algorithm : has to know state O

e Bad first guess but acknowledqging it is bad : assign bigger
uncertainty
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Problem 5: initialisation

 Kalman filter is a recursive algorithm : has to know state O

e Bad first guess but acknowledqging it is bad : assign bigger
uncertainty
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Problem 5: initialisation

 Kalman filter is a recursive algorithm : has to know state O

e Bad first guess but acknowledqging it is bad : assign bigger
uncertainty

BUT not TOO big uncertainty — catastrophic cancellation in
C,=(-KH)C!

98



More things to keep In
mind

99



Detector aging
Everything gets older

* irradiation over years leads to worse detector performance

What you should make sure happens:

e continuous performance checks

* there is an easy way to change filter hardcoded conditions, like
outliers removal )(2

100



More than a line

secondary vertex candidate for
a 2-body immediate decay

~
~
~
~
..
~n

distance

primary vertex

101



Can | cheat?
A simple LHCDb-like example

=)

'--



Can | cheat?
A simple LHCDb-like example




Can | cheat?
A simple LHCDb-like example




Can | cheat?
A simple LHCDb-like example

SR R

q/p is not required in the computation but might still be associated to the track from the track finding algorithm
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Can | cheat?
A simple LHCDb-like example

q/p is not required in the computation but might still be associated to the track from the track finding algorithm
106
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Simply parallelizable?

PREDICTION FILTER SMOOTHER —P» Track 1




Simply parallelizable?

PREDICTION FILTER SMOOTHER —P» Track 1

, CMS Experiment at the LHC, CERN
/‘//- Data recorded: 2015-Sep-28 06:09:43.129280 GMT
= | Run/Event/LS: 257645 /1610868539 / 1073

But in reality you have hundreds of tracks

109



Simply parallelizable?

PREDICTION FILTER SMOOTHER —P» Track 1
PREDICTION FILTER SMOOTHER —$  Track 2
PREDICTION FILTER SMOOTHER —$  Track 3

PREDICTION FILTER SMOOTHER —$ Track N

110




CPU vs GPU

CPU

ALU ALU

control
ALU ALU

DRAM

e Serial-oriented

* Low-latency

* Fewer cores, but powerful
e SIMD

111

GPU

DRAM

e Parallel-oriented

e High-latency

* More cores, but less powerful
o SIMT




GPU fitter

* each block of threads has shared memory
* two parallelisations
* track level : each thread is a track
* intra-track : each block is a track,
each thread is a parallelised operation

, OO0 ({000
LICICI0 (DI
L1000 | CICICIC

 OO00 OO0
' OO0O0 0000
' O0O0O0 OO0

thread



GPU fitter

1grid block

, OO0 ({000
LICICI0 (DI
L1000 | CICICIC

HENEQE NN
HEE Sy
QL1000 O000]

thread

* each block of threads has shared memory
* two parallelisations
* track level : each thread is a track
* intra-track : each block is a track,
each thread is a parallelised operation

Problems with GPU
1. Handling code divergence

2. Limited memory
3. Slow transfer of data to/from GPU

113



GPU fitter

Problem 1 : command divergence
* Single Instruction Multiple Thread : assumes commands are the
same for all tracks, if not - inefficiency

FILTER 3 FILTER 4

FILTER 2

FILTER 1

TRACK 1 PLANE 1 PLANE 2 PLANE 3 wait

PLANE 4

TRACK 2 PLANE 1 PLANE 2 wait

PLANE 4

TRACK 3 PLANE 1 wait PLANE 3

PLANE 2 wait PLANE 4

TRACK 4 PLANE 1

PLANE 4

TRACK 5 PLANE 1 wait PLANE 3

x
<

diverge
e
e
reconverge
N -

if (threadrdx.x < 4) {
A;

if-else blocks are dangerous }elee ¢

X5

for the same reason (branch divergence): , ~

>
e
o

» Time

Note: on modern GPUs there are ways to improve on divergence
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GPU fitter

Problem 2 : limited memory

e Limited memory per thread :
especially problematic for
recursive functions

 Numeric precision and
rounding is typically worse
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GPU fitter

Problem 2 : limited memory

memory
grid
* Limited memory per thread : block block
especially problematic for — hared memory
recursive functions
| e
 Numeric precision and tread | | tead |||[ tveac | [ threac
rounding is typically worse
small big mlgr(r:]ilry mlgr%ilry ml(:r(r:wilry
Size *
register texture constant shared and local global

©(0.1kB) OkB) 64kB  O(10 — 100kB) O(GB)

global memory

constant memory

texture memory texture memory

Note: this is all approximate as concrete numbers depend on the card, but gives you a rough idea of orders
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GPU fitter

Problem 2 : limited memory

access
grid

* Limited memory per thread : block block
especially problematic for — hared memory
recursive functions :

. NumeriC preCiSiOn and thread thread thread
rounding is typically worse

small big mfr?wilw

size
register texture constant shared and local global

©(0.1kB) OkB) 64kB  O(10 — 100kB) O(GB)

global memory

slow fast constant memory
access
global and local texture constant shared register LIS [TEmel)
300-800 50-100 1-3 1-3 0.5-1

clock cycles clock cycles clock cycles clock cycles clock cycles

Note: this is all approximate as concrete numbers depend on the card, but gives you a rough idea of orders

117



GPU fitter

Problem 3 : costly transfer

 Upload/download from/to
GPU is slow - can take
1000s clock cycles

minimize host-device data transfer!

heterogeneous architecture

device

emo shared memory

thread thread thread thread

local local locel
memory memoy memary

AAA

host

\AAA 4

O(1GB/s)

O(10GB/s)
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Big ideas to take home

1. Kalman filter is a powerful fitting tool : problem is simplified to
1 -equations solving for M-times

2. Kalman filter implementation is tricky: numerical instabilities,
outliers, initialisation, non-linearity etc.

3. Track fitting is a good candidate for parallelisation
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The end?

BACKYARD SNow TRACKING GUIDE

xkcd: snow tracking

e > &
&
.
g e $
& A
& bt
o \ I (e /
CAT MOOSE. AND SRUIRREL LONGCAT MOUSE RIDING BICYCLE
¥
- ]
p .
\‘ ® q
o
RABBIT STOPPING LEGOLAS
To USE HAIR DRYER
L W ets”
. ~::'.:.' '
~
KID WITH KID w;m DUPLICATOR PRIVS
TRANSNOGRIFIER

120




