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Reinforcement learning

(Environment]

State, reward
uondy

[ agent |

Reinforcement learning (RL) in a nutshell:
“Learn a policy to maximize rewards over time




Reinforcement learning

There are famous examples of RL for learning games.
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“AlphaGo” winning against “AlphaStar” wins Starcraft against
the Go world champion 99.85% of human players.

But it can also be applied to real world problems, as ...



Reinforcement learning

... a framework for
model-free,
time-discrete control
problems.

OpenAl Gym - A framework for
reinforcement learning
https://www.gymlibrary.dev/



https://docs.google.com/file/d/1mITkaiy_Ia4ZnAiNwYrx0Dj3CPn3lLh8/preview
https://docs.google.com/file/d/1C0pGIoexCV_E35UNtB39sv4XWT13LsMQ/preview
https://docs.google.com/file/d/1LXHs3Uja6oRBzeDP8szpcH4UMhkkf8Ob/preview
https://www.gymlibrary.dev/

Well, if you ...

This lecture is for you!

have ever asked yourself “What would be the best strategy to win UNO,
chess, black jack, ...?”

work on problems that involve optimizing the control of machines or other
types of goal-oriented action planning.

are not frightened by mathematical definitions and linear algebra.
are generally curious about machine learning and artificial intelligence.

and otherwise ready to learn something completely new and exciting!



Outline

We cover the following topics:

e Markov decision processes (MDPs)

e Solving small MDPs with tabular methods

e Solving large MDPs with policy gradient methods

== 4

Jupyter notebooks with code examples are
hosted on github.com/fewagner/icsc23.

S

Transfer questions after
every section.


http://github.com/fewagner/icsc23

Literature

“Sutton & Barto” is the standard text
book for RL - and main source for this
lecture.

However, developments in the field are fast and
staying up to date involves skimming papers and
proceedings all the time.

Reinforcement
Learning

An Introduction
second edition

Richard S. Sutton and Andrew G. Barto
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Markov decision processes (MDPs)



Markov decision processes (MDPs)

An MDP is a 4-tuple consisting of an
action space and state space,
a dynamics function:

p:(4,8) — {probabilities for S'}
and a reward function:

r:(S,A,S')%RER

Sometimes this notation is convenient:

p(S',R| S, A) := {probabilities for S’and reward R}

12



Markov decision processes (MDPs)

For the MDP displayed on the right:
state space S = {80, S1, 82}

action space A = {ag, a1}

dynamics function (( )\
S0, o
50 50 .7 0 .4 .3 Eso’ali
s1,a
si|] «[o o 1 95 0 3 (1’0)
s1,0a
89 5 1. .2 05 6 A4 (1’ 1)
N ~~ ~ $2, Q0
new state dynamics function \( S9, aO) )
N————

state-action pair
reward function

{+5, if (S, 4,5") = (s1,a0, 50),
’r‘ pr—

—1, if(S,A4,8") = (s2,a1,0),
0, else 13



Markov decision processes (MDPs)

... defined by dynamics-

_ _ P+t and reward function
RL models the interaction of an
agent with an environment (an Environment
MDP).
©
T
The agent aims to take actions that 5 @
maximize the collected rewards over )
2

time (returns), following a policy
function: [ Agent

... defined by policy function

w: S+ w(A|S) = {probabilities for A givenstate S}

uonoY
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Markov decision processes (MDPs)

... defined vby dynamics-

Mh+1
RL models the interaction of an :
agent with an environment (an

MDP).

The agent aims to take actions that
maximize the collected rewards over
time (returns), following a policy
function:

State, reward

w:S+— w(A|S) = {probabilities for A givenstate S}

uonoY
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Values and the Bellman equation

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

Gt = R + YRyy1 + Y Rysat. .. @ i @ i " : ;ﬁgﬁg
vy = Ex[Gy | Sp = 5] _ & "li‘f'wnnns

N
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Values and the Bellman equation

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

Gt — Rt +@Qt+1 + '72Rt+2+- - @ Fnet @ Fns2 Fnes
Upr = E?T[Gt ‘ St 3]

Some MDPs have terminal states (episodic MDPs),
others run forever (continuous MDPs).

Especially for continuous MDPs values could diverge
over time. Therefore we introduce a discounting
factor O<y<1.

17



Values and the Bellman equation

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

Gt = R + YRyy1 + Y Rysat. .. @ i @ i " : ;ﬁgﬁg
vy = Ex[Gy | Sp = 5] & "li‘f'wnnns

st
N =0

\ AR
B> &
The state values satisfy a recursive relationship that is

called the Bellman equation:

’UW(S) — ]EF[Rt-f-]. + ’YUW(St—I—l) | St = 8]

18



Values and the Bellman equation

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

Gi = R, +YRi1 + 7 Rijot. .. @ e 0 = Fnea
Ur = E?T[Gt ‘ St - 3]

The state values satisfy a recursive relationship that is
called the Bellman equation:

Linear system of _—— 'Uw(s) = ]Ew[RH—l + ')"Uw(st—kl) | St = 3]
equations = values

are unique and can

be computed with

linear algebra.

19



Values and the Bellman equation

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

Gi = R; + YRyi1 + Y Rysat. .. @) ;" ) o o
VUr — Eﬂ'[Gt | St - 3]

qr = Eﬂ'[Gt | St = S,At = a]

The state values satisfy a recursive relationship that is
called the Bellman equation:

In practice it’s often 'Uw(s) — ]Ew[RH—l -+ 'Y'vw(st—kl) | St = 3]
handy to define S
§tate—act|on values qw(s, a) — Ew[RH—l + ’an(5t+1, At+1) | St = s, At — a]

instead.
20



A few numerical experiments with our MDP

Notebook 1 on

qgithub.com/fewagner/icsc23 -1

21


http://github.com/fewagner/icsc23

Some more realistic examples

Taxi

Black Jack

states (500) = {position on 5x4 grid,
location and destination passenger
g/r/y/b}

actions (6) = {move
up/down/left/right, pickup/dropoff
passenger}

rewards = +20 for delivering, -10 for
wrong dropoff/pickup, -1 else

states (704) = {own points, dealers
visible points, whether you hold a
usable ace}

actions (2) = {hit, draw}

rewards = +1 win, -1 lose, 0 draw

We solve these
“T—— environments in
section 2!

22



The Markov property

MY NAMES BILL,

MDPs are “memoryless”, i.e. the dynamics and reward [P\ AN i ForeetriL.

i 7 /(///Z

function do not depend on history prior to the current
state and action.

p: (A, S) — {probabilities for S’}
r:(S’,A,S') — R e R

Attention!

Not every RL environment necessarily satisfies the Markov property. Some have
unobserved, internal states. These are called partially observable MDPs
(POMDPs).

23



MDPs: transfer questions

On which level of detail should we formulate the MDP?
Consider driving a car. Is the action to “drive to the shop”, or is it
“turn the turning wheel to the right”, or even “move the left front
wheel by 15 degrees”?

S

Are there limitations to the requirement of a scalar
reward? Can all types of goal-oriented decision making
be formulated as maximizing rewards?

24
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Solving small MDPs
with tabular methods
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A greedy control algorithm

Assume, we know the action-value (Q) function corresponding to an optimal
policy.

26



A greedy control algorithm

Assume, we know the action-value (Q) function corresponding to an optimal
policy.

We can just always take the action with the highest Q value!

27



In practice, it’s not that easy ...

Let’s look back at the Bellman equation

%r(sa a) — Ew[Rt+1 =+ /Yqﬂ'(St—F].? At+1) | St — S, At — a']

28



We need to learn the values from data

The expected value depends on the dynamics of the
environment and has to be learned from experience.

\

%r(sa CL) — Ew[Rt+1 =+ /Yqﬂ'(St—l—]J AH—I) | St — S, At — a']

29



We need to sample data cleverly

The expected value depends on the dynamics of the
environment and has to be learned from experience.

\

%r(sa CL) — Ew[Rt+1 =+ /Yqﬂ'(St—l—]J AH—I) | St — S, At — a']

An efficient algorithm collects preferably experience
that is relevant for finding an optimal policy.

30



Temporal difference (TD) learning
@ ) @ ) @ ) “If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”
@/ @ @ - Sutton & Barto, first sentence of the TD chapter
General idea of TD learning:

e Implement a policy based on the Q-values to choose next action.

e After every step, make update on Q-values.

31



Temporal difference (TD) learning
@ ) @ ) @ ) “If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”
@/ @ @ - Sutton & Barto, first sentence of the TD chapter
General idea of TD learning:

e Implement a policy based on the Q-values to choose next action.

e After every step, make update on Q-values.

32



Exploration vs. exploitation

Rewards in RL are typically sparse and need
to be discovered before they can be
propagated to neighboring and distant state
values.

“Epsilon-greedy” policy:

Take greedy action with probability 1-€ and
random action with probability €.

33



Temporal difference (TD) learning
@ @ @ “If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”
@/ @ @ - Sutton & Barto, first sentence of the TD chapter
General idea of TD learning:
e “Epsilon-greedy” policy
e After every step, make update on Q-values.
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Temporal difference (TD) learning
@ @ @ “If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”
@/ @ @ - Sutton & Barto, first sentence of the TD chapter
General idea of TD learning:
e “Epsilon-greedy” policy
e After every step, make update on Q-values.

35



Let’s look back at the Bellman equation

Can’t we learn an expected value iteratively?

%r(sa CL) — Ew[Rt+1 =+ ’YQW(SH—la AH—I) | St — S, At — a']

36



We can use the Bellman equation as an update rule

Q(S, Ar) < Q(St, Ar) + a[Rps1 + YQ(Ski1, a) — Q(St, Ay)]

\ . J/

/ d¢ ... TD error

learning rate € (0,1)

37



We can use the Bellman equation as an update rule

%r(sa CL) — Ew[Rt+1 + /YQW(SH—la At+1) | St — S, At — a]

Q(St, Ap) = Q(St, Ar) + o[ Rip1 + vQ(St41,a) — Q(St, At)]

A\ J/

/ d¢ ... TD error

learning rate € (0,1)

We are moving our previous estimate of the Q-value a small
step towards the new experience!

38



Temporal difference (TD) learning

olete®

General idea of TD learning:

e “Epsilon-greedy” policy

e Update rule: Q(S: Az) + Q(St, A¢) + a[Rir1 + YQ(St+1,a) — Q(St, At)

\ .

]

J/

ot ... TD error

39



On-policy and off-policy methods

The simplest on/off policy control schemes :

SARSA Q(St, At) < Q(St, Ar) + a[Ri1 + vQ(Sti1, A1) — Q(St, At)]
Q-learning ~ Q(S:, At) < Q(St, At) + o [RtJrl + max Q(St1,a) — Q(St, Ar)

On-policy: SARSA considers that future actions are taken according to current
policy.

Off-policy: Q-learning considers that future actions are taken with another
(target) policy, in this case the greedy policy. \

can learn policy without actually following it!
40



On-policy and off-policy methods

SARSA Q(St, At) < Q(St, Ar) + a[Rii1 + vQ(Sts1, Arr1) — Q(St, Ar)]

6t 6t+1

YN YN

QUSLA) o QSturAer) Tz QS Aues) o !

Q(St,At) M+ Q(St+1,At+1) Ins+2 In+s

@ @t

Q-learning  Q(S;, Ar) <+ Q(S;, Ay) + « [Rt+1 + Y L Q(Si+1,a) — Q(S:, At)}



Cliff walking

The agents walks in a gridworld, receiving -1 until it reaches the goal, and -100
for falling off the cliff.

Q-learning learns the optimal policy to walk next to the cliff, but falls off
sometimes due to the e-greedy action selection. SARSA considers this action
selection and obtains higher rewards online.

Sarsa
_25 -

Sum of _50.
rewards Q-learning
during
R=-1 episode

-754

Safer path

-100

. T T 1 T 1
Optimal path 0 100 200 300 400 500

[
s'| The Cliff Episodes

W 42
(from Sutton & Barto)
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SARSA/Q-learning on taxi driver/black jack

Dealer: &

Notebook 3 on

qgithub.com/fewagner/icsc23

43


http://github.com/fewagner/icsc23

Tabular methods: transfer questions

What problems could occur with the epsilon-greedy scheme?

When would you use an on-policy method (SARSA) and when an
off-policy method (Q-learning)?

44
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Solving large MDPs
with policy gradient methods

45



How large is a large MDP?

How many states has the game tic-tac-toe?

46



How large is a large MDP?

How many states has the game tic-tac-toe? 765

How many states has the game go?

47



How large is a large MDP?

How many states has the game tic-tac-toe? 765

How many states has the game go? 3%°'=10"2

\ for comparison: our universe

. . 1082
How many states has driving a car? has ~10™ atoms

48



How large is a large MDP?

How many states has the game tic-tac-toe? 765
How many states has the game go? 3%¢=10172

How many states has driving a car? (all positions and velocities of wheels,
all sensor readings, visual input, GPS data, ... 777?)

AN

How would we set up a
Q-table for this? 6 O\

A



Function approximation

Many environment have continuous (real numbers) state and action spaces. We cannot
build and exact Q-table for such environments!

Instead, we treat the Q-table as a function, called value function:
4,(s,a) € R

In this formulation, we can use function approximators to learn the value function, similarly
as we updated the Q table.

But ... how to choose a greedy action for continuous action spaces? &)

50



Function approximation

Many environment have continuous (real numbers) state and action spaces. We cannot
build and exact Q-table for such environments!

Instead, we treat the Q-table as a function, called value function:
4,(s,a) €R

In this formulation, we can use function approximators to learn the value function, similarly
as we updated the Q table.

For large or continuous action spaces, we can treat the policy as a policy function:

mg(al|s) € [0, 1], me(-|s) ... probability distribution

\There are many ways to approximate a function, we

H 113 ”
We call this value a “preference”. focus on parametric approximators.

51
w and © are the real-values parameter vectors.



Actor-critic: TD learning in continuous spaces

... defined by dynamics-
and reward function

Simplest version of an actor-critic agent:
Environment

The value function (critic) estimates the returns for states.

The policy (actor) learns actions that have high values.

State

Critic

7
(/ Policy

6n k
Actor

uonovy

52



target

Examples of parametric function approximators

Linear regression Gaussian function Neural network

0.5 A

me k = 0.507,d =-0.3

1.0 1 1.0 1

0.0 1

i A = 0.991, mu = -0.401, |
0.5 ™ sigma = 0.203 0.5
-0.5 1 DY L Oy
0.0 0.0
o . o === 100 node 1 layer network
—1.0 1 b °
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
data
linear regression Gaussian radial basis neural network
function
(z — )’ ol B 4

53



Learning parameters with gradient descent

Wil — Wy + aVE(wt)

Linear regression

0.5 -
kK = 0,112, d =-0.183 2 A =0.731, mu =-0.0777, 1 4
1.01 sigma = 0.899
4&; 00 N &
g 0.5 1 0
+ -0.51 :
0.0{ &
_1.0 L T T T T T T T T T T _1 L
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Videos and GIFs are disabled in data
the PDF version of these slides.
Notebook 4 on

qgithub.com/fewagner/icsc23

Epoch 10

Gaussian function

Neural network

=== 100 node 1 layer network

-1.0 -0.5 0.0 0.5 1.0

54
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Loss functions for values/policy

Value function loss: minimize mean squared error between returns and values,
leading to gradient update

Wil = Wi + Oy (Rt+1 + Y0 (St41) — Uw(ASt))VwUfut(St)

Policy function loss: maximize probability for actions with high TD error, leading to
gradient update

Orr1 = 0; + Oém’t (Rt—H + ’)’f)w(stﬂ) - Uw(St)) Vpln 7T0t(At|St)

55



Actor-critic: TD learning in continuous spaces

... defined by dynamics-
and reward function

Simplest version of an actor-critic agent:

The value function (critic) estimates the returns for states. Environment

The policy (actor) learns actions that have high values.

uonoYy

Exploration-exploitation is balanced by sampling actions from
the policy’s probability distribution.

State

Critic

7
(/ Policy

6n k
Actor

After every step, updates are done according to:

Wil = Wt + Qy (Rt+1 + Y0 (St1) — Uw(St)) Vv, (S¢)
01 = 6 + Oéé)’)’t (Rt+1 + ’Yf’w(stﬂ) - vw(St))Vg In 7T0t(At|St)

In this formulation, the algorithm can be only used for episodic
tasks and uses a state value function.

56



Actor-critic on the lunar lander

Notebook 5 on OpenAl Gym:
qgithub.com/fewagner/icsc23 LunarLander-v2

57
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Policy gradient methods: transfer questions

When would you prefer a method that uses approximation over a tabular
method?

-
Is our version of actor critic an on-policy or off-policy algorithm? %
Actor-critic (?) Wil = Wt + Oy (Rt—l-l + Y0 (St41) — Uw(St)> V¥, (St)
0:11 = 0 + gy’ (Rt+1 + V0w (St+1) — Uw(St))Ve In 7, (A¢|St)
SARSA (on-policy) Q(Sm At) — Q(St, At) + Oé[Rt+1 + 'YQ(St+17 At+1) -1 Q(St, At)]

Q-learning (off-policy) Q(S:, As) + Q(St, Ai) + [Rt+1 + 'mexQ(StnLla a) — Q(S;, At)}

58



Recap
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Markov decision processes

Recap

60



Markov decision processes

Recap

... defined by dynamics-
st and reward function

State, reward
uonoy

... defined by policy function

Policy, dynamics- and reward function

61



Recap

... defined by dynamics-
st and reward function

State, reward

4x(s,a) = Ex[Rit1 + ¥ (Sts1, Aer1) | St = s, Ay = af

... defined by policy function

Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

62



Recap

... defined by dynamics-
st and reward function

State, reward

4x(s,a) = Ex[Rit1 + ¥ (Sts1, Aer1) | St = s, Ay = af

... defined by policy function

Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

6( 6(01

¥ YN\ YN

Q(Sx,A() Fns Q(Stn,Atn) sz Q(Suz,Auz) Fnsa
Q(Sk, Ar) < Q(St, Ar) + a[Re1 + ¥Q(Sti1, Aria) — Q(St, Ar)]

SARSA (on-policy) 63



Recap

... defined by dynamics-
st and reward function

State, reward

4x(s,a) = Ex[Rit1 + ¥ (Sts1, Aer1) | St = s, Ay = af

... defined by policy function

Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

==

Q(St,Av) tner Q(Ste1,Ate1) ez Q(Staz,Ate2) Fes Q(Sy, A o1 Q(Ste1,At41) Tnez Thes
Q(St, Ar) + Q(Si, Ay) + a[Ryy1 +YQ(Spy1, Arr1) — Q(Sh, Ar)] Q(S, Ar) < Q(St, Ar) + O‘[RHI + 7 max Q(Si+1,a) — Q(Stht)}

SARSA (on-policy) Q-learning (off-policy) 64



Recap

... defined by dynamics-
st and reward function

ONE R

4x(s,a) = Ex[Rit1 + ¥ (Sts1, Aer1) | St = s, Ay = af

uonoy

State, reward

... defined by policy function

Policy, dynamics- and reward function Values, Bellman equation

... defined by dynamics-
and reward function

Markov decision processes

Reward

Q(St,Av) tner Q(Ste1,Ate1) ez Q(Staz,Ate2) Fes Q(Sy, A o1 Q(Ste1,At41) Tnez Thes
@) @) @) @) @) 2 z
i) Value 5
& @ oeic =S
Q(St, Ar) + Q(Si, Ay) + a[Ryy1 +YQ(Spy1, Arr1) — Q(Sh, Ar)] Q(S, Ar) < Q(St, Ar) + O‘[RHI + 7 max Q(Si+1,a) — Q(Stht)}
Actor
Actor-critic 65

SARSA (on-policy) Q-learning (off-policy)
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There i1s much more to learn ...

A few examples of reinforcement
learning in physics.
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Reinforcement learning in (experimental) physics

PHYSICAL REVIEW ACCELERATORS AND BEAMS 24, 104601 (2021)

Real-time artificial intelligence for accelerator control:
A study at the Fermilab Booster
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Magnetic control of tokamak plasmas
through deep reinforcementlearning

https://doi.org/101038/541586-021-04301-9
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Jonas Degrave'?, Federico Felici**™, Jonas Buchli'**, Michael Neunert'?, Brendan
Tracey"*™, Francesco Carpanese'>?, Timo Ewalds'?, Roland Hafner'?, Abbas Abdolmaleki',
Diego de las Casas', Craig Donner', Leslie Fritz, Cristian Galperti?, Andrea Huber",
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Demis Hassabis' & Martin Riedmiller'*

Nuclear fusion using magnetic confinement, in particular in the tokamak
configuration, is a promising path toward i gy.Acore
shape and maintain a high-temperature plasma within the tokamak vessel. This
requires high-di i , high-fr , closed-loop control using magnetic
actuator coils, further complicated by the diverse requirements across a wide range of
plasma configurations. In this work, we introduce a previously undescribed
architecture for tokamak magnetic controller design that autonomously learns to
command the full set of control coils. This architecture meets control objectives
specified at a high level, at the same time satisfying physical and operational
constraints. This approach has unprecedented flexibility and generality in problem
specification and yields a notable reduction in design effort to produce new plasma
configurations. We successfully produce and control a diverse set of plasma
configurations on the Tokamak a Configuration Variable'?, including elongated,
conventional shapes, as well as advanced configurations, such as negative
triangularity and ‘snowflake’ configurations. Our approach achieves accurate tracking
of thelocation, current and shape for these ions. We also di rate
sustained ‘droplets’ on TCV, in which two separate plasmas are maintained
simultaneously within the vessel. This represents anotable advance for tokamak
feedback control, showing the potential of reinfo! learning t

researchin the fusion domain, and is one of the most challenging real-world systems
towhich reinforcement learning has been applied.

isto

Nature 602, 414-419 (2022).
https://doi.org/10.1038/s41586-021-04301-9
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Reinforcement learning in (experimental) physics
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Optimal operation of cryogenic calorimeters with reinforcement learning
(paper in preparation)
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Bandits - contextual bandits - reinforcement learning

Bandits consider only immediate rewards. Con?,xdeggg
Bandit: “The actions bring on average: a | a

1.2 | -01

Contextual bandit: “The action-state pairs bring on
average the rewards:

RL: “We have to plan action-state trajectories ahead and consider delayed

rewards! @ But ...how to assign credit to individual action...? &)”
\ 71

We discuss this in section 2 and 3!



Derivation of the Bellman equation

Gt = Ry +YRei1 + 7' Rea+t. .. (@) ;" 6o) " "
v = E;[Gy | St = s]

v (8)

I

Eﬂ-[Gt | St = S]
Ex[Ris1 +7Gei1 | St = 8]

Zﬂ'(a | ) ZZp(s',r | s,a) [7‘—|—’y]E[Gt+1 | S¢i1 = s'”
Zw(a | 5) Zp(s',r | s,a) [r+ yux(s)]
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The tiger problem, a POMDP

valuable, but not

cute, but
worth dying for

dangerous

For POMDPs, the agent obtains

observations of the environment, while . . .

the state is a hidden internal property states = {t|ger rlght’ tlger left}

of the environment. ) ) )
actions = {open left, open right, listen}

\ observations = {hear tiger right, hear tiger left}, 85% probability to hear tiger on correct side

rewards = 10 for opening door with treasure, -100 for opening door with tiger, -1 for listening
73



Prediction and control

“Solve” an MDP can mean two separate thing: solving a prediction and a control
problem. For many algorithms (especially for control) the problems are solved
simultaneously and iteratively.

Prediction: policy is fixed, Control: find a policy that
predict the returns for given maximizes the returns

Startlng states (does not necessarily need values)
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Model-based and model-free

If we only knew everything ...

In general we do not know the dynamics- and reward function (model-free)!

For problems with known environment we can use model-based techniques:
planing, ...
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Temporal difference (TD) prediction

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”
- Sutton & Barto, first sentence of the TD chapter

ol
General idea of TD prediction: "(S
5t+1

Fix a policy. V(St)

ns+3

e Let an agent take actions in an environment according to policy.

e After every step, make update on values according to Bellman equation:

"7 Scheme with this update

rule is also called TD(0)

V(S:) < V(St) +/0{Rt+1 + YV (St1) — V(5]

learning rate € (0,1) d¢ ... TD error
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TD prediction on our MDP

Notebook 2 on

github.com/fewagner/icsc23

+5

0.10
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Approximating values with gradient descent

Wil — Wy + onE(wt)

We choose a function approximator for our value function and update its parameters
such that the squared errors with the true value function are minimized:

1
W1 = Wy + anvw['vﬂ(st) — vp, (S4)]?

= Wt + 0|V (St) — v, (St) | Vv, (St)
= Wt + a’w[Rt—I—l + ’Y,U&)t(st—ﬂ) - v’:Ut(St)]vwv’:Ut(St)
= Wt + aw5tiv{Ut(St)

Note, that we bootstrapped the true value function with the reward and next state value,
as introduced in the TD learning chapter!

78



Approximating policies with gradient descent

Wil — Wy + onE(wt)

0 U LI LA LN L I

For the policy function a parametrization with explicitly known 083 N et ZEZ?E:: ]

expectation is advantageous. The natural choice is a Gaussian T / \ e, a5 — .

function. We therefore use two function approximators to learn the °°f /\ / \ ]

mean and standard deviation: ) e .
rofals) = — L exp (_ (a— pols)) ) . ERAN

0'9(8)\/% 20‘9(8)2 00‘/ /fj T\\\\\‘

po(s) = yo,(s), oo(s) = exp (yo,(s)) S e

We update the policy parameters to maximize the state values, using

the policy gradient theorem to calculate the derivative:
This expression is not triviall

/ .
VHUL;(SO) - Evr[(StVe In 71'9(At|5t)] Proof in Sutton & Barto.

0, is again the TD error.
= update rule: et—i—l =0; + CY@’}’t(StVQ In Wgt(At‘St) - vtt is not trivial, derivation is

exercise in Sutton & Barto. 79



TD(0) full algorithm

Tabular TD(0) for estimating v,

Input: the policy 7 to be evaluated
Algorithm parameter: step size o € (0, 1]
Initialize V(s), for all s € 8T, arbitrarily except that V (terminal) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
A « action given by 7 for S
Take action A, observe R, S’
V(S) « V(S)+a[R+~V(S) = V(9)]
S+ S

until S is terminal

80



SARSA full algorithm

Sarsa (on-policy TD control) for estimating ) ~ ¢.

Algorithm parameters: step size a € (0,1], small € > 0
Initialize Q(s, a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
Q(S, 4) + Q(S, A) + a[R+1Q(S", A) — Q(S, A)]
S+ S A+ A
until S is terminal
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Q-learning full algorithm

Q-learning (off-policy TD control) for estimating 7 ~ 7,

Algorithm parameters: step size o € (0, 1], small € > 0
Initialize Q(s, a), for all s € 87, a € A(s), arbitrarily except that Q(terminal,-) = 0

Loop for each episode:

Initialize S

Loop for each step of episode:
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S,A) + a|R + ymax, Q(5",a) — Q(S, A)]
S+ S’

until S is terminal

82



Actor-critic full algorithm

One-step Actor—Critic (episodic), for estimating mg ~ 7.

Input: a differentiable policy parameterization 7(als, @)
Input: a differentiable state-value function parameterization v(s,w)
Parameters: step sizes a® > 0, a¥ > 0
Initialize policy parameter 8 € R and state-value weights w € R? (e.g., to 0)
Loop forever (for each episode):

Initialize S (first state of episode)

1
Loop while S is not terminal (for each time step):
A~7(]S,0)
Take action A, observe S, R
d— R+~9(S",w) —v(S,w) (if S’ is terminal, then v(S’,w) = 0)

w < w+aVIVo(S,w)
0+ 0+a°I5Vinn(A|S,0)
I+ ~I

S« S
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Additional transfer questions

N

How would we describe the pendulum problem as an MDP?

When would you prefer a model-based algorithm and when a model-free
algorithm?

Tabular methods are interesting as they allow the calculation of proofs of
convergence, and other mathematical properties. Can you imagine any
disadvantages or limitations of tabular methods?

Can you think of any additional challenges when using RL with large function
approximators (e.g. deep neural networks)?

Could we use different parameterizations of the policy function (non-Gaussian)?
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