
A crash course on
reinforcement learning

Felix Wagner
Institute of High Energy Physics of the Austrian Academy of Sciences

Inverted CERN School of Computing 2023

Labeled Training Data

Supervised Learning

Triangle
Triangle TriangleCircle

Square

Pentagon

Learning to label

Model

New Data Square!

Three types of machine learning

Labeled Training Data Unlabeled Training Data

Supervised Learning Unsupervised Learning

Triangle
Triangle TriangleCircle

Square

Pentagon

Learning to label

Model

New Data

Learning to cluster

Model

New DataSquare!

Three types of machine learning

Labeled Training Data Unlabeled Training Data

Supervised Learning Unsupervised Learning Reinforcement Learning

Triangle
Triangle TriangleCircle

Square

Pentagon

Learning to label

Model

New Data

Learning to cluster

Model

New DataSquare!

Learning to make decisions

Model

Task:

 “build a pyramid
with suitable item”

best expected return

Three types of machine learning

Reinforcement learning

Reinforcement learning (RL) in a nutshell:
“Learn a policy to maximize rewards over time””

There are famous examples of RL for learning games.

But it can also be applied to real world problems, as …
6

Reinforcement learning

“AlphaGo” winning against
the Go world champion

“AlphaStar” wins Starcraft against
99.85% of human players.

OpenAI Gym - A framework for
reinforcement learning
https://www.gymlibrary.dev/

… a framework for
model-free,
time-discrete control
problems.

Reinforcement learning

Videos and GIFs are disabled in
the PDF version of these slides.

https://docs.google.com/file/d/1mITkaiy_Ia4ZnAiNwYrx0Dj3CPn3lLh8/preview
https://docs.google.com/file/d/1C0pGIoexCV_E35UNtB39sv4XWT13LsMQ/preview
https://docs.google.com/file/d/1LXHs3Uja6oRBzeDP8szpcH4UMhkkf8Ob/preview
https://www.gymlibrary.dev/

Well, if you …

● have ever asked yourself “What would be the best strategy to win UNO,
chess, black jack, …?”

● work on problems that involve optimizing the control of machines or other
types of goal-oriented action planning.

● are not frightened by mathematical definitions and linear algebra.

● are generally curious about machine learning and artificial intelligence.

● and otherwise ready to learn something completely new and exciting!

8

This lecture is for you!

Outline

We cover the following topics:

● Markov decision processes (MDPs)

● Solving small MDPs with tabular methods

● Solving large MDPs with policy gradient methods

9

Transfer questions after
every section.

Jupyter notebooks with code examples are
hosted on github.com/fewagner/icsc23.

http://github.com/fewagner/icsc23

Literature

“Sutton & Barto” is the standard text
book for RL - and main source for this
lecture.

However, developments in the field are fast and
staying up to date involves skimming papers and
proceedings all the time.

10

Markov decision processes (MDPs)

Markov decision processes (MDPs)

12

An MDP is a 4-tuple consisting of an

action space and state space,

a dynamics function:

and a reward function:

Sometimes this notation is convenient:

Markov decision processes (MDPs)

13

For the MDP displayed on the right:

state space

action space

dynamics function

reward function

Markov decision processes (MDPs)

14

RL models the interaction of an
agent with an environment (an
MDP).

The agent aims to take actions that
maximize the collected rewards over
time (returns), following a policy
function:

Markov decision processes (MDPs)

15

RL models the interaction of an
agent with an environment (an
MDP).

The agent aims to take actions that
maximize the collected rewards over
time (returns), following a policy
function:

Values and the Bellman equation

16

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

Values and the Bellman equation

17

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

Some MDPs have terminal states (episodic MDPs),
others run forever (continuous MDPs).

Especially for continuous MDPs values could diverge
over time. Therefore we introduce a discounting
factor 0<γ<1.

Values and the Bellman equation

18

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

The state values satisfy a recursive relationship that is
called the Bellman equation:

Values and the Bellman equation

19

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

The state values satisfy a recursive relationship that is
called the Bellman equation:

Linear system of
equations ⇒ values
are unique and can
be computed with
linear algebra.

Values and the Bellman equation

20

For a given policy and MDP, we can calculate the expected returns
for any initial state. These are also called the state values.

In practice it’s often
handy to define
state-action values
instead.

The state values satisfy a recursive relationship that is
called the Bellman equation:

A few numerical experiments with our MDP

21

Notebook 1 on
github.com/fewagner/icsc23

http://github.com/fewagner/icsc23

Some more realistic examples

22

Taxi Black Jack

states (500) = {position on 5x4 grid,
location and destination passenger
g/r/y/b}

actions (6) = {move
up/down/left/right, pickup/dropoff
passenger}

rewards = +20 for delivering, -10 for
wrong dropoff/pickup, -1 else

states (704) = {own points, dealers
visible points, whether you hold a
usable ace}

actions (2) = {hit, draw}

rewards = +1 win, -1 lose, 0 draw We solve these
environments in
section 2!

The Markov property

MDPs are “memoryless”, i.e. the dynamics and reward
function do not depend on history prior to the current
state and action.

23

Attention!

Not every RL environment necessarily satisfies the Markov property. Some have
unobserved, internal states. These are called partially observable MDPs
(POMDPs).

On which level of detail should we formulate the MDP?
Consider driving a car. Is the action to “drive to the shop”, or is it
“turn the turning wheel to the right”, or even “move the left front
wheel by 15 degrees”?

MDPs: transfer questions

24

Are there limitations to the requirement of a scalar
reward? Can all types of goal-oriented decision making
be formulated as maximizing rewards?

Solving small MDPs
with tabular methods

25

A greedy control algorithm

Assume, we know the action-value (Q) function corresponding to an optimal
policy.

26

a0 a1

s0 1.96 2.1

s1 5.69 4.72

s2 2.00 2.54

A greedy control algorithm

Assume, we know the action-value (Q) function corresponding to an optimal
policy.

We can just always take the action with the highest Q value!

27

a0 a1

s0 1.96 2.1

s1 5.69 4.72

s2 2.00 2.54

In practice, it’s not that easy …

28

Let’s look back at the Bellman equation

We need to learn the values from data

29

The expected value depends on the dynamics of the
environment and has to be learned from experience.

We need to sample data cleverly

30

An efficient algorithm collects preferably experience
that is relevant for finding an optimal policy.

The expected value depends on the dynamics of the
environment and has to be learned from experience.

Temporal difference (TD) learning

General idea of TD learning:

● Implement a policy based on the Q-values to choose next action.

● After every step, make update on Q-values.

31

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter

Temporal difference (TD) learning

General idea of TD learning:

● Implement a policy based on the Q-values to choose next action.

● After every step, make update on Q-values.

32

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter

Exploration vs. exploitation

Rewards in RL are typically sparse and need
to be discovered before they can be
propagated to neighboring and distant state
values.

“Epsilon-greedy” policy:

Take greedy action with probability 1-ε and
random action with probability ε.

33

Temporal difference (TD) learning

General idea of TD learning:

● “Epsilon-greedy” policy

● After every step, make update on Q-values.

34

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter

Temporal difference (TD) learning

General idea of TD learning:

● “Epsilon-greedy” policy

● After every step, make update on Q-values.

35

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter

Let’s look back at the Bellman equation

36

Can’t we learn an expected value iteratively?

We can use the Bellman equation as an update rule

37

learning rate ∊ (0,1)

We can use the Bellman equation as an update rule

38

learning rate ∊ (0,1)

We are moving our previous estimate of the Q-value a small
step towards the new experience!

Temporal difference (TD) learning

General idea of TD learning:

● “Epsilon-greedy” policy

● Update rule:

39

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter

On-policy and off-policy methods

The simplest on/off policy control schemes :

On-policy: SARSA considers that future actions are taken according to current
policy.

Off-policy: Q-learning considers that future actions are taken with another
(target) policy, in this case the greedy policy.

40

SARSA

Q-learning

can learn policy without actually following it!

On-policy and off-policy methods

41

SARSA

Q-learning

Cliff walking

The agents walks in a gridworld, receiving -1 until it reaches the goal, and -100
for falling off the cliff.

Q-learning learns the optimal policy to walk next to the cliff, but falls off
sometimes due to the ε-greedy action selection. SARSA considers this action
selection and obtains higher rewards online.

42(from Sutton & Barto)

SARSA/Q-learning on taxi driver/black jack

43

Notebook 3 on
github.com/fewagner/icsc23

http://github.com/fewagner/icsc23

Tabular methods: transfer questions

What problems could occur with the epsilon-greedy scheme?

When would you use an on-policy method (SARSA) and when an
off-policy method (Q-learning)?

44

Solving large MDPs
with policy gradient methods

45

How large is a large MDP?

● How many states has the game tic-tac-toe?

46

How large is a large MDP?

● How many states has the game tic-tac-toe? 765

● How many states has the game go?

47

How large is a large MDP?

● How many states has the game tic-tac-toe? 765

● How many states has the game go? 3361=10172

● How many states has driving a car?

48

for comparison: our universe
has ~1082 atoms

How large is a large MDP?

● How many states has the game tic-tac-toe? 765

● How many states has the game go? 3361=10172

● How many states has driving a car? (all positions and velocities of wheels,
all sensor readings, visual input, GPS data, … ???)

49

How would we set up a
Q-table for this?

Function approximation

Many environment have continuous (real numbers) state and action spaces. We cannot
build and exact Q-table for such environments!

Instead, we treat the Q-table as a function, called value function:

In this formulation, we can use function approximators to learn the value function, similarly
as we updated the Q table.

But … how to choose a greedy action for continuous action spaces? 🤔

50

Function approximation

Many environment have continuous (real numbers) state and action spaces. We cannot
build and exact Q-table for such environments!

Instead, we treat the Q-table as a function, called value function:

In this formulation, we can use function approximators to learn the value function, similarly
as we updated the Q table.

For large or continuous action spaces, we can treat the policy as a policy function:

51

There are many ways to approximate a function, we
focus on parametric approximators.
w and Θ are the real-values parameter vectors.

We call this value a “preference”.

Actor-critic: TD learning in continuous spaces

52

Simplest version of an actor-critic agent:

The value function (critic) estimates the returns for states.

The policy (actor) learns actions that have high values.

Examples of parametric function approximators

53

linear regression Gaussian radial basis
function

neural network

Learning parameters with gradient descent

54

Notebook 4 on
github.com/fewagner/icsc23

Videos and GIFs are disabled in
the PDF version of these slides.

http://github.com/fewagner/icsc23

Loss functions for values/policy

Value function loss: minimize mean squared error between returns and values,
leading to gradient update

Policy function loss: maximize probability for actions with high TD error, leading to
gradient update

55

Actor-critic: TD learning in continuous spaces

Simplest version of an actor-critic agent:

The value function (critic) estimates the returns for states.

The policy (actor) learns actions that have high values.

Exploration-exploitation is balanced by sampling actions from
the policy’s probability distribution.

After every step, updates are done according to:

In this formulation, the algorithm can be only used for episodic
tasks and uses a state value function.

56

Actor-critic on the lunar lander

57

OpenAI Gym:
LunarLander-v2

Notebook 5 on
github.com/fewagner/icsc23

Videos and GIFs are disabled in
the PDF version of these slides.

http://github.com/fewagner/icsc23

Policy gradient methods: transfer questions

When would you prefer a method that uses approximation over a tabular
method?

Is our version of actor critic an on-policy or off-policy algorithm?

58

SARSA (on-policy)

Q-learning (off-policy)

Actor-critic (?)

Recap

59

Recap

60

Markov decision processes

Recap

61

Markov decision processes Policy, dynamics- and reward function

Recap

62

Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

Recap

63

Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

SARSA (on-policy)

Recap

64

Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

SARSA (on-policy) Q-learning (off-policy)

Recap

65

Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

SARSA (on-policy) Q-learning (off-policy) Actor-critic

There is much more to learn …

66

A few examples of reinforcement
learning in physics.

model-free/model-based

prediction/control

bandits

partially observable MDPs

Reinforcement learning in (experimental) physics

67

Nature 602, 414–419 (2022).
https://doi.org/10.1038/s41586-021-04301-9

Phys. Rev. Accel. Beams 24, 104601 - 104618 (2021).
https://doi.org/10.1103/PhysRevAccelBeams.24.104601

https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1103/PhysRevAccelBeams.24.104601

68

Reinforcement learning in (experimental) physics

Optimal operation of cryogenic calorimeters with reinforcement learning
(paper in preparation)

Questions?

Backup

70

Bandits - contextual bandits - reinforcement learning

71

Bandits consider only immediate rewards.

Bandit: “The actions bring on average:

Contextual bandit: “The action-state pairs bring on
average the rewards:

RL: “We have to plan action-state trajectories ahead and consider delayed
rewards! 🤓 But …how to assign credit to individual action…? 🤔”

a0 a1

1.2 -0.1

S0,a0 S0,a1 S1,a0 S1,a1 S2,a0 S2,a1

0 0 3.5 0 0 -0.3

considering

this MDP

We discuss this in section 2 and 3!

Derivation of the Bellman equation

72

The tiger problem, a POMDP

73

states = {tiger right, tiger left}

actions = {open left, open right, listen}

observations = {hear tiger right, hear tiger left}, 85% probability to hear tiger on correct side

rewards = 10 for opening door with treasure, -100 for opening door with tiger, -1 for listening

cute, but
dangerous

valuable, but not
worth dying for

For POMDPs, the agent obtains
observations of the environment, while
the state is a hidden internal property
of the environment.

Prediction and control

“Solve” an MDP can mean two separate thing: solving a prediction and a control
problem. For many algorithms (especially for control) the problems are solved
simultaneously and iteratively.

74

Prediction: policy is fixed,
predict the returns for given

starting states

Control: find a policy that
maximizes the returns

(does not necessarily need values)

Model-based and model-free

In general we do not know the dynamics- and reward function (model-free)!

For problems with known environment we can use model-based techniques:
planing, ...

75

If we only knew everything … 🤷

Temporal difference (TD) prediction

General idea of TD prediction:

Fix a policy.

● Let an agent take actions in an environment according to policy.

● After every step, make update on values according to Bellman equation:

76

“If one had to identify one idea as central and novel to
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter

Scheme with this update
rule is also called TD(0)

learning rate ∊ (0,1)

TD prediction on our MDP

77

Notebook 2 on
github.com/fewagner/icsc23

http://github.com/fewagner/icsc23

Approximating values with gradient descent

We choose a function approximator for our value function and update its parameters
such that the squared errors with the true value function are minimized:

Note, that we bootstrapped the true value function with the reward and next state value,
as introduced in the TD learning chapter!

78

Approximating policies with gradient descent

For the policy function a parametrization with explicitly known
expectation is advantageous. The natural choice is a Gaussian
function. We therefore use two function approximators to learn the
mean and standard deviation:

We update the policy parameters to maximize the state values, using
the policy gradient theorem to calculate the derivative:

⇒ update rule:
79

This expression is not trivial!
Proof in Sutton & Barto.

δt is again the TD error.
γt is not trivial, derivation is
exercise in Sutton & Barto.

TD(0) full algorithm

80
(from Sutton & Barto)

SARSA full algorithm

81
(from Sutton & Barto)

Q-learning full algorithm

82
(from Sutton & Barto)

Actor-critic full algorithm

83(from Sutton & Barto)

Additional transfer questions

How would we describe the pendulum problem as an MDP?

When would you prefer a model-based algorithm and when a model-free
algorithm?

Tabular methods are interesting as they allow the calculation of proofs of
convergence, and other mathematical properties. Can you imagine any
disadvantages or limitations of tabular methods?

Can you think of any additional challenges when using RL with large function
approximators (e.g. deep neural networks)?

Could we use different parameterizations of the policy function (non-Gaussian)?

84

