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Reinforcement learning

Reinforcement learning (RL) in a nutshell: 
“Learn a policy to maximize rewards over time””



There are famous examples of RL for learning games. 

But it can also be applied to real world problems, as …
6

Reinforcement learning

“AlphaGo” winning against 
the Go world champion

“AlphaStar” wins Starcraft against 
99.85% of human players.



OpenAI Gym - A framework for 
reinforcement learning
https://www.gymlibrary.dev/

… a framework for 
model-free, 
time-discrete control 
problems.

Reinforcement learning

Videos and GIFs are disabled in 
the PDF version of these slides.

https://docs.google.com/file/d/1mITkaiy_Ia4ZnAiNwYrx0Dj3CPn3lLh8/preview
https://docs.google.com/file/d/1C0pGIoexCV_E35UNtB39sv4XWT13LsMQ/preview
https://docs.google.com/file/d/1LXHs3Uja6oRBzeDP8szpcH4UMhkkf8Ob/preview
https://www.gymlibrary.dev/


Well, if you …

● have ever asked yourself “What would be the best strategy to win UNO, 
chess, black jack, …?”

● work on problems that involve optimizing the control of machines or other 
types of goal-oriented action planning.

● are not frightened by mathematical definitions and linear algebra.

● are generally curious about machine learning and artificial intelligence. 

● and otherwise ready to learn something completely new and exciting! 
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This lecture is for you! 



Outline

We cover the following topics:

● Markov decision processes (MDPs)

● Solving small MDPs with tabular methods

● Solving large MDPs with policy gradient methods

9

Transfer questions after 
every section.

Jupyter notebooks with code examples are 
hosted on github.com/fewagner/icsc23.

http://github.com/fewagner/icsc23


Literature

“Sutton & Barto” is the standard text 
book for RL - and main source for this 
lecture.

However, developments in the field are fast and 
staying up to date involves skimming papers and 
proceedings all the time.
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Markov decision processes (MDPs)



Markov decision processes (MDPs)
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An MDP is a 4-tuple consisting of an 

action space and state space, 

a dynamics function: 

and a reward function:

Sometimes this notation is convenient:



Markov decision processes (MDPs)
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For the MDP displayed on the right:

state space

action space

dynamics function

reward function



Markov decision processes (MDPs)
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RL models the interaction of an 
agent with an environment (an 
MDP).

The agent aims to take actions that 
maximize the collected rewards over 
time (returns), following a policy 
function:
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agent with an environment (an 
MDP).

The agent aims to take actions that 
maximize the collected rewards over 
time (returns), following a policy 
function:



Values and the Bellman equation
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For a given policy and MDP, we can calculate the expected returns 
for any initial state. These are also called the state values.
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For a given policy and MDP, we can calculate the expected returns 
for any initial state. These are also called the state values.

Some MDPs have terminal states (episodic MDPs), 
others run forever (continuous MDPs).

Especially for continuous MDPs values could diverge 
over time. Therefore we introduce a discounting 
factor 0<γ<1.
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For a given policy and MDP, we can calculate the expected returns 
for any initial state. These are also called the state values.

The state values satisfy a recursive relationship that is 
called the Bellman equation:

Linear system of 
equations ⇒ values 
are unique and can 
be computed with 
linear algebra.



Values and the Bellman equation

20

For a given policy and MDP, we can calculate the expected returns 
for any initial state. These are also called the state values.

In practice it’s often 
handy to define 
state-action values 
instead.

The state values satisfy a recursive relationship that is 
called the Bellman equation:



A few numerical experiments with our MDP
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Notebook 1 on 
github.com/fewagner/icsc23

http://github.com/fewagner/icsc23


Some more realistic examples
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Taxi Black Jack

states (500) = {position on 5x4 grid, 
location and destination passenger 
g/r/y/b}

actions (6) = {move 
up/down/left/right, pickup/dropoff 
passenger}

rewards = +20 for delivering, -10 for 
wrong dropoff/pickup, -1 else

states (704) = {own points, dealers 
visible points, whether you hold a 
usable ace}

actions (2) = {hit, draw}

rewards = +1 win, -1 lose, 0 draw We solve these 
environments in 
section 2!



The Markov property

MDPs are “memoryless”, i.e. the dynamics and reward 
function do not depend on history prior to the current 
state and action.

23

Attention! 

Not every RL environment necessarily satisfies the Markov property. Some have 
unobserved, internal states. These are called partially observable MDPs 
(POMDPs). 



On which level of detail should we formulate the MDP? 
Consider driving a car. Is the action to “drive to the shop”, or is it 
“turn the turning wheel to the right”, or even “move the left front 
wheel by 15 degrees”?

MDPs: transfer questions
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Are there limitations to the requirement of a scalar 
reward? Can all types of goal-oriented decision making 
be formulated as maximizing rewards?



Solving small MDPs 
with tabular methods
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A greedy control algorithm

Assume, we know the action-value (Q) function corresponding to an optimal 
policy.

26

a0 a1

s0 1.96 2.1

s1 5.69 4.72

s2 2.00 2.54



A greedy control algorithm

Assume, we know the action-value (Q) function corresponding to an optimal 
policy.

We can just always take the action with the highest Q value!
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a0 a1

s0 1.96 2.1

s1 5.69 4.72

s2 2.00 2.54



In practice, it’s not that easy …

28

Let’s look back at the Bellman equation



We need to learn the values from data

29

The expected value depends on the dynamics of the 
environment and has to be learned from experience.



We need to sample data cleverly

30

An efficient algorithm collects preferably experience 
that is relevant for finding an optimal policy.

The expected value depends on the dynamics of the 
environment and has to be learned from experience.



Temporal difference (TD) learning

General idea of TD learning: 

● Implement a policy based on the Q-values to choose next action.

● After every step, make update on Q-values.

31

“If one had to identify one idea as central and novel to 
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter



Temporal difference (TD) learning

General idea of TD learning: 

● Implement a policy based on the Q-values to choose next action.

● After every step, make update on Q-values.
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“If one had to identify one idea as central and novel to 
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter



Exploration vs. exploitation

Rewards in RL are typically sparse and need 
to be discovered before they can be 
propagated to neighboring and distant state 
values.

“Epsilon-greedy” policy:

Take greedy action with probability 1-ε and 
random action with probability ε.

33



Temporal difference (TD) learning

General idea of TD learning: 

● “Epsilon-greedy” policy

● After every step, make update on Q-values.
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“If one had to identify one idea as central and novel to 
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter



Temporal difference (TD) learning

General idea of TD learning: 

● “Epsilon-greedy” policy

● After every step, make update on Q-values.
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“If one had to identify one idea as central and novel to 
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter



Let’s look back at the Bellman equation
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Can’t we learn an expected value iteratively?



We can use the Bellman equation as an update rule
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learning rate ∊ (0,1) 



We can use the Bellman equation as an update rule
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learning rate ∊ (0,1) 

We are moving our previous estimate of the Q-value a small 
step towards the new experience!



Temporal difference (TD) learning

General idea of TD learning: 

● “Epsilon-greedy” policy

● Update rule:
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“If one had to identify one idea as central and novel to 
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter



On-policy and off-policy methods

The simplest on/off policy control schemes : 

On-policy: SARSA considers that future actions are taken according to current 
policy.

Off-policy: Q-learning considers that future actions are taken with another 
(target) policy, in this case the greedy policy.

40

SARSA

Q-learning

can learn policy without actually following it!



On-policy and off-policy methods

41

SARSA

Q-learning



Cliff walking

The agents walks in a gridworld, receiving -1 until it reaches the goal, and -100 
for falling off the cliff.

Q-learning learns the optimal policy to walk next to the cliff, but falls off 
sometimes due to the ε-greedy action selection. SARSA considers this action 
selection and obtains higher rewards online.

42(from Sutton & Barto)



SARSA/Q-learning on taxi driver/black jack

43

Notebook 3 on 
github.com/fewagner/icsc23

http://github.com/fewagner/icsc23


Tabular methods: transfer questions

What problems could occur with the epsilon-greedy scheme?

When would you use an on-policy method (SARSA) and when an 
off-policy method (Q-learning)?

44



Solving large MDPs 
with policy gradient methods

45



How large is a large MDP?

● How many states has the game tic-tac-toe? 
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How large is a large MDP?

● How many states has the game tic-tac-toe? 765

● How many states has the game go? 
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How large is a large MDP?

● How many states has the game tic-tac-toe? 765

● How many states has the game go? 3361=10172

● How many states has driving a car? 

48

for comparison: our universe 
has ~1082 atoms



How large is a large MDP?

● How many states has the game tic-tac-toe? 765

● How many states has the game go? 3361=10172

● How many states has driving a car? (all positions and velocities of wheels, 
all sensor readings, visual input, GPS data, … ???)

49

How would we set up a 
Q-table for this?



Function approximation

Many environment have continuous (real numbers) state and action spaces. We cannot 
build and exact Q-table for such environments!

Instead, we treat the Q-table as a function, called value function: 

In this formulation, we can use function approximators to learn the value function, similarly 
as we updated the Q table.

But … how to choose a greedy action for continuous action spaces? 🤔

50



Function approximation

Many environment have continuous (real numbers) state and action spaces. We cannot 
build and exact Q-table for such environments!

Instead, we treat the Q-table as a function, called value function: 

In this formulation, we can use function approximators to learn the value function, similarly 
as we updated the Q table.

For large or continuous action spaces, we can treat the policy as a policy function:
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There are many ways to approximate a function, we 
focus on parametric approximators.
w and Θ are the real-values parameter vectors.

We call this value a “preference”.



Actor-critic: TD learning in continuous spaces

52

Simplest version of an actor-critic agent:

The value function (critic) estimates the returns for states.

The policy (actor) learns actions that have high values.

 



Examples of parametric function approximators
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linear regression Gaussian radial basis 
function

neural network



Learning parameters with gradient descent
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Notebook 4 on 
github.com/fewagner/icsc23

Videos and GIFs are disabled in 
the PDF version of these slides.

http://github.com/fewagner/icsc23


Loss functions for values/policy

Value function loss: minimize mean squared error between returns and values, 
leading to gradient update

Policy function loss: maximize probability for actions with high TD error, leading to 
gradient update

55



Actor-critic: TD learning in continuous spaces

Simplest version of an actor-critic agent:

The value function (critic) estimates the returns for states.

The policy (actor) learns actions that have high values.

Exploration-exploitation is balanced by sampling actions from 
the policy’s probability distribution.

After every step, updates are done according to:

In this formulation, the algorithm can be only used for episodic 
tasks and uses a state value function.  
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Actor-critic on the lunar lander

57

OpenAI Gym: 
LunarLander-v2

Notebook 5 on 
github.com/fewagner/icsc23

Videos and GIFs are disabled in 
the PDF version of these slides.

http://github.com/fewagner/icsc23


Policy gradient methods: transfer questions

When would you prefer a method that uses approximation over a tabular 
method?

Is our version of actor critic an on-policy or off-policy algorithm?

58

SARSA (on-policy)

Q-learning (off-policy)

Actor-critic (?)



Recap
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Recap
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Markov decision processes



Recap
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Markov decision processes Policy, dynamics- and reward function



Recap
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Markov decision processes Policy, dynamics- and reward function Values, Bellman equation
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Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

SARSA (on-policy)



Recap
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Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

SARSA (on-policy) Q-learning (off-policy)



Recap
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Markov decision processes Policy, dynamics- and reward function Values, Bellman equation

SARSA (on-policy) Q-learning (off-policy) Actor-critic



There is much more to learn …
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A few examples of reinforcement 
learning in physics.

model-free/model-based

prediction/control

bandits

partially observable MDPs



Reinforcement learning in (experimental) physics
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Nature 602, 414–419 (2022).
https://doi.org/10.1038/s41586-021-04301-9

Phys. Rev. Accel. Beams 24, 104601 - 104618 (2021).
https://doi.org/10.1103/PhysRevAccelBeams.24.104601

https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1103/PhysRevAccelBeams.24.104601
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Reinforcement learning in (experimental) physics

Optimal operation of cryogenic calorimeters with reinforcement learning
(paper in preparation)



Questions?



Backup 
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Bandits - contextual bandits - reinforcement learning

71

Bandits consider only immediate rewards. 

Bandit: “The actions bring on average: 

Contextual bandit: “The action-state pairs bring on 
average the rewards: 

RL: “We have to plan action-state trajectories ahead and consider delayed 
rewards! 🤓 But …how to assign credit to individual action…? 🤔”

a0 a1

1.2 -0.1

S0,a0 S0,a1 S1,a0 S1,a1 S2,a0 S2,a1

0 0 3.5 0 0 -0.3

considering 

this MDP

We discuss this in section 2 and 3!



Derivation of the Bellman equation
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The tiger problem, a POMDP

73

states = {tiger right, tiger left}

actions = {open left, open right, listen}

observations = {hear tiger right, hear tiger left}, 85% probability to hear tiger on correct side

rewards = 10 for opening door with treasure, -100 for opening door with tiger, -1 for listening

cute, but 
dangerous

valuable, but not 
worth dying for

For POMDPs, the agent obtains 
observations of the environment, while 
the state is a hidden internal property 
of the environment.



Prediction and control

“Solve” an MDP can mean two separate thing: solving a prediction and a control 
problem. For many algorithms (especially for control) the problems are solved 
simultaneously and iteratively. 
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Prediction: policy is fixed, 
predict the returns for given 

starting states 

Control: find a policy that 
maximizes the returns 

(does not necessarily need values)



Model-based and model-free

In general we do not know the dynamics- and reward function (model-free)!

For problems with known environment we can use model-based techniques: 
planing, ...

75

If we only knew everything … 🤷



Temporal difference (TD) prediction

General idea of TD prediction: 

Fix a policy.

● Let an agent take actions in an environment according to policy.

● After every step, make update on values according to Bellman equation:
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“If one had to identify one idea as central and novel to 
reinforcement learning, it would undoubtedly be TD learning.”

- Sutton & Barto, first sentence of the TD chapter

Scheme with this update 
rule is also called TD(0)

learning rate ∊ (0,1) 



TD prediction on our MDP

77

Notebook 2 on 
github.com/fewagner/icsc23

http://github.com/fewagner/icsc23


Approximating values with gradient descent

We choose a function approximator for our value function and update its parameters 
such that the squared errors with the true value function are minimized:

Note, that we bootstrapped the true value function with the reward and next state value, 
as introduced in the TD learning chapter!
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Approximating policies with gradient descent

For the policy function a parametrization with explicitly known 
expectation is advantageous. The natural choice is a Gaussian 
function. We therefore use two function approximators to learn the 
mean and standard deviation:

We update the policy parameters to maximize the state values, using 
the policy gradient theorem to calculate the derivative:

⇒ update rule:
79

This expression is not trivial! 
Proof in Sutton & Barto.

δt is again the TD error.
γt is not trivial, derivation is 
exercise in Sutton & Barto.



TD(0) full algorithm
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(from Sutton & Barto)



SARSA full algorithm

81
(from Sutton & Barto)



Q-learning full algorithm

82
(from Sutton & Barto)



Actor-critic full algorithm

83(from Sutton & Barto)



Additional transfer questions

How would we describe the pendulum problem as an MDP?

When would you prefer a model-based algorithm and when a model-free 
algorithm?

Tabular methods are interesting as they allow the calculation of proofs of 
convergence, and other mathematical properties. Can you imagine any 
disadvantages or limitations of tabular methods?

Can you think of any additional challenges when using RL with large function 
approximators (e.g. deep neural networks)?

Could we use different parameterizations of the policy function (non-Gaussian)?
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