Introduction to
accelerated computing

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

14th Inverted CERN School of Computing

Charis Kleio Koraka

Tuesday March 7t 2023

Overview

Hardware accelerators and heterogeneous computing
The GPU

GPU applications in HEP

The CUDA programming model

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

Hardware accelerators

e Devices built for executing specific tasks more efficiently compared to running on the standard
computing architecture of a CPU

e Comein many flavors:
o GPUs/FPGAs/TPUs...

e Partof our everyday lives:
o Encryption, video stream decoding, 3D graphics acceleration, pattern/object recognition, machine
learning, Al and many more

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

Some types of hardware accelerators (1)

e GPU (Graphic Processing Unit)
o Initially developed for graphics processing

o Optimized for parallel processing of floating-point
operations & used in a variety of tasks

e FPGA (Field-Programmable Gate Array)
o Integrated circuit (IC) configurable by the user and provides
interface flexibility

o FPGAs can be reprogrammed to suit the needs of the
application or required functionality

Image sources [il ,[ii iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 4

https://www.pny.com/nvidia-tesla-t4
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus-vu23p.html

Some types of hardware accelerators (2)

e ASIC (Application-Specific Integrated Circuit)

o ICchip customized for a particular use
ASIC

o i.e. lower precision and/or optimised memory usage to
maximize throughput

e TPU (Tensor Processing Unit)
o Optimised to perform matrix-multiplication operations /
used in e.g. NN and RF training

e VPU (Vision Processing Unit)
o Used to accelerate machine vision algorithms, i.e. CNNs , Al

etc. VPUs
Image sources [i] , [iil, [iii] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 5

https://en.wikipedia.org/wiki/Application-specific_integrated_circuit
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.forbes.com%2Fsites%2Fmoorinsights%2F2017%2F04%2F13%2Fgoogles-tpu-for-ai-is-really-fast-but-does-it-matter%2F&psig=AOvVaw0KPs-PQpzkwCZdxCrwrTcT&ust=1674834694066000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCLjz7snL5fwCFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.ieiworld.com%2F__LandingPage%2Fmustang-v100%2F&psig=AOvVaw2CxUskGlV0TGE5T38pjgL8&ust=1674834748512000&source=images&cd=vfe&ved=0CBAQjRxqFwoTCOiF6ePL5fwCFQAAAAAdAAAAABAE

How are hardware accelerators used?

<

GPU Use GPU to Parallelize

Image source [i]

Application Code

(S,
(S,
(T ——

(

Compute-Intensive Functions [

(S
(S

|

(S

Rest of Sequential
CPU Code

>

CPU

HR

In accelerated computing we take the compute
intensive parts of the application code and
parallelize that for execution on e.g. a GPU
o Typically integer or floating-point
mathematical operations

The remainder of the code (usually the vast
majority) remains on the CPU
o The part of code that remains on the CPU is
ideally serial code

Data between the CPU and the accelerator has to
be transferred:

o This is performed via interconnect i.e. PCle
(Peripheral Component Interconnect Express),
NVLink, Ethernet etc.

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

https://youtu.be/KgMJzmqenuc

Heterogeneous computing

e Heterogeneous computing involves using
multiple different types of processors to
accomplish a task

e Code can run on more than one platform
concurrently

e Aheterogeneous system can consist of :

o Different types of CPUs (i.e. combine
compute powerful with less compute
powerful but more power efficient CPU
cores)

o Hardware accelerators

Image source [i] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7" 2023

CPU GPU
e e f
EEEEEEEE BHEEDEDEE
EEEEEEEE EEEEEEEE
DN EEEEEEEE
Cache [Cache]
DD D EEEE
o g e e e e e e e
HH SoEoEoos SooSSSoS
Cache Cache [Cache | Cache
LLC Global Memory |
%
Main Memory
£\
| 10
e | Global Memory |

CPU

FPGA

https://www.routledgehandbooks.com/doi/10.1201/9780429399602-3

The GPU

The Graphic Processing Unit (GPU)

GPUs are similar to CPUs :

e Silicon based micro-processor that contain cores, registers, memory, and
other components.

But also very different :

Many-core processor
e Follows the Single instruction, multiple threads (SIMT) execution
model
o Asynchronous programming model where threads are not executed
in lockstep

e GPU acceleration emphasizes on:
o High data throughput and massive parallel computing: a GPU
consist of hundreds of cores performing the same operation on
multiple data items in parallel.

Image sources [il,[ii] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7" 2023 9

https://www.nvidia.com/en-us/design-visualization/desktop-graphics/
https://www.intel.com/content/www/us/en/newsroom/news/introducing-intel-data-center-gpu-flex-series.html#gs.o9iafq

The NVidia GPU architecture

PCI Express 3.0 Host Interface

e The GPU architecture is built around a
scalable array of Streaming
Multiprocessors (SM).

e FEach SM in a GPU is designed to
support concurrent execution of
hundreds of threads

PCle interconnect: Can be

used for connecting GPU to
3 om 3 o o o | o o o e e host CPU

s W W W W W W w e W w W H
 rcom [v cone Ji vrcome [cone [ccone J v coe QY econe Qi ercome i urcone i cone [coe Jf vrcone

NVlink : Can be used to
connect to additional GPUs

Image source [3] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7" 2023 10

Hardware to software mapping

Image source [2]

Scalar
Processor

I:I I 0000
0ooo

Multiprocessor

Hardware

2

Thread

Qe

Thread Block

Grid

Software

A scalar processor or CUDA core is equivalent
to a software thread

Scalar processors are grouped into a SM

Each execution of a GPU function is done
concurrently on a number of threads referred
to as a thread block

Each thread block is executed by one SM and
cannot be migrated to other SMs in GPU

The set of thread blocks executing the GPU
function is called a grid.

In CUDA terminology the GPU is referred to as
the device

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

11

GPU memory hierarchy

e Registers
o Memory private to each thread
o Fastest form of memory

e L1 cache/Shared memory —
o Fast accessible memory that can be accessed GG 5o S Adl0

SM-0 SM-1 SM-(N-1)

Registers
A100 (256 KB per SM in A100)

by threads in the same block and threads of THER
different blocks in the same SM e e o a—
e Read-only
o Each SM has a constant/texture cache memory
which is read-only to kernel code. Fast but | atache D METRAIGD)
limited in size I
e L2 Cache

Global Memory (DRAM, 40 GB in A100)

o Memory that all threads in all blocks can
access. Fast but limited in size.
e Global memory
o GPUs DRAM memory
o Slow but large

Image source [i] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 12

https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/

Performance comparison of CPUs and GPUs (1)

Theoretical Peak Performance, Single Precision

FLOPS : Floating-Point Operations per
Second

GFLOP/sec

e Measure of computing performance
useful in fields that require

floating-point calculations (such as D S I
HEP) L B el
. . . . IINTEL Xeon Phis +.
e GPUs can deliver more FLOPS
End of Year
compared to CPUs
iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 13

Image source [i]

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

Performance comparison of CPUs and GPUs (2)

Theoretical Peak Floating Point Operations per Watt, Single Precision

FLOPS per Watt : 1o : ? 7 3 P~

e Rate of floating-point operations
performed per watt of energy consumed

s 10 @ (OE\N '
gw‘ ----------- o Qu-g-] .@ﬂ.{’ib\..._\A_O.Q.’?seo?nf*zijwzo_ A o]
Z‘) (S ‘ o (’/62'
Important since power consumption is limiting ° |«

factor in hardware manufacturing/usage:

INTEL Xeon CPUs == |

10 - : NVIDIA GeForce GPUs —Jll—

e Peak performance constrained by the o § A“jﬁf;fi‘;f,f;i’; ++
amount of power it can draw and the e 0 v o e
amount of heat it can dissipate

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 14

Image source [i]

https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/

CPU vs GPU - overview of main differences

CPU GPUs
e ~0(10) powerful cores e ~0(1000) of less powerful cores
o Largerinstruction set o Smallerinstruction set
e Low latency e High throughput
e Serial processing e Parallel processing
e Complex operations e Simple operations
e Higher clock speeds e Better per-watt performance
N
il L2 Cache

Image source [4] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7™ 2023

Applications of GPUs in HEP

16

Computing needs in HEP

e Event generation

e Simulation

e Eventreconstruction
e Event post-processing

e Dataanalysis

Link 1ink
CMSPublic ATLAS Preliminary
Total CPU HL-LHC (2031/No R&D Improvements) fractions 2022 Computing Model - CPU: 2031, Conservative R&D
2022 Estimates 24%

Tot: 33.8 MHS06*y

Other: 2%
GEN: 9%

RECO: 35% DIGI: 9%

Data Proc
MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
MC-Fast(Rec)
EvGen
Heavy lons
Data Deriv
MC Deriv
Analysis

8%

SIM: 15%

8%
RECOSim: 26%

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7™ 2023

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/UPGRADE/CERN-LHCC-2022-005/

How can GPUs help?

e Event generation

e Simulation

e Eventreconstruction
e Event post-processing

e Dataanalysis

[il

\ i

PSEUDO RANDOM
NUMBERS

N 3 PHASE SPACE

SAMPLING

MATRIX
ELEMENT
GENERATOR
(e.g. MG5aMC)

SHOWERING AND
HADRONIZATION
N GENERATORS
MATRIX ELEMENT (e.g. PYTHIA)
CALCULATION
H [PARTON SHOWERS
PHASE SPACE S -
SAMPLING WEIGHTED EVENTS HADRONISATION
OPTIMISATION {EVT,, W,=1}, ie[1,..Nog] AND DECAY
mEE i
P Y b PARTICLE
%, MONTE CARLO MONTE CARLO FILTERING
INTEGRATION UNWEIGHTING '
é i = W
. v i
& UNWEIGHTED EVENTS 15} DETECTOR
.., CROSS-SECTIONS etc... e
o SCTIONS o VI, Wi=L3 el Mirn] SIMULATION
; bR (GEANT4)

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

- GPU enabled event generator i.e. Madgraph

18

https://cds.cern.ch/record/2774080/files/2106.12631.pdf

How can GPUs help?

e Event generation

e Simulation

e Eventreconstruction
e Event post-processing

e Dataanalysis

- GPU based Geant4 application (i.e. AdePT)
il

GPU-based

specialized

PETTC M, EM shower
calorimeter AELICS

Geantd [Eoeg
ean

a
onCPU 1 @%n

AltFast3 in ATLAS [ii] , DC-GAN in ALICE [iii])

Deep Conditional Convolutional GAN

Conditional WGAN-GP

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

- AI/ML enabled Fast Simulation (i.e.

19

https://indico.cern.ch/event/855454/contributions/4605037/attachments/2355172/4019147/AdePT-ACAT2021.pdf
https://arxiv.org/pdf/2109.02551.pdf
https://indico.cern.ch/event/727112/contributions/3114918/attachments/1707466/2751621/FastSimML-23Geant4CollaborationMeeting.pdf

How can GPUs help?

e Event generation

e Simulation

e Eventreconstruction
e Event post-processing

e Dataanalysis

- Track reconstruction, primary vertex
reconstruction, raw data unpacking,
clustering etc.

- Various efforts in different experiments

(Patatrack track reconstruction [i], Allen
project [iil, ALICE TPC track reconstruction
[iii] etc.) AN Y%

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

20

https://www.frontiersin.org/articles/10.3389/fdata.2020.601728/full
https://cds.cern.ch/record/2699553/files/vom_Bruch_Allen_chep2019%2004.11.pdf
https://arxiv.org/pdf/1712.09430.pdf

How can GPUs help?

e Event generation

e Simulation

e Eventreconstruction
e Event post-processing

e Dataanalysis

Training and inference of ML models
Perform HEP analysis using columinar
analysis paradigm tools (i.e. coffea [i])

Nnassnealf

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

21

https://coffeateam.github.io/coffea/

Introduction to CUDA

22

The CUDA programming model

CUDA > Compute Unified Device Architecture.

It is an extension of C/C++ programming

Developed by Nvidia and is used to develop applications executed on NVidia GPUs

To execute any CUDA program, there are three main steps:

Copy the input data from CPU or host memory to the device memory
Execute the CUDA program
Copy the results from device memory to host memory

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

<ANVIDIA.

CUDA.

23

1. Copy data for host to device

<PCIe or NVLink Bus>

CPU Memory

[RRRRERNRRENR

Image source [1] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7™ 2023

24

2. Execute the CUDA program

CPU Memory

<’CIe or NVLink BusE>

[T

Image source [1] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7™ 2023

3. Copy data from device back to host

<PCIe or NVLink Bus>
[—

Image source [1] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7™ 2023

26

Threads & blocks

e In CUDA, built-in variables are available in order to

express threads and blocks :
o threadIdx & blockIdx

e Thevariables have 3-dimensional indexing & provide
a natural way to express elements in vectors and
matrices :

o threadIdx.x , threadIdx.y threadIdx.z

e CUDA architecture limits the numbers of threads per
block (1024 threads per block limit).

e Thedimension of the thread block is accessible
within the kernel through the built-in blockDim

variable.
Ol s o e sl o feselsfolr oL L T

LT L] L]
L 1T T T
| |Block (0,00 | [Block (0,1) _| | Block (0,n) |
EEEN EEEE EEEN
[T [T 1] [T 1]
T T T T T L
|| Block (1,0) | Block (1,1) _| Block (1,n) _|
I I | I A | I |
[[T 11 [T [[T
[{1 LT LT
1 T 1T 1T
|| Block (m,0) Block (m,1)_| Block (m,n)_|

|

RN

Thread Thread
[(A0)) (0,1)
Thread Thread
(M,0) (M,1)

Thread
(0,N)

Thread
(M,N)

Image source [1],[2] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

27

Indexing using blockldx and threadldx

e The threadIdx & blockIdx variables can be used to express the unique index of an element in an array/matrix
etc.

e Assuming that each block consists of a number of M threads :
o 1index = threadIdx.x + blockIdx.x * M;

| B |

threadIdx.x = 5

(T e e e e

=
blockIdx.x = 2

int index = threadldx.x + blockIdx.x * M;
= 5 + 2 * 8;
= 21.:

Image source [1] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 28
S

L1 L

T T 1T T T

wa rps || Block (0,0) | | Block (0,1) |
I I I | Ll

EEEE EEEE

e Within a thread block, threads are executed in - BERR

groups > Warps Ekwaue Bl s
e Awarpis an entity of 32 threads on Nvidia GPUs LT EERN
e If the block size is not divisible by 32, some of the
threads in the last warp will remainidle:
o block size should be chosen to be a multiple
of the warp size N
| | Block (m,0) | | | Block (m,1) |

e Threads in the same warp are processed ‘ i
simultaneously ERNEE EEEE

Warp 0 Warp 1 Warp 2

Thread
Thread 0 Thread 32 Thread 64
Thread Thread
Thread 96 (M,0) (M,1)

Thread 31 Thread 63

Image source [2] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

C Program
Sequential
Execution

CUDA kernel i e | B

Parallel kernel Device
Kernel0<<<>>>() Grid 0

Block (0,0) Block (1,0) Block (2, 0)

e CUDAkernelis a function that gets executed on the GPU e AT RS
e The kernel expresses the portion of the application that
is parallelizable

o It will be executed multiple times in parallel by A—— Host
different CUDA threads f
Parallel kernel Device
Kernell<<<»>>() Grid 1
Mio.o) llodx%x,O)
Block (0, 1) Block (1, 1)
Block (0, 2) Block (1, 2)

Y
Image source [4] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7™ 2023

CUDA function declarations

Declaration Callable from: Executed on:
__global_ _ host device
_ _device_ _ device device
__host_ _ host host
e _ _global__ keyword defines a kernel function:

o Islaunched by host and executed on the device
o Must return void

e _ _device__and __host__ can be used together

e _ host__declaration, if used alone, can be omitted

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 31
S

Launching a CUDA kernel

e Let’sassume we have the following kernel :

__global__ void mykernel() { This is the grid dimension i.e. the number of blocks that
..Do something.. will be launched

This is the block dimension i.e. the
number of threads within a block

e Howdowelaunchit?
myKernel<<<nBlocks,nThreads>>> ()

e The above command will launch the kernel with nBlocks, each of which has nThreads.
e The kernel is executed multiple times concurrently by different threads
e Thetotal number of invocations of the kernel body is now nBlocks * nThreads.

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 32
S

Memory management

e The host and device have their own separate memory: e
o Device pointers point to GPU memory int* d_a;
o Host pointers point to CPU memory
e CUDA kernels operate out of device memory
e CUDA provides functions to allocate device memory, cudaMalloc(&d_a, sizeof(int));
release device memory, and transfer data between the
host memory and device memory :

a = (int*) malloc(sizeof(int));

*a = 1;

. 01 .)
vl I oeipir, sz i byies o L) cudaMemcpy(d a, a, sizeof(int), cudaMemcpyHostToDevice);

do_something<<<l, 1>

cudaFree(ptr) onize();

cudaMemcpy (destination_ptr,source_ptr, size_in_bytes, direction) i i)
daMemcpy(a, d a, sizeof(int), cudaMemcpyDeviceToHost);

where direction can be:

free(a);
afFree(d_a);

e For copying data from CPU to GPU
e For copying data from GPU to CPU

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 33
S

Coalesced global memory access

Address _ 128 256

e Global memory loads and stores data in as few as possible
transactions - coalesced memory access

e Important performance consideration as it can affect the
time needed to access data Heesliii B

31

e Every successive 128 bytes (DRAM burst) can be accessed by
awarp

Address _128 256 257

e |[f the data accessed by the threads in a warp are not in the _
same burst section, the data access will take twice as long

ThreadID o 31

Image source [i] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023

https://cvw.cac.cornell.edu/gpu/coalesced

Putting together a CUDA program

__global void do_something (int* a) {

The main components of a CUDA program are: =3

}
Declarations of functions :
o These can be __host__ / __global__ /

int main() {

__device__ functions int* a;
int* d_a;
Copying data to/from host : a = (int*) malloc(sizeof(int));

o Use cudaMalloc / cudaMemcpy / cudaFree

— > cudaMalloc(&d _a, sizeof(int));

Kernel launch <<<grid size, block size >>>(<arguments>) *a = 1;

Concurrency management \cudaMemcpy(d@, a, sizeof(int), cudaMemcpyHostToDevice);
o Use __Syncthreads() or do_something<<<l,1>>>(d_a);

CudaDevi ceSynch ronize () s cudaDeviceSynchronize();

cudaMemcpy(a, d a, sizeof(int), cudaMemcpyDeviceToHost);

free(a);
cudaFree(d a);

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 35

Error handling

Error codes can be converted to a human-readable error messages with the following CUDA run- time function:

char* cudaGetErrorString(cudaError_t error)

A common practice is to wrap CUDA calls in utility functions that manage the error returned :

int* a;

cudaError_t err = cudaMalloc(&a, -1);

if (err != cudaSuccess) {
printf("CUDA error %s\n", cudaGetErrorString(err));
exit(-1):

To detect errors in a kernel launch, we can use the API call cudaGetLastError() which returns the error code for
whatever the last CUDA API call was.

cudaError_t err = cudaGetLastError();

For errors that occurs asynchronously during the kernel launch, cudaDeviceSynchronize() has to be invoked
after the kernel in order to return any errors associated with the kernel launch.

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 36

CUDA Program
(Combined CPU-GPU Code)

Compilation

NVCC

e Compiling a CUDA program is similar to compilinga C/C++
program.
Cuda code should be typically stored in a file with extension .cu CHRE ks Hesh ok i nde
NVIDIA provides a CUDA compiler called nvec :
o nvccis called for CUDA parts
o gcciscalled for ct++ parts
o nvcc converts .cu files into C++ for the host system and
CUDA assembly or binary instructions for the device
e Usage:

CUDACC Host/CPU Compiler

CUDA Object File CPU Object File

nvcc myCudaProgram.cu -o myCudaProgram

Linker

CPU-GPU Executable

Image source [i] iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 37
S

https://www.researchgate.net/figure/CUDA-program-compilation-process-using-NVCC_fig5_321368813

Profiling (1)

e Similarly to CPU code, GPU code can be profiled

e Goal of profiling is to identify and optimise performance
limiters.

e Common reasons for limited performance include :

O

o
O
O

Image source [1]

Portions of the code that run serially on the CPU

Memory copies for host to device

Latency of launching GPU kernels

Uncoalesced memory accesses, lack of cache reuse, not
using shared memory, register spilling etc.

Low arithmetic intensity (operations computed per byte
accessed from memory)

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7™ 2023

38

$ nvprof matrixmul
[Matrix Multiply Using CUDA] - Starting
==27694== NVPROF is profiling process 27694, command: matrixMul
GPU Device ©: "GeForce GT 64oM LE" with compute capability 3.6

Matrixa(320,320), MatrixB(640,320)

u
Computing result using CUDA Kernel...
done
Performance= 35.35 GFlop/s, Time= 3.708 msec, Size 131672000 Ops, Workgroupsize= 1624 threads/block
Checking computed result for correctness: OK

Note: For peak performance, please refer to the matrixMulCUBLAS example.

Time(%) Time calls Avg Min Max Name
0.04% 406.306us 2 203.15us 136.13us 276.18us [CUDA memcpy HtoD]
©.02% 248.29us 1 248.20us 248.29us 248.29us [CUDA memcpy DtoH]
e Many profiling tools exist. Some commonly used ones include
. Time(%) Time calls Avg Min Max Name

M . M M 564.48us. 1505 313ns 3.6790us cudaSetupArgument
0 Command line profiler for CUDA applications o oo oty 220008 cupevicebetatirabute
o) Results can be Saved for later VIeWIng by the Vlsual 33 es5us 1 s3lessus 33.cssus 33.655us cudaGetbeviceProperties
M 13.091us. 1 13.691us 13.091us 13.091us cudaEventElapsedTime

Current 67 . " nd Cycles: 639459 Regs: 17 GPU: NVIDIA n . n 75 Process: [1

Time: 1.14 msecond Cycles: 1557809 Regs: 31 GPU: NV | 13 . 75 Process: [10184] matrixMulexe

~ GPU Speed Of Light Throughput

e nvvp/ncu:
O NVi d ia Visu a l P rOfi le r’ N Sight Co m p u te \ High-level overview of the throughput for compute and memory resources of the o he throughput reports the achieved percentage of utization with r
o Interactive kernel profilers for CUDA applications. SSEEIID o Emmemmmm
o Provide detailed performance metrics an AP | O S S S O S
debugging via a user interface and command line/tool.

For each un

put

gl This keel exitit
0% of peak ypically indicatelatency ssues fr potential reasons.

Rooffine Anslysis The s = device s 321 The kemelachieved 0% of this T

GPU Throughput

ompute (5M) (%)

Memory [%]

bs 03255 0.33s 03355 0345 03455 0355

= Process “diverge® (14385) 00
Thread 29824768
Runtime API
Driver API
Profiing Overhead
=l (0] Tesla k20
E Context 1 (CUDA)
¥ MemCpy (HtoD)
7 MemCpy (DtoH)
=l Compute
7 58.0% Veclofa2dints, int*, int*, int)
T 12.6% VecThen(int, int?, int*, int)
T 11.5% Vecso(int, int*, int*, int)
¥ 11.3% Veclof32(ints, int, int, int)
 6.7% Vec320f32(ints, int, int, int)
7 0.0% VecEmpty(void)

Image source [6]

39

Wrapping-up

40

Summary

Hardware accelerators are a part of everyday life and are used in heterogeneous computing systems
GPUs emphasize on high data throughput and massive parallel computing
GPUs have made their way into HEP and are used for many applications

The CUDA programming model :
o Extension of C/C++ programming developed by Nvidia and used for applications executed on Nvidia GPUs
o CPU and GPU system are referred to as host and device respectively.

m The host and device have their own separate memory

o Typically, we run serial workload on the CPU and offload parallel computation to the GPUs
m CUDA threads are used to execute work in parallel

o Basic CUDA syntax:
m __global__ function declaration (kernel) is called from the host and executed on the device
m Memory management can be performed using cudaMalloc(), cudaFree() & cudaMemcpy()
m Tolaunch a CUDA kernel with N blocks and M threads/block syntax is <<<N,M>>>()

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 41

Back-up

42

Resources

NVIDIA Deep Learning Institute material link

10th Thematic CERN School of Computing material link
Nvidia turing architecture white paper link

CUDA programming guide link

CUDA runtime APl documentation link

CUDA profiler user's guide link

A o

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 43

https://www.nvidia.com/en-us/training/
https://csc.web.cern.ch/tcsc-2022/
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__ERROR.html#group__CUDART__ERROR
https://docs.nvidia.com/cuda/profiler-users-guide/#

Thread synchronization

__global _ void myKernel () {

e Akernel callis asynchronous with respect to the host thread : for (int i = threadIdx.x; i < N; i++) {
o After a kernel is invoked, the program returns to the host Fill variable[threadIdx.x]
side and continues execution. ¥
e There are two levels of synchronization = FYREERa0E) , ,
o Block level —>for (int 1 : threadIdx.x; 1 < N; i++) {
. Use variable[threadIdx.x]
o Grid level }
e Tosynchronize threa ithin one block: }
o Call __syncthrea within the kernel code
e Tosynchronize threads at grid leve int* a;
o Callto CudaDeviceSynchronize()from host code. i
a = (int*) malloc(sizeof(int));

o Program waits until all work launche
finished.

cudaMalloc(&d_a, sizeof(int));

cudaMemcpy(d_a, a, sizeof(int), cudaMemcpyHostToDevice);

do_something<<<1l,1>>>(d_a)
cudaDeviceSynchronize();

cudaMemcpy(a, d_a, sizeof(int), cudaMemcpyDeviceToHost);

free(a);
cudaFree(d_a);

iCSC 2023 - Introduction to accelerated computing - Charis Kleio Koraka - March 7 2023 44
S

