
Graph Neural Networks
From fundamentals to physics application

Ilias Tsaklidis itsaklid@uni-bonn.de
07/03/2023

inverted CERN School of Computing

What is all about Graph Neural Networks ?

2/28/23, 10:22 AM Optimizing Fraud Detection in Financial Services with Graph Neural Networks and NVIDIA GPUs | NVIDIA Technical Blog

https://developer.nvidia.com/blog/optimizing-fraud-detection-in-financial-services-with-graph-neural-networks-and-nvidia-gpus/ 1/7

Technical Blog Subscribe

Fraud is a major problem for many �nancial services �rms, costing billions of dollars each year, according to a recent Federal Trade Commission report. Financial fraud, fake reviews, bot assaults,

account takeovers, and spam are all examples of online fraud and harmful activity.

Although these �rms employ techniques to combat online fraud, the methods can have severe limitations. Simple rule-based techniques and feature-based algorithm techniques (logistic

regression, Bayesian belief networks, CART, and others) aren’t adaptable enough to detect the full range of fraudulent or suspicious online behaviors.

Fraudsters, for example, might set up many coordinated accounts to avoid triggering limitations on individual accounts. In addition, detecting fraudulent behavior patterns at scale is di�cult due

to the huge volume of data to sift through (billions of rows, tens of terabytes), the complexity of continually improving methodologies, and the scarcity of real cases of fraudulent activity required

for training classi�cation algorithms. For more details, see Intelligent Financial Fraud Detection Practices: An Investigation.

Although the cost of fraud is billions of dollars per year, there are very few fraudulent transactions among many legitimate transactions, leading to an imbalance in labeled data, when it is even

available. Detecting fraud becomes even more complex in the �nancial services industry, due to security concerns around personal data and the need for transparency in the methods used to

detect the fraudulent activity.

An explainable model enables fraud analysts to understand what inputs the algorithm used in the analysis and the reason(s) for �agging the transaction, building a stronger trust in the system.

Additional bene�ts include the ability to communicate feedback to internal teams and provide customers with an explanation.

In recent years, graph neural networks (GNNs) have gained traction for fraud detection problems, revealing suspicious nodes (in accounts and transactions, for example) by aggregating their

neighborhood information through di�erent relations. In other words, by checking whether a given account has sent a transaction to a suspicious account in the past.

In the context of fraud detection, the ability of GNNs to aggregate information contained within the local neighborhood of a transaction enables them to identify larger patterns that may be

missed by just looking at a single transaction.

To enable developers to quickly take advantage of GNNs to optimize and accelerate fraud detection, NVIDIA partnered with the Deep Graph Library (DGL) team and the PyTorch Geometric (PyG)

team to provide a GNN framework containerized solution that includes the latest DGL or PyG, PyTorch, NVIDIA RAPIDS, and a set of tested dependencies. The NVIDIA-optimized GNN Framework

containers are performance-tuned and tested for NVIDIA GPUs.

This approach eliminates the need to manage packages and dependencies or build the framework from source. We are actively contributing to enhance the performance of these top GNN

frameworks. We have added GPU support for uni�ed virtual addressing (UVA), FP16 operations, neighborhood sampling, subgraph operations for minibatches and optimized sparse embeddings,

sparse adam optimizer, graph batching, CSR-to-COO conversions, and much more.

Oct 04, 2022 English

Optimizing Fraud Detection in Financial Services with
Graph Neural Networks and NVIDIA GPUs
By Ashish Sardana, Onur Yilmaz and Kyle Kranen

 Discuss (3) Like

Tags: featured, Financial Services, graph neural networks, Technical Walkthrough

 +26

Technical Walkthrough

DEVELOPER

NVIDIA uses cookies to deliver and improve the website experience. See our Cookie
Policy to learn more.

Cookies Settings Accept All Cookies

Appl i e d

Tra ffic
p re d ic t ion wit h
ad vanc e d
Grap h Ne ura l
Ne t works
Se p t e mbe r 3 , 2020

2 / 38

A hot research topic
A very hot research topic

GRL is currently experiencing

its “ImageNet” moment
2017 2018 2019 2020 2021 2022

Year
0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f s
ub

m
iss

io
n

on
 a

rx
iv

'graph neural network' in title or abstract
Computer science
Physics (HEP + other)

3 / 38

https://petar-v.com/talks/GNN-EEML.pdf

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

2. How to build a graph

3. How to choose an appropriate GNN for your problem

4 / 38

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

2. How to build a graph

3. How to choose an appropriate GNN for your problem

4 / 38

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

2. How to build a graph

3. How to choose an appropriate GNN for your problem

4 / 38

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

2. How to build a graph

3. How to choose an appropriate GNN for your problem

4 / 38

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

2. How to build a graph

3. How to choose an appropriate GNN for your problem

4 / 38

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

2. How to build a graph

3. How to choose an appropriate GNN for your problem

4 / 38

Outline

1. Data structures and relational inductive biases

2. Elements of Graph Theory

3. Graph Neural Mechanisms

4. Applications in HEP

5 / 38

Outline

1. Data structures and relational inductive biases

2. Elements of Graph Theory

3. Graph Neural Mechanisms

4. Applications in HEP

5 / 38

Outline

1. Data structures and relational inductive biases

2. Elements of Graph Theory

3. Graph Neural Mechanisms

4. Applications in HEP

5 / 38

Outline

1. Data structures and relational inductive biases

2. Elements of Graph Theory

3. Graph Neural Mechanisms

4. Applications in HEP

5 / 38

A general recipe for supervised machine learning

Machine Learning

Compute loss Update parameters

Repeat N times

Initialize parameters Model probability

e.g. sigmoid e.g. MSE e.g. gradient descend

6 / 38

Combinatorial generalization

A key signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem
A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

1. Good: A neural network can solve any problem.

2. Bad: Does not specify the number of nodes.

Combinatorial generalization requires enormous computational power

7 / 38

Combinatorial generalization

A key signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem
A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

1. Good: A neural network can solve any problem.

2. Bad: Does not specify the number of nodes.

Combinatorial generalization requires enormous computational power

7 / 38

Combinatorial generalization

A key signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem
A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

1. Good: A neural network can solve any problem.

2. Bad: Does not specify the number of nodes.

Combinatorial generalization requires enormous computational power

7 / 38

Combinatorial generalization

A key signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem
A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

1. Good: A neural network can solve any problem.

2. Bad: Does not specify the number of nodes.

Combinatorial generalization requires enormous computational power

7 / 38

Combinatorial generalization

A key signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem
A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

1. Good: A neural network can solve any problem.

2. Bad: Does not specify the number of nodes.

Combinatorial generalization requires enormous computational power

7 / 38

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

Example 1
Occam’s Razor expresses a preference for simplicity

Example 2
A Bayesian model expresses inductive bias through the choice and
parameterization of the prior distribution

Relational inductive bias may be enforced by the choice of data structure

8 / 38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

Example 1
Occam’s Razor expresses a preference for simplicity

Example 2
A Bayesian model expresses inductive bias through the choice and
parameterization of the prior distribution

Relational inductive bias may be enforced by the choice of data structure

8 / 38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

Example 1
Occam’s Razor expresses a preference for simplicity

Example 2
A Bayesian model expresses inductive bias through the choice and
parameterization of the prior distribution

Relational inductive bias may be enforced by the choice of data structure

8 / 38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

Example 1
Occam’s Razor expresses a preference for simplicity

Example 2
A Bayesian model expresses inductive bias through the choice and
parameterization of the prior distribution

Relational inductive bias may be enforced by the choice of data structure

8 / 38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Relational reasoning

Some profound definitions

entity
an element with attributes

relation
a property between entities

rule
a function that maps entities and relations to other entities and relations. e.g. is
entity X heavier than entity Y?

9 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational reasoning

Some profound definitions

entity
an element with attributes

relation
a property between entities

rule
a function that maps entities and relations to other entities and relations. e.g. is
entity X heavier than entity Y?

9 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational reasoning

Some profound definitions

entity
an element with attributes

relation
a property between entities

rule
a function that maps entities and relations to other entities and relations. e.g. is
entity X heavier than entity Y?

9 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational reasoning

Some profound definitions

entity
an element with attributes

relation
a property between entities

rule
a function that maps entities and relations to other entities and relations. e.g. is
entity X heavier than entity Y?

9 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational inductive bias in CNNs

Sh
ar

in
g

in
 s

pa
ce

Fully connected Convolutional

Entities: Nodes
Relations: All-to-all

Relational inductive bias: weak
Invariance: -

Entities: Grid elements
Relations: Local

Relational inductive bias: Locality
Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

Translation invariance: reusage of the same rule across localities in the input.

10 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational inductive bias in CNNs

Sh
ar

in
g

in
 s

pa
ce

Fully connected Convolutional

Entities: Nodes
Relations: All-to-all

Relational inductive bias: weak
Invariance: -

Entities: Grid elements
Relations: Local

Relational inductive bias: Locality
Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

Translation invariance: reusage of the same rule across localities in the input.

10 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational inductive bias in CNNs

Sh
ar

in
g

in
 s

pa
ce

Fully connected Convolutional

Entities: Nodes
Relations: All-to-all

Relational inductive bias: weak
Invariance: -

Entities: Grid elements
Relations: Local

Relational inductive bias: Locality
Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

Translation invariance: reusage of the same rule across localities in the input.
10 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational inductive bias in CNNs

Sh
ar

in
g

in
 s

pa
ce

Fully connected Convolutional

Entities: Nodes
Relations: All-to-all

Relational inductive bias: weak
Invariance: -

Entities: Grid elements
Relations: Local

Relational inductive bias: Locality
Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

Translation invariance: reusage of the same rule across localities in the input.
10 / 38

https://arxiv.org/pdf/1806.01261.pdf

Relational inductive bias of unorderded entities

Set
Entities whose order is irrelevant.

Graph
A set with pair-wise relations

A relational inductive bias arises from the absence of canonical order

Exploit it by allowing predictions to depend on symmetric functions

11 / 38

Relational inductive bias of unorderded entities

Set
Entities whose order is irrelevant.

Graph
A set with pair-wise relations

A relational inductive bias arises from the absence of canonical order

Exploit it by allowing predictions to depend on symmetric functions

11 / 38

Relational inductive bias of unorderded entities

Set
Entities whose order is irrelevant.

Graph
A set with pair-wise relations

A relational inductive bias arises from the absence of canonical order

Exploit it by allowing predictions to depend on symmetric functions

11 / 38

Symmetries of the function

Permutation equivariance
The output of the function is permuted
in the same way as the input.

Permutation invariance
The output of the function is the same
independantly of the permutation of
the input.

Equivariance Invariance

12 / 38

Examples of graphs in real life

Social Networks
Complex pairwise connections

Phylogenetic trees
Trees are a particular type of graphs

(directed and acyclic graphs)

Energy deposits in a detetor
Any complex set of elements can be represented as a graph.

Constructing the graph depends on several factors.
More on this will follow...

Molecules and their dynamics
naturally represented as graphs

Business and financing
Complex inter-dependencies between entities

13 / 38

Take home messages

1. Relational inductive biases can improve a learning algorithm.

2. The relational inductive bias in graphs is the absence of canonical order of
the entities.

3. This relational inductive bias manifests itself as permutation invariance and
permutation equivariance.

14 / 38

Take home messages

1. Relational inductive biases can improve a learning algorithm.

2. The relational inductive bias in graphs is the absence of canonical order of
the entities.

3. This relational inductive bias manifests itself as permutation invariance and
permutation equivariance.

14 / 38

Take home messages

1. Relational inductive biases can improve a learning algorithm.

2. The relational inductive bias in graphs is the absence of canonical order of
the entities.

3. This relational inductive bias manifests itself as permutation invariance and
permutation equivariance.

14 / 38

What is a graph ?

Graph (Computer Science)
A non-linear data structure consisting of a set of elements and their relations.
G = (u, V, E)

A

B

C

D

F

E

Node
Edge

Label

15 / 38

A non exhaustive graph taxonomy

Some typical graph types you may encounter

A

B

C

DF

E

Regular Graph
All nodes have the same

degree

A

B

C

DF

E

Directed Graph
The edged have a direction

A

B

C

DF

E

Fully Connected Graph
All nodes are interconnected

A

B

C

DF E

Acyclic Graph
No cyclic paths in the graph

16 / 38

How to represent a graph

Adjacency matrix
A square matrix whose elements
indicate whether pairs of nodes are
adjacent or not in the graph.

Feature matrix
A matrix with individual measurable
properties or characteristics of a
phenomenon.

A

B

C

D

F

E

A

B

C

D

E

F

A B C D E F

0 0 0

0 0 00

00

0 0 00 0 0

0 0 0 0

0

1 1 1

1 1

1 1 0 1 1

1

1 1

0 0 1 10

A

B

C

D

E

F

Fx Fy Fz Fw
fAx fAy fAz fAw
fBx fBy fBz fBw
fCx fCy fCz fCw
fDx fDy fDz fDw
fEx fEy fEz fEw
fFx fFy fFz fFw

Adjacency matrix (N x N)

Feature matrix (N x F)

17 / 38

https://en.wikipedia.org/wiki/Adjacency_matrix
https://en.wikipedia.org/wiki/Feature_(machine_learning)

Other graph representations

Adjacency list

A ----> {B}
B ---> {A, C}
C ----> {B}

A

B

C

0.5
0.9

A
B
C

0
A B C
0

0
00

0.5
0.5 0.9
0 0.9

Weighted matrix Degree matrix D

A
B
C

A B C
0 0

0 0
0 0

1

1
2

Laplacian matrix L = D - A

A
B
C

-1 -1
-1 -1
-1 -1

1

1
2

A B C

Coordinate List (COO)

B
B
A

A
C

C
B

B

18 / 38

Take home messages

1. Entities = nodes; Relations = edges

2. A graph at it simplest form can be defined by an adjacency matrix and a
feature matrix.

19 / 38

Take home messages

1. Entities = nodes; Relations = edges

2. A graph at it simplest form can be defined by an adjacency matrix and a
feature matrix.

19 / 38

Message passing

This is the core idea behind every graph neural network architecture!

A

B

C

D

F

E

TARGET NODE

INPUT GRAPH

A AGGREGATE

B

C

D

UPDATE

Let ℎ𝑘
𝑢 be the state of node 𝑢 in step 𝑘

hk+1
u = UPDATEk(h(k)

u , AGGREGATEk({hk
v, ∀v ∈ N(u)})) (1)

20 / 38

Symmetries

A AGGREGATE

B

C

D

UPDATE

Permutation invariant

A

AGGREGATEB

C

UPDATE

Permutation invariant

A'

B'

Pe
rm

ut
at

io
n

eq
ui

va
ria

nt

Two operations stacked together, one invariant and one equivariant.
21 / 38

Neural Message passing

The simplest choice is the SUM aggregator.

A

B

C

D

F

E

fAx fAy fAz fAw

fBx fBy fBz fBw

fCx fCy fCz fCw

fDx fDy fDz fDw

fEx fEy fEz fEw

fFx fFy fFz fFw

Node Embedding

Trainable parameters

y=x

ReLU 0 0 0

0 0 00

00

0 0 00 0 0

0 0 0 0

0

1 1 1

1 1

1 1 0 1 1

1

1 1

0 0 1 10

Adjacency matrix

AGGREGATEUPDATE Omit

H𝑘+1 = 𝜎(AH𝑘W𝑘)
22 / 38

Node embeddings

A

B

C

D

F

E

Latent Space

F

E

GNN layer

GNN layer

Node classification

Graph classification

Edge classification

The node embeddings can be further mapped using feed forward layers.

23 / 38

Graph Convolution

Question
Is message passing the equivalent of
convolution on graphs ?

Answer
Not really strictly speaking. Graphs can
be strongly heterogeneous.

Kipf and Welling added a normalization term in the aggregation function

h𝑘+1 = 𝜎(W(𝑘)
𝑛𝑒𝑖𝑔ℎ ∑

𝑣∈𝒩(𝑢)

h𝑘
𝑣

√|𝒩𝑢||𝒩𝑣|
)

Strong theoretical background based on spectral graph convolution theory

24 / 38

https://iq.opengenus.org/graph-convolution-network/
https://arxiv.org/pdf/1609.02907v4.pdf

Graph Convolution

Question
Is message passing the equivalent of
convolution on graphs ?

Answer
Not really strictly speaking. Graphs can
be strongly heterogeneous.

Kipf and Welling added a normalization term in the aggregation function

h𝑘+1 = 𝜎(W(𝑘)
𝑛𝑒𝑖𝑔ℎ ∑

𝑣∈𝒩(𝑢)

h𝑘
𝑣

√|𝒩𝑢||𝒩𝑣|
)

Strong theoretical background based on spectral graph convolution theory

24 / 38

https://iq.opengenus.org/graph-convolution-network/
https://arxiv.org/pdf/1609.02907v4.pdf

Graph Convolution

Question
Is message passing the equivalent of
convolution on graphs ?

Answer
Not really strictly speaking. Graphs can
be strongly heterogeneous.

Kipf and Welling added a normalization term in the aggregation function

h𝑘+1 = 𝜎(W(𝑘)
𝑛𝑒𝑖𝑔ℎ ∑

𝑣∈𝒩(𝑢)

h𝑘
𝑣

√|𝒩𝑢||𝒩𝑣|
)

Strong theoretical background based on spectral graph convolution theory

24 / 38

https://iq.opengenus.org/graph-convolution-network/
https://arxiv.org/pdf/1609.02907v4.pdf

Graph Attention

Attention Is All You Need

Ashish Vaswani∗

Google Brain
avaswani@google.com

Noam Shazeer∗

Google Brain
noam@google.com

Niki Parmar∗

Google Research
nikip@google.com

Jakob Uszkoreit∗

Google Research
usz@google.com

Llion Jones∗

Google Research
llion@google.com

Aidan N. Gomez∗ †

University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser∗

Google Brain
lukaszkaiser@google.com

Illia Polosukhin∗ ‡

illia.polosukhin@gmail.com

αij

~a

so
ft

m
ax

j

W~hi W~hj

~h1

~h2

~h3

~h4

~h5

~h6

~α
1
6

~α11

~α
1
2

~α13

~α 1
4

~α
1
5

~h′
1

concat/avg

Now the normalization terms are trainable

h𝑘+1 = 𝜎(⨁
∀𝑘

(W(𝑘)
𝑛𝑒𝑖𝑔ℎ ∑

𝑣∈𝒩(𝑢)
𝑎𝑢,𝑣,𝑘h𝑘

𝑣))

𝑎𝑢,𝑣 = exp(a⊤[Whu ⊕ Whv])
∑𝑣′∈𝒩(𝑢) exp(a⊤[Whu ⊕ Whv)

25 / 38

https://arxiv.org/abs/1710.10903

k-hop neighbourhood

If message passing applied k-times a node is aggregating information from its
k-hop neighborhood.

A

B

C

D

F

E

TARGET NODE

INPUT GRAPH

A AGGREGATE

B

C

D

UPDATE

A

C

B

F

A

E

A

AGGREGATE

AGGREGATE

AGGREGATE

UPDATE

UPDATE

UPDATE

Can we use this recipe to aggregate information even from the far distant nodes ?
26 / 38

Oversmoothing

The oversmoothing problem
after several iterations of GNN message passing, the representations for all the
nodes in the graph can become very similar to one another.

Small number of GNN layers can be used in
practice.

Mean Average Distance (MAD)

𝐷𝑖,𝑗 = 1 −
𝐻𝑖,∶ ⋅ 𝐻𝑗,∶

|𝐻𝑖,∶| ⋅ |𝐻𝑗,∶|

2 3 4 5 6
#Model Layer

ARMA

ChebGCN

DNA

FeaSt

GAT

GCN

GGNN

GraphSAGE

HighOrder

HyperGraph

M
od

el

0.629 0.860 0.608 0.305 0.004

0.557 0.756 0.138 0.024 0.018

0.665 0.352 0.347 0.172 0.096

0.778 0.770 0.677 0.182 0.072

0.794 0.704 0.232 0.047 0.005

0.796 0.765 0.714 0.602 0.289

0.661 0.078 0.021 0.033 0.039

0.925 0.816 0.632 0.303 0.053

0.629 0.145 0.023 0.004 0.012

0.828 0.742 0.493 0.046 0.023
0.2

0.0

0.2

0.4

0.6

0.8

1.0

27 / 38

https://seunghan96.github.io/gnn/gnn7/
https://arxiv.org/pdf/1909.03211.pdf

Oversmoothing

The oversmoothing problem
after several iterations of GNN message passing, the representations for all the
nodes in the graph can become very similar to one another.

Small number of GNN layers can be used in
practice.

Mean Average Distance (MAD)

𝐷𝑖,𝑗 = 1 −
𝐻𝑖,∶ ⋅ 𝐻𝑗,∶

|𝐻𝑖,∶| ⋅ |𝐻𝑗,∶|

2 3 4 5 6
#Model Layer

ARMA

ChebGCN

DNA

FeaSt

GAT

GCN

GGNN

GraphSAGE

HighOrder

HyperGraph

M
od

el

0.629 0.860 0.608 0.305 0.004

0.557 0.756 0.138 0.024 0.018

0.665 0.352 0.347 0.172 0.096

0.778 0.770 0.677 0.182 0.072

0.794 0.704 0.232 0.047 0.005

0.796 0.765 0.714 0.602 0.289

0.661 0.078 0.021 0.033 0.039

0.925 0.816 0.632 0.303 0.053

0.629 0.145 0.023 0.004 0.012

0.828 0.742 0.493 0.046 0.023
0.2

0.0

0.2

0.4

0.6

0.8

1.0

27 / 38

https://seunghan96.github.io/gnn/gnn7/
https://arxiv.org/pdf/1909.03211.pdf

Oversmoothing

The oversmoothing problem
after several iterations of GNN message passing, the representations for all the
nodes in the graph can become very similar to one another.

Small number of GNN layers can be used in
practice.

Mean Average Distance (MAD)

𝐷𝑖,𝑗 = 1 −
𝐻𝑖,∶ ⋅ 𝐻𝑗,∶

|𝐻𝑖,∶| ⋅ |𝐻𝑗,∶|

2 3 4 5 6
#Model Layer

ARMA

ChebGCN

DNA

FeaSt

GAT

GCN

GGNN

GraphSAGE

HighOrder

HyperGraph

M
od

el

0.629 0.860 0.608 0.305 0.004

0.557 0.756 0.138 0.024 0.018

0.665 0.352 0.347 0.172 0.096

0.778 0.770 0.677 0.182 0.072

0.794 0.704 0.232 0.047 0.005

0.796 0.765 0.714 0.602 0.289

0.661 0.078 0.021 0.033 0.039

0.925 0.816 0.632 0.303 0.053

0.629 0.145 0.023 0.004 0.012

0.828 0.742 0.493 0.046 0.023
0.2

0.0

0.2

0.4

0.6

0.8

1.0

27 / 38

https://seunghan96.github.io/gnn/gnn7/
https://arxiv.org/pdf/1909.03211.pdf

Constructing the graph

So far we’ve naively assumed that the structure of the graph was given. What do
we do if we’re only given a feature matrix ?

1. k-nearest neighbor
graph by approximation

2. fully connected graph
3. dynamic graph

A

B

C

D

F

E

D

A

B

C

F

E

 k = 2

Create edges based on Euclidean distance

A

B

C

DF

E

Fully Connected Graph
All nodes are interconnected

Caveat: 𝒪(𝑛2) scaling,
computationally
impractical for 𝑛 > 100

28 / 38

Constructing the graph

So far we’ve naively assumed that the structure of the graph was given. What do
we do if we’re only given a feature matrix ?

1. k-nearest neighbor
graph by approximation

2. fully connected graph
3. dynamic graph

A

B

C

D

F

E

D

A

B

C

F

E

 k = 2

Create edges based on Euclidean distance

A

B

C

DF

E

Fully Connected Graph
All nodes are interconnected

Caveat: 𝒪(𝑛2) scaling,
computationally
impractical for 𝑛 > 100

28 / 38

Constructing the graph

So far we’ve naively assumed that the structure of the graph was given. What do
we do if we’re only given a feature matrix ?

1. k-nearest neighbor
graph by approximation

2. fully connected graph

3. dynamic graph

A

B

C

D

F

E

D

A

B

C

F

E

 k = 2

Create edges based on Euclidean distance

A

B

C

DF

E

Fully Connected Graph
All nodes are interconnected

Caveat: 𝒪(𝑛2) scaling,
computationally
impractical for 𝑛 > 100

28 / 38

Constructing the graph

So far we’ve naively assumed that the structure of the graph was given. What do
we do if we’re only given a feature matrix ?

1. k-nearest neighbor
graph by approximation

2. fully connected graph

3. dynamic graph

A

B

C

D

F

E

D

A

B

C

F

E

 k = 2

Create edges based on Euclidean distance

A

B

C

DF

E

Fully Connected Graph
All nodes are interconnected

Caveat: 𝒪(𝑛2) scaling,
computationally
impractical for 𝑛 > 100

28 / 38

Constructing the graph

So far we’ve naively assumed that the structure of the graph was given. What do
we do if we’re only given a feature matrix ?

1. k-nearest neighbor
graph by approximation

2. fully connected graph
3. dynamic graph

A

B

C

D

F

E

D

A

B

C

F

E

 k = 2

Create edges based on Euclidean distance

A

B

C

DF

E

Fully Connected Graph
All nodes are interconnected

Caveat: 𝒪(𝑛2) scaling,
computationally
impractical for 𝑛 > 100

28 / 38

Graph rewiring

Oversquashing
As the number of GNN layers increases,
the number of nodes in each node’s
receptive field grows exponentially.
This information is then compressed
into fixed-length node vectors

Graph rewiring
it attempts to produce a new graph
with a different edge structure that
reduces the bottleneck

Bottleneck

input	sequence

Bottleneck

29 / 38

https://arxiv.org/pdf/2006.05205.pdf
https://arxiv.org/pdf/2111.14522.pdf

Graph rewiring

Oversquashing
As the number of GNN layers increases,
the number of nodes in each node’s
receptive field grows exponentially.
This information is then compressed
into fixed-length node vectors

Graph rewiring
it attempts to produce a new graph
with a different edge structure that
reduces the bottleneck

Bottleneck

input	sequence

Bottleneck

29 / 38

https://arxiv.org/pdf/2006.05205.pdf
https://arxiv.org/pdf/2111.14522.pdf

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.

6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.

• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homophily).

5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

• Construct a fully connected graph if the number of nodes is small.
• Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.

30 / 38

GNN libraries

31 / 38

Why GNNs in HEP?

An a ly s is : 4 %

DIGI: 8 %

GEN: 8 %
O t h e r : 2 %

RECO : 4 2 %

RECO S im : 2 3 %

S IM: 1 4 %

CMS Pu b lic
Tota l CPU HL-LHC (2 0 2 9 /No R&D Im p rove m e n ts) fra c t ion s

2 0 2 1 Es t im a te s

Three main objectives:
1. Improve algorithm performance
2. Accelerate algorithm inference
3. Accelerate data generation/simulation

32 / 38

Particle flow

η

-4
-2

0
2

4
x [

a.u
.]

-1

0

1

y
[a

.u
.]

-1

0

1

tt, 14 TeV, 200 PU
Tracks
ECAL clusters
HCAL clusters
Truth particles

33 / 38

MLPF: a node classification task

LSH+kNN GCN

Event as input set
X = {xi}

Event as graph
X = {xi}, A = Aij

Transformed inputs
H = {hi}

Target set Y = {yj}

𝒢(X, A|w) = Hℱ(X |w) = A

elementwise
FFN

𝒟(xj, hj |w) = y′j

Output set Y′ = {y′j}

Elementwise loss
classification & regression

L(yj, y′j)

Graph building Message passing

Decoding

Trainable neural networks:
 - track, - calorimeter cluster, - encoded element

 - target (predicted) particle, - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}
yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ256

ℱ, 𝒢, 𝒟

34 / 38

https://arxiv.org/pdf/2101.08578.pdf

MLPF: a node classification task

LSH+kNN GCN

Event as input set
X = {xi}

Event as graph
X = {xi}, A = Aij

Transformed inputs
H = {hi}

Target set Y = {yj}

𝒢(X, A|w) = Hℱ(X |w) = A

elementwise
FFN

𝒟(xj, hj |w) = y′j

Output set Y′ = {y′j}

Elementwise loss
classification & regression

L(yj, y′j)

Graph building Message passing

Decoding

Trainable neural networks:
 - track, - calorimeter cluster, - encoded element

 - target (predicted) particle, - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}
yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ256

ℱ, 𝒢, 𝒟

34 / 38

https://arxiv.org/pdf/2101.08578.pdf

MLPF: a node classification task

LSH+kNN GCN

Event as input set
X = {xi}

Event as graph
X = {xi}, A = Aij

Transformed inputs
H = {hi}

Target set Y = {yj}

𝒢(X, A|w) = Hℱ(X |w) = A

elementwise
FFN

𝒟(xj, hj |w) = y′j

Output set Y′ = {y′j}

Elementwise loss
classification & regression

L(yj, y′j)

Graph building Message passing

Decoding

Trainable neural networks:
 - track, - calorimeter cluster, - encoded element

 - target (predicted) particle, - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}
yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ256

ℱ, 𝒢, 𝒟

34 / 38

https://arxiv.org/pdf/2101.08578.pdf

MLPF: a node classification task

LSH+kNN GCN

Event as input set

X = {xi}

Event as graph

X = {xi}, A = Aij

Transformed inputs

H = {hi}

Target set Y = {yj}

!(X, A |w) = Hℱ(X |w) = A

elementwise

FFN

#(xj, hj |w) = y′�j

Output set Y′ � = {y′ �j}

Elementwise loss

classification & regression

L(yj, y′�j)

Graph building Message passing

Decoding

Trainable neural networks:

 - track, - calorimeter cluster, - encoded element

 - target (predicted) particle, - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}

yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ
256

ℱ, !, #

34 / 38

https://arxiv.org/pdf/2101.08578.pdf

MLPF: a node classification task

LSH+kNN GCN

Event as input set

X = {xi}

Event as graph

X = {xi}, A = Aij

Transformed inputs

H = {hi}

Target set Y = {yj}

!(X, A |w) = Hℱ(X |w) = A

elementwise

FFN

#(xj, hj |w) = y′�j

Output set Y′ � = {y′ �j}

Elementwise loss

classification & regression

L(yj, y′�j)

Graph building Message passing

Decoding

Trainable neural networks:

 - track, - calorimeter cluster, - encoded element

 - target (predicted) particle, - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}

yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ
256

ℱ, !, #

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

107

N
um

be
r o

f p
ar

tic
le

s

Charged hadrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

N
um

be
r o

f p
ar

tic
le

s

Neutral hadrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

107

N
um

be
r o

f p
ar

tic
le

s

Photons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

N
um

be
r o

f p
ar

tic
le

s

Electrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

N
um

be
r o

f p
ar

tic
le

s

Muons
QCD MLPF
QCD truth

tt MLPF
tt truth

34 / 38

https://arxiv.org/pdf/2101.08578.pdf

MLPF: a node classification task

LSH+kNN GCN

Event as input set

X = {xi}

Event as graph

X = {xi}, A = Aij

Transformed inputs

H = {hi}

Target set Y = {yj}

!(X, A |w) = Hℱ(X |w) = A

elementwise

FFN

#(xj, hj |w) = y′�j

Output set Y′ � = {y′ �j}

Elementwise loss

classification & regression

L(yj, y′�j)

Graph building Message passing

Decoding

Trainable neural networks:

 - track, - calorimeter cluster, - encoded element

 - target (predicted) particle, - no target (predicted) particle

xi = [type, pT, EECAL, EHCAL, η, ϕ, ηouter, ϕouter, q, …], type ∈ {track, cluster}

yj = [PID, pT, E, η, ϕ, q, …], PID ∈ {none, charged hadron, neutral hadron, γ, e±, μ±}

hi ∈ ℝ
256

ℱ, !, #

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

107

N
um

be
r o

f p
ar

tic
le

s

Charged hadrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

N
um

be
r o

f p
ar

tic
le

s

Neutral hadrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

107

N
um

be
r o

f p
ar

tic
le

s

Photons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

N
um

be
r o

f p
ar

tic
le

s

Electrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

N
um

be
r o

f p
ar

tic
le

s

Muons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

107

N
um

be
r o

f p
ar

tic
le

s

Charged hadrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

N
um

be
r o

f p
ar

tic
le

s

Neutral hadrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

105

106

107

N
um

be
r o

f p
ar

tic
le

s

Photons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

N
um

be
r o

f p
ar

tic
le

s

Electrons
QCD MLPF
QCD truth

tt MLPF
tt truth

0 50 100 150 200
pT [GeV]

100

101

102

103

104

N
um

be
r o

f p
ar

tic
le

s

Muons
QCD MLPF
QCD truth

tt MLPF
tt truth

Charged hadrons Neutral hadrons

Metric Rule-based PF MLPF Rule-based PF MLPF

Efficiency 0.953 0.953 0.883 0.908

Fake rate 0.000 0.000 0.071 0.068

pT (E) resolution 0.213 0.137 0.350 0.323

η resolution 0.240 0.245 0.050 0.058

N resolution 0.004 0.004 0.014 0.013

34 / 38

https://arxiv.org/pdf/2101.08578.pdf

Jet tagging

35 / 38

Jedi-Net: a graph classification task

36 / 38

https://arxiv.org/pdf/1908.05318.pdf

Jedi-Net: a graph classification task

36 / 38

https://arxiv.org/pdf/1908.05318.pdf

Jedi-Net: a graph classification task

36 / 38

https://arxiv.org/pdf/1908.05318.pdf

Jedi-Net: a graph classification task

36 / 38

https://arxiv.org/pdf/1908.05318.pdf

Jedi-Net: a graph classification task

36 / 38

https://arxiv.org/pdf/1908.05318.pdf

Jedi-Net: a graph classification task

Model Number of

parameters

Number

of FLOP

Inference

time/batch (ms)

DNN 14725 27 k 1.0 ± 0.2

CNN 205525 400 k 57.1 ± 0.5

GRU 15575 46 k 23.2 ± 0.6

JEDI-net 33625 116 M 121.2 ± 0.4

JEDI-net 8767 458 M 402 ± 1

with
∑

O 36 / 38

https://arxiv.org/pdf/1908.05318.pdf

Conclusions

I hope we’ve established:

• Graphs are:

1. cool
2. everywhere
3. permutation invariant

• Basic representations of graphs

• Many different graph architectures, but they are all conceptually doing
message passing.

• Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37 / 38

Conclusions

I hope we’ve established:

• Graphs are:
1. cool

2. everywhere
3. permutation invariant

• Basic representations of graphs

• Many different graph architectures, but they are all conceptually doing
message passing.

• Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37 / 38

Conclusions

I hope we’ve established:

• Graphs are:
1. cool
2. everywhere

3. permutation invariant

• Basic representations of graphs

• Many different graph architectures, but they are all conceptually doing
message passing.

• Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37 / 38

Conclusions

I hope we’ve established:

• Graphs are:
1. cool
2. everywhere
3. permutation invariant

• Basic representations of graphs

• Many different graph architectures, but they are all conceptually doing
message passing.

• Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37 / 38

Conclusions

I hope we’ve established:

• Graphs are:
1. cool
2. everywhere
3. permutation invariant

• Basic representations of graphs

• Many different graph architectures, but they are all conceptually doing
message passing.

• Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37 / 38

Conclusions

I hope we’ve established:

• Graphs are:
1. cool
2. everywhere
3. permutation invariant

• Basic representations of graphs

• Many different graph architectures, but they are all conceptually doing
message passing.

• Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37 / 38

Conclusions

I hope we’ve established:

• Graphs are:
1. cool
2. everywhere
3. permutation invariant

• Basic representations of graphs

• Many different graph architectures, but they are all conceptually doing
message passing.

• Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37 / 38

Further reads

• Graph convolution theoretical motivations 1, 2, 3

• k-nearest graph inference 1, 2, 3

• Generative models and unsupervised learning 1, 2, 3

• How powerful are GNNs ? Graph isomorphism and the WL algorithm 1, 2

38 / 38

https://arxiv.org/abs/1609.02907
https://www.cs.mcgill.ca/~wlh/grl_book/
https://arxiv.org/pdf/1902.07153.pdf
https://www.researchgate.net/publication/350818425_k-Nearest_Neighbor_Learning_with_Graph_Neural_Networks
https://arxiv.org/abs/2206.11408
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/1802.04687
https://arxiv.org/pdf/2007.06686.pdf
https://arxiv.org/abs/2104.01725
https://arxiv.org/abs/2201.07083
https://arxiv.org/abs/2201.07083

BACK-UP

Back to basics

Convolution
a mathematical operation on two
functions (f and g) that produces a third
function which expresses how the shape
of one is modified by the other.

Convolution Theorem
under suitable conditions the Fourier
transform of a convolution of two
functions (or signals) is the pointwise
product of their Fourier transforms.

Fourier Trasformation

Fourier Trasformation

Point-wise product

Inverse Fourier Trasformation
Convolution

Back to basics

Convolution
a mathematical operation on two
functions (f and g) that produces a third
function which expresses how the shape
of one is modified by the other.

Convolution Theorem
under suitable conditions the Fourier
transform of a convolution of two
functions (or signals) is the pointwise
product of their Fourier transforms.

Fourier Trasformation

Fourier Trasformation

Point-wise product

Inverse Fourier Trasformation
Convolution

Back to basics

Convolution
a mathematical operation on two
functions (f and g) that produces a third
function which expresses how the shape
of one is modified by the other.

Convolution Theorem
under suitable conditions the Fourier
transform of a convolution of two
functions (or signals) is the pointwise
product of their Fourier transforms.

Fourier Trasformation

Fourier Trasformation

Point-wise product

Inverse Fourier Trasformation
Convolution

Back to basics

Convolution
a mathematical operation on two
functions (f and g) that produces a third
function which expresses how the shape
of one is modified by the other.

Convolution Theorem
under suitable conditions the Fourier
transform of a convolution of two
functions (or signals) is the pointwise
product of their Fourier transforms.

Fourier Trasformation

Fourier Trasformation

Point-wise product

Inverse Fourier Trasformation
Convolution

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

ℱ(𝑥) = UTx, ℱ−1(̂𝑥) = U ̂x

where U is the eigenvector matrix of the graph Laplacian.

The Laplacian matrix can be factored as

L = UΛ𝑈𝑇

where Λ are the eigenvalues of L.

Graph convolution
𝑔𝜃 ⋆ 𝑥 = 𝑈𝑔𝜃𝑈𝑇𝑥

where 𝑔𝜃 is a function of Λ.

Problems:

1. Computing the eigencomposition of L can be expensive for large graphs
2. A slight change in the eigenvector affects the whole graph.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

ℱ(𝑥) = UTx, ℱ−1(̂𝑥) = U ̂x

where U is the eigenvector matrix of the graph Laplacian.

The Laplacian matrix can be factored as

L = UΛ𝑈𝑇

where Λ are the eigenvalues of L.

Graph convolution
𝑔𝜃 ⋆ 𝑥 = 𝑈𝑔𝜃𝑈𝑇𝑥

where 𝑔𝜃 is a function of Λ.

Problems:

1. Computing the eigencomposition of L can be expensive for large graphs
2. A slight change in the eigenvector affects the whole graph.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

ℱ(𝑥) = UTx, ℱ−1(̂𝑥) = U ̂x

where U is the eigenvector matrix of the graph Laplacian.

The Laplacian matrix can be factored as

L = UΛ𝑈𝑇

where Λ are the eigenvalues of L.

Graph convolution
𝑔𝜃 ⋆ 𝑥 = 𝑈𝑔𝜃𝑈𝑇𝑥

where 𝑔𝜃 is a function of Λ.

Problems:

1. Computing the eigencomposition of L can be expensive for large graphs
2. A slight change in the eigenvector affects the whole graph.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

ℱ(𝑥) = UTx, ℱ−1(̂𝑥) = U ̂x

where U is the eigenvector matrix of the graph Laplacian.

The Laplacian matrix can be factored as

L = UΛ𝑈𝑇

where Λ are the eigenvalues of L.

Graph convolution
𝑔𝜃 ⋆ 𝑥 = 𝑈𝑔𝜃𝑈𝑇𝑥

where 𝑔𝜃 is a function of Λ.

Problems:

1. Computing the eigencomposition of L can be expensive for large graphs
2. A slight change in the eigenvector affects the whole graph.

Graph Convolution Approximation

Kipf and Welling approximated 𝑔𝜃(Λ) as an expansion of Chebyshev coefficients of
the adjacency matrix up to 2nd order.

𝑔𝜃 ⋆ 𝑥 = 𝜃0′𝑥 + 𝜃1′(𝐿 − 𝐼𝑁)𝑥 = 𝜃0′𝑥 − 𝜃1′𝐷− 1
2 𝐴𝐷− 1

2 𝑥

After some empirical tricks:

𝑍 = 𝐷− 1
2 𝐴𝐷− 1

2 𝑋Θ

with Θ ∈ ℛ𝐶×𝐹 and 𝑍 ∈ ℛ𝑁×𝐹. Now the filtering operation has complexity
𝒪(|ℰ|𝐹𝐶).

C

input layer

X1

X2

X3

X4

F

output layer

Z1

Z2

Z3

Z4

hidden

layers

Y1

Y4

30 20 10 0 10 20 30
30

20

10

0

10

20

30

We added a normalization term in the
aggregation function

h𝑘+1 = 𝜎(W(𝑘)
𝑛𝑒𝑖𝑔ℎ ∑

𝑣∈𝒩(𝑢)

h𝑘
𝑣

√|𝒩𝑢||𝒩𝑣|
)

https://arxiv.org/pdf/1609.02907v4.pdf
https://arxiv.org/pdf/1609.02907v4.pdf

Tracking

Track fitting as edge classification

� -

hat

k segments in an independent

ics

min alues

z -

min t

min
� space yields

min

h higher

min

)

}

)

min

min

min

Track fitting as edge classification

�

min

GeV
min

3

0.8

)

∗

∗

∗

�

min

−

min

min

	Appendix

