Graph Neural Networks

From fundamentals to physics application

Ilias Tsaklidis itsaklid@uni-bonn.de
07/03/2023
inverted CERN School of Computing

What is all about Graph Neural Networks?

faplice
Traffic
prediction with
advanced
Graph Neural
Networks

Septenber 3, 2020
Google Maps ETA Improvements Around the World

A hot research topic

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool
2. How to build a graph

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool
2. How to build a graph
3. How to choose an appropriate GNN for your problem

Outline

1. Data structures and relational inductive biases

Outline

1. Data structures and relational inductive biases
2. Elements of Graph Theory

Outline

1. Data structures and relational inductive biases
2. Elements of Graph Theory
3. Graph Neural Mechanisms

Outline

1. Data structures and relational inductive biases
2. Elements of Graph Theory
3. Graph Neural Mechanisms
4. Applications in HEP

A general recipe for supervised machine learning

Machine Learning

Combinatorial generalization

A key signature of human intelligence is the ability to make "infinite use of finite means" (Chomsky N.)

Combinatorial generalization

A key signature of human intelligence is the ability to make "infinite use of finite means" (Chomsky N.)

Universal approximation theorem

A feed-forward neural network with a linear output and at least one hidden layer can approximate any continuous function to arbitrary precision with a finite number of nodes.

Combinatorial generalization

A key signature of human intelligence is the ability to make "infinite use of finite means" (Chomsky N.)

Universal approximation theorem

A feed-forward neural network with a linear output and at least one hidden layer can approximate any continuous function to arbitrary precision with a finite number of nodes.

1. Good: A neural network can solve any problem.

Combinatorial generalization

A key signature of human intelligence is the ability to make "infinite use of finite means" (Chomsky N.)

Universal approximation theorem

A feed-forward neural network with a linear output and at least one hidden layer can approximate any continuous function to arbitrary precision with a finite number of nodes.

1. Good: A neural network can solve any problem.
2. Bad: Does not specify the number of nodes.

Combinatorial generalization

A key signature of human intelligence is the ability to make "infinite use of finite means" (Chomsky N.)

Universal approximation theorem

A feed-forward neural network with a linear output and at least one hidden layer can approximate any continuous function to arbitrary precision with a finite number of nodes.

1. Good: A neural network can solve any problem.
2. Bad: Does not specify the number of nodes.

Combinatorial generalization requires enormous computational power

Inductive bias

Inductive bias

a set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered.

Inductive bias

Inductive bias

a set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered.

Example 1

Occam's Razor expresses a preference for simplicity

Inductive bias

Inductive bias

a set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered.

Example 1

Occam's Razor expresses a preference for simplicity

Example 2

A Bayesian model expresses inductive bias through the choice and parameterization of the prior distribution

Inductive bias

Inductive bias

a set of assumptions that the learner uses to predict outputs of given inputs that it has not encountered.

Example 1

Occam's Razor expresses a preference for simplicity

Example 2

A Bayesian model expresses inductive bias through the choice and parameterization of the prior distribution

Relational inductive bias may be enforced by the choice of data structure

Relational reasoning

Some profound definitions

Relational reasoning

Some profound definitions

entity

an element with attributes

Relational reasoning

Some profound definitions

entity

an element with attributes

relation

a property between entities

Relational reasoning

Some profound definitions

entity

an element with attributes

relation

a property between entities

rule

a function that maps entities and relations to other entities and relations. e.g. is entity X heavier than entity Y ?

Fully connected

Entities: Nodes
Relations: All-to-all
Relational inductive bias: weak Invariance: -

Convolutional

Entities: Grid elements
Relations: Local
Relational inductive bias: Locality Invariance: Spatial translation

Fully connected

Entities: Nodes
Relations: All-to-all
Relational inductive bias: weak Invariance: -

Convolutional

Entities: Grid elements
Relations: Local
Relational inductive bias: Locality Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

Fully connected

Entities: Nodes
Relations: All-to-all
Relational inductive bias: weak Invariance: -

Convolutional

Entities: Grid elements
Relations: Local
Relational inductive bias: Locality Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.
Translation invariance: reusage of the same rule across localities in the input.

Fully connected

Entities: Nodes
Relations: All-to-all
Relational inductive bias: weak Invariance: -

Convolutional

Entities: Grid elements Relations: Local
Relational inductive bias: Locality Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.
Translation invariance: reusage of the same rule across localities in the input.

Relational inductive bias of unorderded entities

Set

Entities whose order is irrelevant.

Relational inductive bias of unorderded entities

Set

Entities whose order is irrelevant.

Graph

A set with pair-wise relations

Relational inductive bias of unorderded entities

Set

Entities whose order is irrelevant.

Graph

A set with pair-wise relations

A relational inductive bias arises from the absence of canonical order

Exploit it by allowing predictions to depend on symmetric functions

Symmetries of the function

Permutation equivariance

The output of the function is permuted in the same way as the input.

Permutation invariance

The output of the function is the same independantly of the permutation of the input.

$$
\begin{gathered}
\text { Invariance } \\
f\left(x_{i}, x_{j}\right)=y_{k} \\
f\left(x_{j}, x_{i}\right)=y_{k}
\end{gathered}
$$

Examples of graphs in real life

Energy deposits in a detetor
Any complex set of elements can be represented as a graph. Constructing the graph depends on several factors.

More on this will follow.

Social Networks Complex pairwise connections

Phylogenetic trees
Trees are a particular type of graphs (directed and acyclic graphs)

GRIPHB, GRIPHETUEBYWHERE

Molecules and their dynamics naturally represented as graphs

PHYLOGENETIC TREE

Take home messages

1. Relational inductive biases can improve a learning algorithm.

Take home messages

1. Relational inductive biases can improve a learning algorithm.
2. The relational inductive bias in graphs is the absence of canonical order of the entities.

Take home messages

1. Relational inductive biases can improve a learning algorithm.
2. The relational inductive bias in graphs is the absence of canonical order of the entities.
3. This relational inductive bias manifests itself as permutation invariance and permutation equivariance.

What is a graph ?

Graph (Computer Science)

A non-linear data structure consisting of a set of elements and their relations.
$G=(u, V, E)$

A non exhaustive graph taxonomy

Some typical graph types you may encounter

Directed Graph
The edged have a direction

Fully Connected Graph All nodes are interconnected

Acyclic Graph
No cyclic paths in the graph

How to represent a graph

Adjacency matrix

A square matrix whose elements indicate whether pairs of nodes are adjacent or not in the graph.

Feature matrix

A matrix with individual measurable properties or characteristics of a phenomenon.

	A	B	C	D	E	F
A	0	1	1	1	0	0
B	1	0	1	0	0	0
C	1	1	0	0	1	1
D	1	0	0	0	0	0
E	0	0	1	0	0	1
F	0	0	1	0	1	0
	Adjacency matrix ($\mathrm{N} \times \mathrm{N}$)					
	$\mathrm{F}_{\mathrm{x}} \quad \mathrm{F}_{\mathrm{y}} \quad \mathrm{F}_{\mathrm{z}}$					
	A	f_{Ax}	${ }_{\text {f }} \mathrm{y}$	${ }_{\text {f }} \mathrm{A}$	$\mathrm{f}_{\text {Aw }}$	
	B	f_{Bx}	f_{By}	f_{Bz}	f_{Bw}	
	C	${ }_{\text {f }} \mathrm{x}$	f_{C}	${ }_{\mathrm{Czz}}{ }^{\mathrm{f}} \mathrm{C}_{\mathrm{w}}$		
	D	f_{Dx}	f_{Dy}	$\mathrm{f}_{\mathrm{Dz}} \mathrm{f}_{\mathrm{Dw}}$		
	E	$\mathrm{f}_{\text {Ex }}$	f_{Ey}	$\mathrm{f}_{\mathrm{Ez}} \mathrm{f}_{\mathrm{Ew}}$		
	F	$\mathrm{f}_{\text {Fx }}$	f_{Fy}	f_{Fz}	f_{Fw}	

Feature matrix ($\mathrm{N} \times \mathrm{F}$)

Other graph representations

Adjacency list
$A--->\{B\}$
B---> $\{A, C\}$
C $--->\{B\}$

Weighted matrix

Degree matrix D

	A		B
C			
A	1	0	0
B	0	2	0
	0	0	1

Laplacian matrix L = D - A Coordinate List (COO)

Take home messages

1. Entities = nodes; Relations = edges

Take home messages

1. Entities = nodes; Relations = edges
2. A graph at it simplest form can be defined by an adjacency matrix and a feature matrix.

Message passing

This is the core idea behind every graph neural network architecture! target node

INPUT GRAPH

Let h_{u}^{k} be the state of node u in step k

$$
\begin{equation*}
\mathbf{h}_{\mathrm{u}}^{\mathrm{k}+1}=\operatorname{UPDATE}^{\mathrm{k}}\left(\mathbf{h}_{\mathrm{u}}^{(\mathrm{k})}, \operatorname{AGGREGATE}^{\mathrm{k}}\left(\left\{\mathbf{h}_{\mathrm{v}}^{\mathrm{k}}, \forall \mathrm{v} \in \mathrm{~N}(\mathrm{u})\right\}\right)\right) \tag{1}
\end{equation*}
$$

Symmetries

Two operations stacked together, one invariant and one equivariant.

Neural Message passing

The simplest choice is the SUM aggregator.

$$
\mathbf{H}^{k+1}=\sigma\left(\mathbf{A H}^{k} \mathbf{W}^{k}\right)
$$

Node embeddings

The node embeddings can be further mapped using feed forward layers.

Graph Convolution

Question

Is message passing the equivalent of convolution on graphs ?

Graph Convolution

Question

Is message passing the equivalent of convolution on graphs?

Answer

Not really strictly speaking. Graphs can be strongly heterogeneous.

Graph Convolution

Question

Is message passing the equivalent of convolution on graphs?

Answer

Not really strictly speaking. Graphs can be strongly heterogeneous.
Kipf and Welling added a normalization term in the aggregation function

$$
\mathbf{h}^{k+1}=\sigma\left(\mathbf{W}_{n e i g h}^{(k)} \sum_{v \in \mathcal{N}(u)} \frac{\mathbf{h}_{v}^{k}}{\sqrt{\left|\mathcal{N}_{u}\right|\left|\mathcal{N}_{v}\right|}}\right)
$$

Strong theoretical background based on spectral graph convolution theory

Graph Attention

Attention Is All You Need

Ashish Vaswani* Ashish Vaswan
Google Brain avaswani@google.com Llion Jones
Google Research

$$
\begin{aligned}
& \text { Aidan N. Gomez* } \dagger \\
& \text { University of Toronto }
\end{aligned}
$$

aidan@cs.toronto.edu

Niki Parmar*

Google Research nikip@google.com usz@google.com

> Illia Polosukhin ${ }^{*} \ddagger$
> illia.polosukhin@gmail.com

Now the normalization terms are trainable

$$
\begin{aligned}
& \mathbf{h}^{k+1}=\sigma\left(\bigoplus_{\forall k}\left(\mathbf{W}_{n e i g h}^{(k)} \sum_{v \in \mathcal{N}(u)} a_{u, v, k} \mathbf{h}_{v}^{k}\right)\right) \\
& a_{u, v}=\frac{\exp \left(\mathbf{a}^{\top}\left[\mathbf{W h}_{\mathbf{u}} \oplus \mathbf{W h}_{\mathbf{v}}\right]\right)}{\sum_{v^{\prime} \in \mathcal{N}(u)} \exp \left(\mathbf{a}^{\top}\left[\mathbf{W} \mathbf{h}_{\mathbf{u}} \oplus \mathbf{W} \mathbf{h}_{\mathbf{v}}\right)\right.}
\end{aligned}
$$

k-hop neighbourhood

If message passing applied k-times a node is aggregating information from its k-hop neighborhood.

Can we use this recipe to aggregate information even from the far distant nodes ?

Oversmoothing

The oversmoothing problem

after several iterations of GNN message passing, the representations for all the nodes in the graph can become very similar to one another.

Oversmoothing

The oversmoothing problem

after several iterations of GNN message passing, the representations for all the nodes in the graph can become very similar to one another.

Small number of GNN layers can be used in
practice.

Oversmoothing

The oversmoothing problem

after several iterations of GNN message passing, the representations for all the nodes in the graph can become very similar to one another.

Mean Average Distance (MAD)

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do we do if we're only given a feature matrix ?

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do we do if we're only given a feature matrix ?

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do we do if we're only given a feature matrix ?

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do we do if we're only given a feature matrix ?

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do we do if we're only given a feature matrix ?

1. k-nearest neighbor graph by approximation

Graph rewiring

Oversquashing

As the number of GNN layers increases, the number of nodes in each node's receptive field grows exponentially. This information is then compressed
 into fixed-length node vectors

Graph rewiring

Oversquashing

As the number of GNN layers increases, the number of nodes in each node's receptive field grows exponentially. This information is then compressed
 into fixed-length node vectors

Graph rewiring

it attempts to produce a new graph with a different edge structure that reduces the bottleneck

Take home messages

1. Message passing is the fundamental operation of a GNN.

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.
3. Three main tasks: Node, edge and graph classification.

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.
3. Three main tasks: Node, edge and graph classification.
4. Graph convolution can be used when the edges reflect node similarity (graph homophily).

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.
3. Three main tasks: Node, edge and graph classification.
4. Graph convolution can be used when the edges reflect node similarity (graph homophily).
5. Graph attention allows to learn which edges matter.

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.
3. Three main tasks: Node, edge and graph classification.
4. Graph convolution can be used when the edges reflect node similarity (graph homophily).
5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.
3. Three main tasks: Node, edge and graph classification.
4. Graph convolution can be used when the edges reflect node similarity (graph homophily).
5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

- Construct a fully connected graph if the number of nodes is small.

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.
3. Three main tasks: Node, edge and graph classification.
4. Graph convolution can be used when the edges reflect node similarity (graph homophily).
5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

- Construct a fully connected graph if the number of nodes is small.
- Construct a k-nearest graph using Euclidean distances or infer it from different representations.

Take home messages

1. Message passing is the fundamental operation of a GNN.
2. Message passing respects permutation invariance and permutation equivariance.
3. Three main tasks: Node, edge and graph classification.
4. Graph convolution can be used when the edges reflect node similarity (graph homophily).
5. Graph attention allows to learn which edges matter.
6. If an adjacency matrix is not given:

- Construct a fully connected graph if the number of nodes is small.
- Construct a k-nearest graph using Euclidean distances or infer it from different representations.

7. Oversmoothing and oversquashing are the most prominent problems with GNNs.

GNN libraries

deepmind/ graph_nets

Build Graph Nets in Tensorflow

Forks
©

${ }^{\circ}{ }^{\circ}$ Spektral

Why GNNs in HEP?

CMS Public
Total CPU HL-LHC (2029/No R\&D Improvements) fractions 2021 Estimates

1. Improve algorithm performance

Three main objectives:
2. Accelerate algorithm inference
3. Accelerate data generation/simulation

Particle flow

Event as input set
$X=\left\{x_{i}\right\}$
-・ロ

- - track, - calorimeter cluster

: a node classification task

Event as input set $X=\left\{x_{i}\right\}$

Event as graph

$$
X=\left\{x_{i}\right\}, A=A_{i j}
$$

$x_{i}=\left[\right.$ type $\left., p_{\mathrm{T}}, E_{\mathrm{ECAL}}, E_{\mathrm{HCAL}}, \eta, \phi, \eta_{\text {outer }} \phi_{\text {outer }}, q, \ldots\right]$, type $\in\{$ track, cluster $\}$

Trainable neural networks: \mathscr{F}, - track, - calorimeter cluster,

: a node classification task

$x_{i}=\left[\right.$ type $\left., p_{\mathrm{T}}, E_{\mathrm{ECAL}}, E_{\mathrm{HCAL}}, \eta, \phi, \eta_{\text {outer }} \phi_{\text {outer }}, q, \ldots\right]$, type $\in\{$ track, cluster $\}$

Trainable neural networks: \mathscr{F}, \mathscr{G},

- track, - calorimeter cluster,

MLPF: a node classification task

Event as input set	Event as graph	Transformed inputs
$X=\left\{x_{i}\right\}$	$X=\left\{x_{i}\right\}, A=A_{i j}$	$H=\left\{h_{i}\right\}$

Target set $Y=\left\{y_{j}\right\}$

$$
\text { Output set } Y^{\prime}=\left\{y_{j}^{\prime}\right\}
$$

DecodingElementwise loss $L\left(y_{j}, y_{j}^{\prime}\right)$ classification \& regression
\square

$$
\begin{aligned}
& \begin{array}{l}
\text { elementwise } \\
\text { FFN }
\end{array} \\
& \mathscr{D}\left(x_{j}, h_{j} \mid w\right)=y_{j}^{\prime}
\end{aligned}
$$

$x_{i}=\left[\right.$ type $\left., p_{\mathrm{T}}, E_{\mathrm{ECAL}}, E_{\mathrm{HCAL}}, \eta, \phi, \eta_{\text {outer }}, \phi_{\text {outer }}, q, \ldots\right]$, type $\in\{$ track, cluster $\}$ $y_{j}=\left[\mathrm{PID}, p_{\mathrm{T}}, E, \eta, \phi, q, \ldots\right], \mathrm{PID} \in\left\{\right.$ none, charged hadron, neutral hadron, $\left.\gamma, e^{ \pm}, \mu^{ \pm}\right\}$

$$
h_{i} \in \mathbb{R}^{256}
$$

Trainable neural networks: $\mathscr{F}, \mathscr{G}, \mathscr{D}$

- track, \quad - calorimeter cluster, - - encoded element
\square - target (predicted) particle, - no target (predicted) particle

MLPF: a node classification task

Event as input set

$$
X=\left\{x_{i}\right\}
$$

Event as graph

$$
X=\left\{x_{i}\right\}, A=A_{i j}
$$

Transformed inputs

$$
H=\left\{h_{i}\right\}
$$

$$
\text { Output set } Y^{\prime}=\left\{y_{j}^{\prime}\right\}
$$

$$
\text { Elementwise loss } L\left(y_{j}, y_{j}^{\prime}\right)
$$

$$
\underset{\longleftrightarrow}{\text { classification } \& ~ r e g r e s s i o n ~}
$$

$$
\begin{gathered}
\text { Decoding } \\
\text { elementwise } \\
\text { FFN } \\
\mathscr{D}\left(x_{j}, h_{j} \mid w\right)=y_{j}^{\prime}
\end{gathered}
$$

$$
\begin{gathered}
x_{i}=\left[\text { type }, p_{\mathrm{T}}, E_{\mathrm{ECAL}}, E_{\mathrm{HCAL}}, \eta, \phi, \eta_{\text {outer }}, \phi_{\text {outer }}, q, \ldots\right], \text { type } \in\{\text { track, cluster }\} \\
y_{j}=\left[\mathrm{PID}, p_{\mathrm{T}}, E, \eta, \phi, q, \ldots\right], \text { PID } \in\left\{\text { none, charged hadron, neutral hadron, } \gamma, e^{ \pm}, \mu^{ \pm}\right\} \\
h_{i} \in \mathbb{R}^{256} \\
\text { Trainable neural networks: } \mathscr{F}, \mathscr{G}, \mathscr{D} \\
\text { - track, - calorimeter cluster, }- \text { encoded element } \\
\text { - tredicted) particle, }- \text { no target (predicted) particle }
\end{gathered}
$$

MLPF: a node classification task

Event as input set

$$
X=\left\{x_{i}\right\}
$$

Event as graph

$$
X=\left\{x_{i}\right\}, A=A_{i j}
$$

Transformed inputs

$$
H=\left\{h_{i}\right\}
$$

Target set $Y=\left\{y_{j}\right\}$

$$
\text { Output set } Y^{\prime}=\left\{y_{j}^{\prime}\right\}
$$

$$
\begin{gathered}
x_{i}=\left[\text { type }, p_{\mathrm{T}}, E_{\mathrm{ECAL}}, E_{\mathrm{HCAL}}, \eta, \phi, \eta_{\text {outer }}, \phi_{\text {outer }}, q, \ldots\right], \text { type } \in\{\text { track, cluster }\} \\
y_{j}=\left[\mathrm{PID}, p_{\mathrm{T}}, E, \eta, \phi, q, \ldots\right], \text { PID } \in\left\{\text { none, charged hadron, neutral hadron, } \gamma, e^{ \pm}, \mu^{ \pm}\right\} \\
h_{i} \in \mathbb{R}^{256} \\
\text { Trainable neural networks: } \mathscr{F}, \mathscr{G}, \mathscr{D} \\
- \text { - track, }- \text { calorimeter cluster, }- \text { encoded element } \\
- \text { target (predicted) particle, }- \text { no target (predicted) particle }
\end{gathered}
$$

	Charged hadrons		Neutral hadrons	
Metric	Rule-based PF	MLPF	Rule-based PF	MLPF
Efficiency	0.953	0.953	0.883	$\mathbf{0 . 9 0 8}$
Fake rate	0.000	0.000	0.071	$\mathbf{0 . 0 6 8}$
$p_{\mathrm{T}}(E)$ resolution	0.213	$\mathbf{0 . 1 3 7}$	0.350	$\mathbf{0 . 3 2 3}$
η resolution	$\mathbf{0 . 2 4 0}$	0.245	$\mathbf{0 . 0 5 0}$	0.058
N resolution	0.004	0.004	0.014	$\mathbf{0 . 0 1 3}$

Jet tagging

No: \# of constituents
P: \# of features
$N_{E}=N_{o}\left(N_{o}-1\right)$: \# of edges

No: \# of constituents
P: \# of features
$\mathrm{N}_{\mathrm{E}}=\mathrm{N}_{\mathrm{O}}\left(\mathrm{N}_{\mathrm{O}}-1\right)$: \# of edges
D_{E} : size of internal representations

FPR (W boson)

Model	Number of parameters	Number of FLOP	Inference time/batch (ms)
DNN	14725	27 k	1.0 ± 0.2
CNN	205525	400 k	57.1 ± 0.5
GRU	15575	46 k	23.2 ± 0.6
JEDI-net	33625	116 M	121.2 ± 0.4
JEDI-net	8767	458 M	402 ± 1

Conclusions

I hope we've established:

- Graphs are:

Conclusions

I hope we've established:

- Graphs are:

1. cool

Conclusions

I hope we've established:

- Graphs are:

1. cool
2. everywhere

Conclusions

I hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

Conclusions

I hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

- Basic representations of graphs

Conclusions

I hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

- Basic representations of graphs
- Many different graph architectures, but they are all conceptually doing message passing.

Conclusions

I hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

- Basic representations of graphs
- Many different graph architectures, but they are all conceptually doing message passing.
- Constructing a graph and predicting node/edges/graph labels is possible in HEP.

Further reads

- Graph convolution theoretical motivations 1, 2, 3
- k-nearest graph inference 1, 2, 3
- Generative models and unsupervised learning 1, 2, 3
- How powerful are GNNs ? Graph isomorphism and the WL algorithm 1, 2

BACK-UP

Back to basics

Convolution

a mathematical operation on two
functions (f and g) that produces a third function which expresses how the shape of one is modified by the other.

Back to basics

Convolution

a mathematical operation on two functions (f and g) that produces a third function which expresses how the shape of one is modified by the other.

Back to basics

Convolution

a mathematical operation on two functions (f and g) that produces a third function which expresses how the shape of one is modified by the other.

Convolution Theorem

under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the pointwise product of their Fourier transforms.

Back to basics

Convolution

a mathematical operation on two functions (f and g) that produces a third function which expresses how the shape of one is modified by the other.

Convolution Theorem

under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the pointwise product of their Fourier transforms.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

$$
\mathcal{F}(x)=\mathbf{U}^{\mathbf{T}} \mathbf{x}, \mathcal{F}^{-1}(\hat{x})=\mathbf{U} \hat{\mathbf{x}}
$$

where U is the eigenvector matrix of the graph Laplacian.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

$$
\mathcal{F}(x)=\mathbf{U}^{\mathbf{T}} \mathbf{x}, \mathcal{F}^{-1}(\hat{x})=\mathbf{U} \hat{\mathbf{x}}
$$

where U is the eigenvector matrix of the graph Laplacian.
The Laplacian matrix can be factored as

$$
\mathbf{L}=\mathbf{U} \Lambda U^{T}
$$

where Λ are the eigenvalues of L.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

$$
\mathcal{F}(x)=\mathbf{U}^{\mathbf{T}} \mathbf{x}, \mathcal{F}^{-1}(\hat{x})=\mathbf{U} \hat{\mathbf{x}}
$$

where U is the eigenvector matrix of the graph Laplacian.
The Laplacian matrix can be factored as

$$
\mathbf{L}=\mathbf{U} \Lambda U^{T}
$$

where Λ are the eigenvalues of L.
Graph convolution

$$
g_{\theta} \star x=U g_{\theta} U^{T} x
$$

where g_{θ} is a function of Λ.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

$$
\mathcal{F}(x)=\mathbf{U}^{\mathbf{T}} \mathbf{x}, \mathcal{F}^{-1}(\hat{x})=\mathbf{U} \hat{\mathbf{x}}
$$

where U is the eigenvector matrix of the graph Laplacian.
The Laplacian matrix can be factored as

$$
\mathbf{L}=\mathbf{U} \Lambda U^{T}
$$

where Λ are the eigenvalues of L.
Graph convolution

$$
g_{\theta} \star x=U g_{\theta} U^{T} x
$$

where g_{θ} is a function of Λ.
Problems:

1. Computing the eigencomposition of L can be expensive for large graphs
) Δ clioht chanop in tho oiopnvertor affertc tho wholo oranh

Graph Convolution Approximation

Kipf and Welling approximated $g_{\theta}(\Lambda)$ as an expansion of Chebyshev coefficients of the adjacency matrix up to 2 nd order.

$$
g_{\theta} \star x=\theta_{0}{ }^{\prime} x+\theta_{1}{ }^{\prime}\left(L-I_{N}\right) x=\theta_{0}{ }^{\prime} x-\theta_{1}{ }^{\prime} D^{-\frac{1}{2}} A D^{-\frac{1}{2}} x
$$

After some empirical tricks:

$$
Z=D^{-\frac{1}{2}} A D^{-\frac{1}{2}} X \Theta
$$

with $\Theta \in \mathcal{R}^{C \times F}$ and $Z \in \mathcal{R}^{N \times F}$. Now the filtering operation has complexity $\mathcal{O}(|\mathcal{E}| F C)$.

input layer

output layer

We added a normalization term in the aggregation function

$$
\mathbf{h}^{k+1}=\sigma\left(\mathbf{W}_{n e i g h}^{(k)} \sum_{v \in \mathcal{N}(u)} \frac{\mathbf{h}_{v}^{k}}{\sqrt{\left|\mathcal{N}_{u}\right|\left|\mathcal{N}_{v}\right|}}\right)
$$

Tracking

Track fitting as edge classification

Unrolled r-z View

Hitgraph View

Track fitting as edge classification

$a_{i j}^{(1)}=\phi_{R, 1}\left(x_{i}^{(0)}, x_{j}^{(0)}, a_{i j}^{(0)}\right) \quad w_{i j}^{(1)}=\phi_{R, 2}\left(x_{i}^{(1)}, x_{j}^{(1)}, a_{i j}^{(1)}\right)$

