Graph Neural Networks

From fundamentals to physics application

Ilias Tsaklidis itsaklid@uni-bonn.de
07/03/2023

inverted CERN School of Computing

What is all about Graph Neural Networks ?

Traffic
prediction with
advanced
Graph Neural
Networks
ng h -res 3 D S | mu |atI0n 3 e Google Maps ETA Improvements Around the World
up to 19k particles = e E
2 different simulators (MPM & SPH) B T
e o i ~37%
Technical Blog 22% 2% ...
31%
Optimizing Fraud Detection in Financial Services with CE o
Graph Neural Networks and NVIDIA GPUs 43%

2/38

A hot research topic

ICLR 2021 Submission Top 50 Keywords

deep learning

'graph neural network' in title or abstract

reinforcement learn
ep

robustnes
neural network
self supervised learn ng
eneralizatioi
unsuperVised learnin

inter
few shot learni

transfer learni
_contrastive learn
generative adversarial networl
natural language processin
deep reinforcement learnini
erated learnin

adversarial robustnes:

neural adrchltecture searcl

555

Shaaa

augmentation
erafive models
continual learni ng
VISIO!
optimization

regularization
machine learnin:

) - ga
variational inference
adversarial fraining
: 1 mer
semi supervised learnin
deep neural networl
y exploration
disentanglement
adversarial examples
multi task learning
classification
knowledge distillation
) transformer
convolutional neural networl
image classification

atten!
uncertainty estimation
variational autoencoders

generative model

ert m—
deep learning theory e
recurrent neural network s
rUNing s

0 50 100

I Computer science

8007 Physics (HEP + other)

700

600

500

400

300

Number of submission on arxiv

200

100

2019 2020 2021 2022

Year

2017 2018

150 200 250

3/38

https://petar-v.com/talks/GNN-EEML.pdf

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

4138

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view

Mainly discussing the core ideas

4138

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view
Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

4138

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view
Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

4138

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view
Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool

2. How to build a graph

4138

What this lecture is about

Aiming at the particle physicist who uses GNNs from an engineering point of view
Mainly discussing the core ideas

After this lecture you will hopefully have a clear idea:

1. Why GNNs are a powerful tool
2. How to build a graph

3. How to choose an appropriate GNN for your problem

4138

1. Data structures and relational inductive biases

5/38

1. Data structures and relational inductive biases

2. Elements of Graph Theory

5/38

1. Data structures and relational inductive biases
2. Elements of Graph Theory

3. Graph Neural Mechanisms

5/38

1. Data structures and relational inductive biases
2. Elements of Graph Theory
3. Graph Neural Mechanisms

4. Applications in HEP

5/38

A general recipe for supervised machine learning

Feature plane

Feature 2

Machine Learning

Zy ——> f(&0)

-4 -3 -2 -1 0 1 2
Feature 1

Repeat N times

Initialize parameters

Model probability . Compute loss —> Update parameters f(=z;0)
]
e.g. sigmoid e.g. MSE e.g. gradient descend
D
1 ~ s OL
o(z)=—= L= lo(2)i —uil 0'=6-—
1+e ; 06

6/38

Combinatorial generalization

A key signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

7138

Combinatorial generalization

A Rey signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem

A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

7138

Combinatorial generalization

A Rey signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem

A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

1. Good: A neural network can solve any problem.

7138

Combinatorial generalization

A Rey signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem

A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a
finite number of nodes.

1. Good: A neural network can solve any problem.

2. Bad: Does not specify the number of nodes.

7138

Combinatorial generalization

A Rey signature of human intelligence is the ability to make “infinite use of finite
means” (Chomsky N.)

Universal approximation theorem
A feed-forward neural network with a linear output and at least one hidden
layer can approximate any continuous function to arbitrary precision with a

finite number of nodes.

1. Good: A neural network can solve any problem.

2. Bad: Does not specify the number of nodes.

Combinatorial generalization requires enormous computational power

7138

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

8/38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

Example 1
Occam’s Razor expresses a preference for simplicity

8/38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

Example 1
Occam’s Razor expresses a preference for simplicity

Example 2
A Bayesian model expresses inductive bias through the choice and
parameterization of the prior distribution

8/38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Inductive bias

Inductive bias
a set of assumptions that the learner uses to predict outputs of given inputs
that it has not encountered.

Example 1
Occam’s Razor expresses a preference for simplicity

Example 2
A Bayesian model expresses inductive bias through the choice and
parameterization of the prior distribution

Relational inductive bias may be enforced by the choice of data structure

8/38

https://link.springer.com/referenceworkentry/10.1007/978-1-4419-9863-7_927

Relational reasoning

Some profound definitions

9/38

https://arxiv.org/pdf/1806.01261.pdf

Relational reasoning

Some profound definitions

entity
an element with attributes

9/38

https://arxiv.org/pdf/1806.01261.pdf

Relational reasoning

Some profound definitions

entity
an element with attributes

relation
a property between entities

9/38

https://arxiv.org/pdf/1806.01261.pdf

Relational reasoning

Some profound definitions

entity
an element with attributes

relation
a property between entities

rule
a function that maps entities and relations to other entities and relations. e.g. is
entity X heavier than entity Y?

9/38

https://arxiv.org/pdf/1806.01261.pdf

Fully connected Convolutional
7
/
o
\ i
oy
T -
S
| — =
wn
=N
\ /
Entities: Nodes Entities: Grid elements
Relations: All-to-all Relations: Local
Relational inductive bias: weak Relational inductive bias: Locality
Invariance: - Invariance: Spatial translation

10/38

https://arxiv.org/pdf/1806.01261.pdf

Fully connected Convolutional
7
/
o
\ i
oy
T -
S
| — =
wn
=N
\ /
Entities: Nodes Entities: Grid elements
Relations: All-to-all Relations: Local
Relational inductive bias: weak Relational inductive bias: Locality
Invariance: - Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

10/38

https://arxiv.org/pdf/1806.01261.pdf

Fully connected Convolutional
7
/
o
\ i
oy
T -
S
| — =
wn
=N
\ /
Entities: Nodes Entities: Grid elements
Relations: All-to-all Relations: Local
Relational inductive bias: weak Relational inductive bias: Locality
Invariance: - Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

Translation invariance: reusage of the same rule across localities in the input. /
10/38

https://arxiv.org/pdf/1806.01261.pdf

Fully connected Convolutional

\

E—
<
/

Sharing in space

-

Entities: Nodes Entities: Grid elements
Relations: All-to-all Relations: Local
Relational inductive bias: weak Relational inductive bias: Locality
Invariance: - Invariance: Spatial translation

Locality: the arguments to the relational rule are entities in close proximity.

Translation invariance: reusage of the same rule across localities in the input.

10/38

https://arxiv.org/pdf/1806.01261.pdf

Relational inductive bias of unorderded entities

Set
Entities whose order is irrelevant.

1/38

Relational inductive bias of unorderded entities

Set

- o Graph
Entities whose order is irrelevant.

A set with pair-wise relations

1/38

Relational inductive bias of unorderded entities

Set

- o Graph
Entities whose order is irrelevant.

A set with pair-wise relations

A relational inductive bias arises from the absence of canonical order
Exploit it by allowing predictions to depend on symmetric functions

1/38

Symmetries of the function

Permutation equivariance
The output of the function is permuted
in the same way as the input.

Permutation invariance

The output of the function is the same
independantly of the permutation of
the input.

Equivariance
f(zi, zj) = (¥i, y;)

f(zj,zi) = (y5,9i)

Invariance

f(xia mj) = Yk

f(xj,) = yx

12/38

Examples of graphs in real life

-] 4 o 2 o o 2 a Social Networks
a0 - a [+] Hx. - Complex pairwise connections PHYLOGENETIC TREE
-8 Q g -
a ~ . - ™~ =4 Sa a ! - g Phylogenetic trees
o & i . aa “* 4 2 Trees are a particular type of graphs
Q83 2 P
-

(directed and acyclic graphs)

GRAPHS, GRAPHS EVERYWHERE T

4
e

p://otles.d

2 _® T
il @ IT-Mach Healthcare [
s
| |
" " Chemical- IG
Molecules and their dynamics "

naturally represented as graphs

BM- SHL
Mining- Transport
inance ST

rvice q} SHRE

Energy deposits in a detetor

Healthcare Retaller
(a) (b)
Any complex set of elements can be represented as a graph
Constructing the graph depends on several factors.
More on this will follow...

Business and financing
Complex inter-dependencies between entities

13/38

Take home messages

1. Relational inductive biases can improve a learning algorithm.

14 /38

Take home messages

1. Relational inductive biases can improve a learning algorithm.

2. The relational inductive bias in graphs is the absence of canonical order of
the entities.

14 /38

Take home messages

1. Relational inductive biases can improve a learning algorithm.

2. The relational inductive bias in graphs is the absence of canonical order of
the entities.

3. This relational inductive bias manifests itself as permutation invariance and
permutation equivariance.

14 /38

What is a graph ?

Graph (Computer Science)
A non-linear data structure consisting of a set of elements and their relations.

G=(u,V E)
Edge
Nods -

Cc

Label

15/38

A non exhaustive graph taxonomy

Some typical graph types you may encounter

Acyclic Graph
No cyclic paths in the graph

N
®

el
Aoy

Regular Graph
All nodes have the same
degree

Directed Graph Fully Connected Graph
The edged have a direction All nodes are interconnected

16 /38

How to represent a graph

A B C D E F
A0 1|1]|1/0]|0
B|1|{0(1/0/0 0
c(1/1/0(0(1|1
Adjacency matrix p/1/0|/o0fofo|o0
A square matrix whose elements E|0j0[1]0/0 1
indicate whether pairs of nodes are Folamle ' e ' 8
o o A e
adjacent or not in the graph. / Adjacency matrix (N x N)
Feature matrix & A [T Tay | oz Faw
A matrix with individual measurable B B Em
properties or characteristics of a C fex foy fez fow
phenomenon. D | fox | foy | foz fow
E | fex|fey | fEz |TEW
F | fex | fry | frz | frw

Feature matrix (N x F)

17/38

https://en.wikipedia.org/wiki/Adjacency_matrix
https://en.wikipedia.org/wiki/Feature_(machine_learning)

Other graph representations

Adjacency list

A > {B}
B> {A, C}
C -—> (B}

@
A
c

Weighted matrix Degree matrix D Laplacian matrix L=D - A Coordinate List (COO)

A B C A B C A B C A?‘
Al 0050 Al1]o]o NEEE =
B (0.5, 0(0.9 Bl 0[2]0 B|1]2 | B
clojo9j 0 c|o0jo 1 cl1/1|1 C

18/38

Take home messages

1. Entities = nodes; Relations = edges

19/38

Take home messages

1. Entities = nodes; Relations = edges

2. A graph at it simplest form can be defined by an adjacency matrix and a
feature matrix.

19/38

Message passing

This is the core idea behind every graph neural network architecture!
TARGET NODE

j 0

UPDATE

w O i€

INPUT GRAPH

Let h* be the state of node w in step k

hk+! = UPDATEX (hE}”, AGGREGATEX ({h‘;, Vv e N(u)})> (1)

20/38

-
Permutation invariant
UPDATE ‘
. R ”
e A <:| A «—— AGGREGATE €---------1 ©
S : SRR ¥
S b
o B oo oo oo oo o0 o
[
5 -{ Permutation invariant @
©
s
E
5 LR
o : UPDATE A
| e S
Qo - AGGREGATE
....................................... £&®

Two operations stacked together, one invariant and one equivariant.

21/38

Neural Message passing

The simplest choice is the SUM aggregator.

UPDATE AGGREGATE Om|t o
|
hk+1 = J(nezgh Z hk + b / /}
veN (u)
[Adjacency matrix Node Embedding)
RelLU 0j1/1/1]0/0 fax fay faz faw Trainable parameters
1 0 1 0 0 0 lfolfolflewa‘ Wil (W12 W13 |Wid W15 | W6 (W17 | Wi
e 1/1/0/0 1|1 fox foy foz fow | |wan |wan |was |was [was |wag [war [was|
1/0(0/0|0/|0 fox | foy | oz (fow| |wss |wss [was [wsa |wes |was |war [was
0o/0|(1/0/|0 1 fex | fEy | fEz |TEw| |wir |wiz |was |wia |was |wae |war [was
| [o/0]j1]of1]o0 fex | fry | frz | frw)

22/38

Node embeddings

Latent Space Yy = f(u) Node classification
A
\
c GNN,Y‘?‘YG-‘- g ZF@
; MY = f(@uevzu) Graph classification
D) ZE
@ ” AYup = f(Zm 2y, €u,v) Edge classification
GNN layer

The node embeddings can be further mapped using feed forward layers.

23/38

Graph Convolution

Question
|_ <[<<| S Is message passing the equivalent of
® U/ @ convolution on graphs ?
XXX /-ﬁ\
/N /
XIXIXT ——
d F F O

24 [38

https://iq.opengenus.org/graph-convolution-network/
https://arxiv.org/pdf/1609.02907v4.pdf

Graph Convolution

Question
R Is message passing the equivalent of
‘\
|/ \l <| ® convolution on graphs ?
XA / -ﬁ\ i
NN N T —\ nswer
I}/_\I//__\I/)__<|/ \ Not really strictly speaking. Graphs can

be strongly heterogeneous.

24 [38

https://iq.opengenus.org/graph-convolution-network/
https://arxiv.org/pdf/1609.02907v4.pdf

Graph Convolution

Question
|7 <[<<| S Is message passing the equivalent of
® U/ @ convolution on graphs ?
XX o,
AVALY4 — nswer
I’/_\ f/_\lf)_< \ Not really strictly speaking. Graphs can

be strongly heterogeneous.

Kipf and Welling added a normalization term in the aggregation function

hk
hkt1l — O'(W(k) Z

neigh 7>
! veEN (u) V ‘N HN ’

Strong theoretical background based on spectral graph convolution theory

24 (38

https://iq.opengenus.org/graph-convolution-network/
https://arxiv.org/pdf/1609.02907v4.pdf

concat/avg /.
Ry

Graph Attention

softmax

Attention Is All You Need

Jakob Uszkoreit
Google Research

Ashish Vaswani* Noam Shazeer® Niki Parmar*
Google Brain Google Brain Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com
Llion Jones* Aidan N. Gomez* 1 Lukasz Kaiser
Google Research University of Toronto Google Brain
1lion0google.con aidan@cs.toronto.edu lukaszkaiserOgoogle.com
Illia Polosukhin* * O O Q
Wh;

illia.polosukhinOgmail.com

Now the normalization terms are trainabl
hk+1 - 0(@(ne?gh Z a’u v, khk))
VEN (u

vk

exp(a’ [Wh, ® Wh,])
> eniw ©P@ [Wh, ® Wh,)
25/38

a’u,v

https://arxiv.org/abs/1710.10903

k-hop neighbourhood

If message passing applied k-times a node is aggregating information from its
k-hop neighborhood.

A
TR £ c
TARGET NODE RS G
O ?/c,P
BENCC
o
. or ’ /A
1 UPDATE . »"(e r"l
A k L P o
c _ 3 © UPDATE i
/ (A)«—— AGGREGATE <-------{ C j<--AGGREGATE |
| 9T -@
<D) -
__4 D). (/ :
e
} 4QG/? O,q}év\.. ‘
NS :
47‘@ 4
INPUT GRAPH 2,

A

Can we use this recipe to aggregate information even from the far distant nodes ?

26 /38

Oversmoothing

The oversmoothing problem
after several iterations of GNN message passing, the representations for all the
nodes in the graph can become very similar to one another.

27 /38

https://seunghan96.github.io/gnn/gnn7/
https://arxiv.org/pdf/1909.03211.pdf

Oversmoothing

The oversmoothing problem
after several iterations of GNN message passing, the representations for all the
nodes in the graph can become very similar to one another.

Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN

Q o © Node of interest Q o © Node of interest Q © Node of interest

o @ Receptive field o @ Receptive field @ © Receptive field

© Other nodes © Other nodes O Other nodes

Small number of GNN layers can be used in
practice.

27 /38

https://seunghan96.github.io/gnn/gnn7/
https://arxiv.org/pdf/1909.03211.pdf

Oversmoothing

The oversmoothing problem
after several iterations of GNN message passing, the representations for all the
nodes in the graph can become very similar to one another.

Mean Average Distance (MAD)

Receptive field for Receptive field for Receptive field for H 4,0 H 7,
1-layer GNN 2-layer GNN 3-layer GNN Di,j =1-—
2o © Node of interest 2 © Node of interest Q © Node of interest |HZ : ‘ : |H] : ‘
o @ Receptive field o @ Receptive field @ © Receptive field E 2
© Other nodes © Other nodes © Other nodes

10

ARMA 0.860 (LN 0.305 0.004

ChebGeN 0138 0024 0018 o8

ona [EH[0952 [0847] 0172 009
° Feast JECHNNZORNITZM 0.182 0.072 06

GAT JONEZEEN(ZE 0.232 0.047 0.005

04
[Vl 0.796 | 0.765 | 0.714 W 0.289

m number of GNN r n in conn [ooe o021 0033 oos |,
S all. umber of GNN layers can be used S
praCtlce. HighOrder 0.145 0.023 0.004 0.012 -00

HyperGraph [IRE W 0046 0023
-=-0.2
2 3 4 5

6

Model

#Model Layer

27 /38

https://seunghan96.github.io/gnn/gnn7/
https://arxiv.org/pdf/1909.03211.pdf

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do
we do if we're only given a feature matrix ?

28 /38

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do
we do if we're only given a feature matrix ?

k=2
LER A T T
A 0.8 "v - fo
¢ ~ 07 2N
1 k- ighb N i
. k-nearest neighbor ® i
N\ 05 |
graph by approximation & . 0 oo
I\ 03 @
Create edges based on Euclidean distance = i . 1°IG as 10

28 /38

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do
we do if we're only given a feature matrix ?

k=2

ae o)

09 H ey n H

A 08 : :

c 07 \ »
1. k-nearest neighbor ® =87
N\ 05

graph by approximation &/ —~ " D |

Z 03
2. fully connected graph R C
Create edges based on Euclidean distance :

feature 1

Caveat: O(n?) scaling,
computationally
impractical for n. > 100

Fully Connected Graph
All nodes are interconnected

28 /38

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do
we do if we're only given a feature matrix ?

k=2

ae o)

09 H ey n H

A 08 : :

c 07 \ »
1. k-nearest neighbor ® =87
N\ 05

graph by approximation &/ —~ " D |

Z 03
2. fully connected graph R C
Create edges based on Euclidean distance :

feature 1

Caveat: O(n?) scaling,
computationally
impractical for n. > 100

Fully Connected Graph
All nodes are interconnected

28 /38

Constructing the graph

So far we've naively assumed that the structure of the graph was given. What do
we do if we're only given a feature matrix ?

k=2
S
1. k-nearest neighbor ® —> e ® ;"‘
graph by approximation ® -~ 04 . .1
2. fully connected graph ” e C

Create edges based on Euclidean distance

feature 1

3. dynamic graph

A3

Caveat: O(n?) scaling,
computationally
impractical for n. > 100

Fully Connected Graph
All nodes are interconnected

28 /38

Graph rewiring

Oversquashing

As the number of GNN layers increases,
the number of nodes in each node’s
receptive field grows exponentially.
This information is then compressed
into fixed-length node vectors

29 /38

https://arxiv.org/pdf/2006.05205.pdf
https://arxiv.org/pdf/2111.14522.pdf

Graph rewiring

Oversquashing

As the number of GNN layers increases,
the number of nodes in each node’s
receptive field grows exponentially.
This information is then compressed
into fixed-length node vectors

Graph rewiring

it attempts to produce a new graph
with a different edge structure that
reduces the bottleneck

29 /38

https://arxiv.org/pdf/2006.05205.pdf
https://arxiv.org/pdf/2111.14522.pdf

Take home messages

1. Message passing is the fundamental operation of a GNN.

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homopbhily).

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homopbhily).

5. Graph attention allows to learn which edges matter.

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homopbhily).

5. Graph attention allows to learn which edges matter.

6. If an adjacency matrix is not given:

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homopbhily).

5. Graph attention allows to learn which edges matter.

6. If an adjacency matrix is not given:
- Construct a fully connected graph if the number of nodes is small.

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homopbhily).
5. Graph attention allows to learn which edges matter.

6. If an adjacency matrix is not given:
- Construct a fully connected graph if the number of nodes is small.

- Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

30/38

Take home messages

1. Message passing is the fundamental operation of a GNN.

2. Message passing respects permutation invariance and permutation
equivariance.

3. Three main tasks: Node, edge and graph classification.

4. Graph convolution can be used when the edges reflect node similarity (graph
homopbhily).

5. Graph attention allows to learn which edges matter.

6. If an adjacency matrix is not given:
- Construct a fully connected graph if the number of nodes is small.

- Construct a k-nearest graph using Euclidean distances or infer it from different
representations.

7. Oversmoothing and oversquashing are the most prominent problems with
GNNs.
30/38

GNN libraries

® PyTorch DGLE:

o O
o YO

A1l [oX] v 5k % 777 O
ontributors Issues Stars Forks

31/38

Why GNNs in HEP?

Run 3 (41=55) Run 4 (41=88-140)
T T T

Run 5 (1=165-200) CMS Public
50__|ATLAS Prehmina:'y l I I I] T().,tuaall(éz’ll‘;lnl:‘%:LHC (2029/No R&D Improvements) fractions
- 2022 Computing Model - CPU o

L Other: 2%

40 GEN: 8%

* Conservative R&D .

v Aggressive R&D ‘,,«“

— Sustained budget model &35 .

K RECO: 42% . g0
30 (+10% +20% capacity/year) o DIGL: 8%
_’.’
= 7 _Analysis:4%

Annual CPU Consumption [MHSO08years]

SIM: 14%

MU T T[T T T T[T rrrT]
v v Py Iy

P IR RN IR BRI N B IR B |
c2020 2022 2024 2026 2028 2030 2032 2034 2036

Year RECOSim: 23%

1. Improve algorithm performance
Three main objectives: 2. Accelerate algorithm inference

3. Accelerate data generation/simulation

32/38

Particle flow

tt, 14 TeV, 200 PU
Tracks

= ECAL clusters

HCAL clusters

Truth particles

33/38

: a node classification task

Event as input set
X= {x,'}
® o
° []

® - track, ¥ - calorimeter cluster,

34 /38

https://arxiv.org/pdf/2101.08578.pdf

: a node classification task

Event as input set Event as graph
X={x;} X={x}, A=A,

® o Graph building ¢ /

B e
FX =A
° X|w)

% = [type, prs Excars Bucars /1> @ Nouter Pouters 4> +-+1» type € {track, cluster}

Trainable neural networks: &,
® - track, ¥ - calorimeter cluster,

34 /38

https://arxiv.org/pdf/2101.08578.pdf

: a node classification task

Event as input set Event as graph Transformed inputs
={xl-} X={x,‘}sA=A,j H={h}

I3
® o Graph building.\f Message passmg- L
-
A
[J

FX|w) = (X, Alw) = .

= [type, pr, Excars Biacars 1> §s Mouer Pouter 4> +--1» type € {track, cluster}

Trainable neural networks: &, €,
® - track, ™ - calorimeter cluster,® - encoded element

34 /38

https://arxiv.org/pdf/2101.08578.pdf

: a node classification task

Event as input set Event as graph Transformed inputs
= {x} X= {x,»},A:Al-j H={h}
L P Graph building Message passing g
PS L Bamd LSH+kNN —»-—» . .
° FX|w)y=A CX,Alw) =
I
Target set ¥ = {yj} Output set YV’ = {yj’} l
Decoding
Elementwise loss L(y;, y;) e
classification & regression FFN
—p ,

D, hlw) =y,

x; = [type, pr Egcars Encars 1 s fouter Pouter 4 - -1 type € {track, cluster}
= [PID, pr, E,n, $.q, ...], PID € {none, charged hadron, neutral hadron, y, e, u*}
h; € R
Trainable neural networks: &, &, 2
® - track, M - calorimeter cluster, M - encoded element
- target (predicted) particle, - no target (predicted) particle

34 /38

https://arxiv.org/pdf/2101.08578.pdf

: a node classification task

Event as input set Event as graph Transformed inputs
X={x} X={x}.A = Ay H={h}
. Chargedhadrons _____ Neutral hadrons
g 8407 imprq 8 i
LIPS Graph building Message passing . §mf = o O foun £ = o = i
Srof 1
5 5 1°F 1
5 10° 4 =
= =z 109 d
FX|w)y=A CX,Alw) = 1 7
. 108f ERERLCA S E|
ol 1 wf "ﬂ' . 4
! .
10°) o A L b A 109 E|
Target set ¥ = {y} Output set V' = {y/} | Bt Ll ool
pr[GeV] pr(GeV]
Decoding Electrons Muons
i , . ; ! ——— g ; ; e
Elementwise loss L(y;. ;) — = £ Sowr s gv Sour s
classification & regression FFN o o
— 5 5100]
Dy w) =] 1%
z Zap
102 E
% = [type, pr, Epcars Eucars 1 @5 Mower Pouters 95 -1, type € {track; cluster} ol
= [PID, pr, E,n, $.q, ...], PID € {none, charged hadron, neutral hadron, y, e, u*} o PR
" 1
h; € R¥ g b 1 L]
1 150 200 50 100 150 200

Trainable neural networks: #, &, 2 pr [GeV] pr [GeV]

® - track, M - calorimeter cluster, M - encoded element
- target (predicted) particle, - no target (predicted) particle

34 /38

https://arxiv.org/pdf/2101.08578.pdf

: a node classification task

" Charged hadrons " Neutral hadrons
. . 2107} 3 QCOMLPF [iMLPF {8 406] QCOMLPF [tiMLPF
Event as input set Event as graph Transformed inputs £ m(r acown o wwn | £0F QCown i
a10% 1 a
X = {x} X={x}),A=4; H={h} s 51F 1
i 1 A T = 10%] 4 =
ém E Bl]
_— 2 12
L P Graph building Message passing . o 15t 1
0 1 < 4
PS [2o LSH+kNN o — — . . -
10 1 3 - 1
F = 107 o ahed ok L
FXIw) =A sxA=H = ARSI v T B RO it
pr [Ge' pr [GeV]
Electrons Muons
o P - : - g O - ‘ - -
2 3 QCOMLPF [tiMpF | S 10°F 3 QCOMLPF [fiMLPF §
Target set ¥ = {y;} Output set ' = {y/} l £l ccown 3w] QCDwh £ i
g g
5 B 100k J
Decoding Bl |l 13
. . E E
Elementwise loss L(y;, y;) T 2 o 120}
classification & regression FFN
—p
—_— ’ il 10'F
D Iy | w) =y o]
100k i ‘h“‘_ 100k) R
X; = [type, pr, Egcars Encars 1 @ Nowers Pouters 45 -+ 1s type € {track, cluster} * o G T e
+ *
= [PID,pr. E,n,¢.q, ...], PID € {none, charged hadron, neutral hadron, y, e*, 4™} @ Neutral hadrons
h e R256 Metric Rule-based PF - MLPF | Rule-based PF MLPF
1
. ry Efficiency 0.953 0.953 0.883 0.908
Trainable neural networks: 7, 9.9 Fake rate 0.000 0.000 0071 0.068
® - track, M - calorimeter cluster, M - encoded element pr (E) resolution 0213 0.137 0.350 0.323
- target (predicted) particle, - no target (predicted) particle 7 resolution 0.240 0.245 0.050 0.058
N resolution 0.004 0.004 0.014 0.013

34 /38

https://arxiv.org/pdf/2101.08578.pdf

Jet tagging

oé

Q/g9

t—UJg—
h/W/Z~aq Q—aqq

35/38

: a graph classification task

INPUT: /p xNo)

(&)

No: # of constituents
P: # of features

36 /38

https://arxiv.org/pdf/1908.05318.pdf

[——
IiH

INPUT: Ipxng - Raoxng

Bopxng

No: # of constituents
P: # of features
Ne = No(No-1): # of edges

36 /38

https://arxiv.org/pdf/1908.05318.pdf

: a graph classification task

INPUT: /px o -RnNoer(III I)
* Rs NoxNg III I

Bopxng

E pexNoj

No: # of constituents

P: # of features

Ne = No(No-1): # of edges

De: size of internal representations

36 /38

https://arxiv.org/pdf/1908.05318.pdf

: a graph classification task

anqu(III I

RsNoxNg
B 2pxnNg

C [P+Dg) x No]

%M) =

fo

No: # of constituents

P: # of features

Ne = No(No-1): # of edges

De: size of internal representations

Do: size of post-interaction internal representation

) «

.)4_(_:_'_.._

¢c, fo, fr

expressed as
dense neural

networks

i |)

E pexng

Rt

)

E pex Noy

36 /38

https://arxiv.org/pdf/1908.05318.pdf

a graph classification task

INPUT: /jp xn) ~Rn[uoxw
HE-u
HE-N

Rs [Nox Ne|

OUTPUT

%(=y ('

B 2pxnNg

C [P+Dg) x No]

fo

No: # of constituents

P: # of features

NE No(No-1): # of edges

ize of |nterna| representat\ons

De:
Do: size of p nal

S—
IiH

(

e x Ne]

Rt

(I
n
E pex Noy

¢c, fo, fr
expressed as
dense neural

networks

—— JEDImet: AUC = 0.9529 = 0.0001
—— JEDImet 30 AUC = 0.9528 + 0.0001

—— JEDI-net 50: AUC = 0.9290 + 0.0001

TPR (gluon)

TPR (light quarks)

—— JEDLnet: AUC = 0.9739 + 0.0001
—— JEDI-net 30: AUC = 0.9695 + 0.0001

| ..
g g
2, 2
H 2
g S
£,
-4
£ &
B 02
FPR (W boson) FPR (Z boson)

36 /38

https://arxiv.org/pdf/1908.05318.pdf

: a graph classification task

= DNN: AUC = 0.9026 0.0004
—— GRU: AUC = 0,8962 = 0.0052
—— CNN:AUC = 0.9007 = 0.0011
JEDEnet: AUC = 09529 + 0.0001 —— JEDInet: AUC = 0.9301 + 0.0001
—— JEDInet 50: AUC = 0.9528 + 0.0001 —— JEDInet 50: AUC = 0.9290 + 0.0001

o)

z |

Sos El

) =

= =

‘ & o 2
Ll I

{ &

02 &

E pexng — Gru 9042 £ 0.0104

[
INPUT: /pxng * RRNoxnNg I
NN
=) (liH)
—— DNN: AUC - 0.9459 £ 0.0005

-
- - 2 —— CNN:AUC = 0.8994 = 0.0014
— JEDLnet: AUC = 0.9739 0.0001 —— JEDInet: AUC = 0.9679 = 0.0001

* RsNoxNg
B opxng — JEDL-nct £0: AUC = 0.9695 = 0.0001 — JEDI-net 20: AUC = 0.9649 = 0.0001
.
_—
c | -
ouTPUT (P+D9x Nl R e z 2
2 0 2
o = 2
N
Z., N
@ O [Dox No P =
O+ i)

o o0

h SR FPR (W boson) FPR (Z boson)

o ,J Eooexn Model Number of Number Inference
fo oexnel parameters of FLOP time/batch (ms)
P b ot emmiron IR DNN 14725 27k 1.0£02
No(No-1): # of edges

De: size of internal representations dense neural CNN 205525 400 k 57.1£0.5

Do: size of post-il internal { networks
GRU 15575 46 k 232+0.6
JEDI-net 33625 116 M 1212+ 04
JEDI-net 8767 458 M 402 +1

with 3 0 36 /38

https://arxiv.org/pdf/1908.05318.pdf

Conclusions

| hope we've established:

- Graphs are:

37/38

Conclusions

| hope we've established:

- Graphs are:
1. cool

37/38

Conclusions

| hope we've established:

- Graphs are:

1. cool
2. everywhere

37/38

Conclusions

| hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

37/38

Conclusions

| hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

- Basic representations of graphs

37/38

Conclusions

| hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

- Basic representations of graphs

- Many different graph architectures, but they are all conceptually doing
message passing.

37/38

Conclusions

| hope we've established:

- Graphs are:

1. cool
2. everywhere
3. permutation invariant

- Basic representations of graphs

- Many different graph architectures, but they are all conceptually doing
message passing.

- Constructing a graph and predicting node/edges/graph labels is possible in
HEP.

37/38

Further reads

- Graph convolution theoretical motivations 1, 2, 3
- k-nearest graph inference 1, 2, 3
- Generative models and unsupervised learning 1, 2, 3

- How powerful are GNNs ? Graph isomorphism and the WL algorithm 1, 2

38/38

https://arxiv.org/abs/1609.02907
https://www.cs.mcgill.ca/~wlh/grl_book/
https://arxiv.org/pdf/1902.07153.pdf
https://www.researchgate.net/publication/350818425_k-Nearest_Neighbor_Learning_with_Graph_Neural_Networks
https://arxiv.org/abs/2206.11408
https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/1802.04687
https://arxiv.org/pdf/2007.06686.pdf
https://arxiv.org/abs/2104.01725
https://arxiv.org/abs/2201.07083
https://arxiv.org/abs/2201.07083

BACK-UP

Back to basics

Convolution .
a mathematical operation on two

functions (f and g) that produces a third
function which expresses how the shape
of one is modified by the other.

Back to basics

Convolution .
a mathematical operation on two

functions (f and g) that produces a third
function which expresses how the shape
of one is modified by the other.

x(t) h(t) ¥(t)
3 _
] * I[N < N

H 4 0 1 2 -
‘Time Time Time

FIGURE 13.5
Example of conti . This i square pulse entering au RC low-pass filter (Fig.
13-4). Thi 1 it 's impulse response to produce the output.

Back to basics

Convolution Theorem _
under suitable conditions the Fourier

Convolution transform of a convolution of two

a mathematical operation on two - , (or signals) is th o
functions (f and g) that produces a third unctions {or S1gNnals/ 1s the pointwise
product of their Fourier transforms.

function which expresses how the shape
of one is modified by the other.

x(t) h(ty ¥(D)

I
Amplifude

Amplifude
*
Amplitude

N N

H 4 0 1 2 -
‘Time Time Time

FIGURE13.5

xample of . This i square pulse entering au RC low-pass filter (Fig.
13-4). Thi 1 it 's impulse response to produce the output.

Back to basics

Convolution Theorem _
under suitable conditions the Fourier

transform of a convolution of two
functions (or signals) is the pointwise
product of their Fourier transforms.

Fourier Trasformation

Convolution .
a mathematical operation on two

functions (f and g) that produces a third
function which expresses how the shape

of one is modified by the other. £(@) = a0 + are + asa® ... +aa” |::> [do, a1, -]
X(t) h(t) y(t) Fourier Trasformation
g(x) = bo + b1z + byz+. ... +ba” @ [B0, 61,82, -+ - by
i E E
B -3 = %
H * <2 \.___] \ Point-wise product
‘Time T e b Time Inverse Fourier Trasformation
FIGURE 15.5 Convolution o A A . S
Example of conti . This i square pulse entering an RC low-pass filter (Fig Fx [do - bo, d1 - by, da - b, ... 3@ - by
13.4). Th 1 it 's impulse response to produce the output. 9

= =)

NlogN O(N?)

Graph Fourier Tranformation

The graph Fourier transformation is defined as:
F(z)=UTx, 5 1(z) = Uk

where U is the eigenvector matrix of the graph Laplacian.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

F(r)=UTx, 57 1(z) =U%
where U is the eigenvector matrix of the graph Laplacian.
The Laplacian matrix can be factored as

L =UAUT

where A are the eigenvalues of L.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

F(r)=UTx, 57 1(z) =U%
where U is the eigenvector matrix of the graph Laplacian.
The Laplacian matrix can be factored as

L =UAUT

where A are the eigenvalues of L.

Graph convolution
gox T =UgUTx

where g, is a function of A.

Graph Fourier Tranformation

The graph Fourier transformation is defined as:

F(r)=UTx, 57 1(z) =U%
where U is the eigenvector matrix of the graph Laplacian.
The Laplacian matrix can be factored as

L =UAUT

where A are the eigenvalues of L.

Graph convolution
gox T =UgUTx

where g, is a function of A.

Problems:

1. Computing the eigencomposition of L can be expensive for large graphs

Y A clicht ~Fhanca 1n tha nicaonmvinrtAar afFarte +tho whnala aranh

Graph Convolution Approximation

Kipf and Welling approximated g,(A) as an expansion of Chebyshev coefficients of
the adjacency matrix up to 2nd order.

go*xx =0z +0,"(L—Iy)x=0z—0,'D2AD 2z
After some empirical tricks:
Z =D :AD :X6O
with © € RE*F and Z € RV*F. Now the filtering operation has complexity
O(E|FC).

c F
?\ (79‘ "@ We added a normalization term in the
aggregation function

X Z
CXJ 2 >”hdd ﬁgx il *) Z hk
o h = J(Wnei h 70)
- \)) VIN IV

input layer output layer

https://arxiv.org/pdf/1609.02907v4.pdf
https://arxiv.org/pdf/1609.02907v4.pdf

Track fitting as edge classification

1.000

— il M
/ e \g 22 g™ e + } | } \ \
/ noise 0980 o { + | { +
/ ° o . {qh :
.................. ! beanline N B BT

; =1 f w
noise o : :?; :OJ ‘ W iﬁ
\ 0 # ++H

#
Unrolled r-z View Hitgraph View HHH}H Jff“
HHH} - JW
hy

Track fitting as edge classification

Interaction network

Relational Object
model model

N Edge .
weighting

) _ (0) (0 O () _ (1) 1)
a’.(].)= ¢R,](A‘(),,\].(),al.(/.)y wl) = (/1R‘2(xi(),)&/.(), a@;)

u

I -
xD = (), %

Pr.

Accuracy

BCE Loss

0.9990

0.9985

0.9980

0.9975

0.9970

0.9965

Epoch

	Appendix

