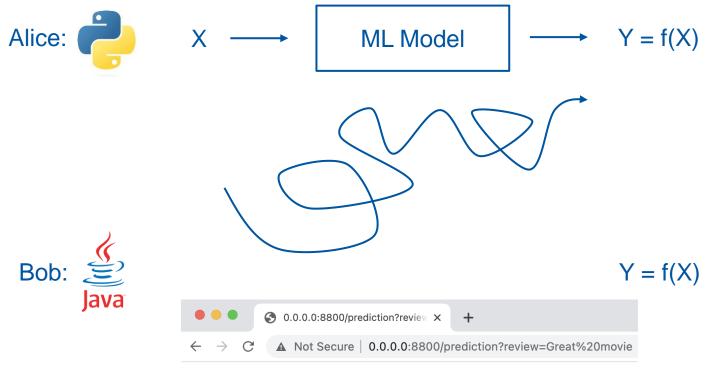
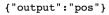
Machine Learning Operations - MLOps Getting from Good to Great

Michal Maciejewski, PhD

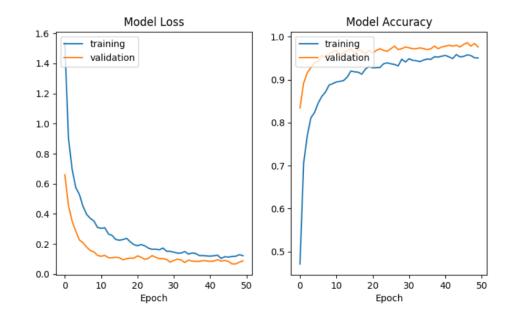
Acknowledgements: Dejan Golubovic, Ricardo Rocha, Christoph Obermair, Marek Grzenkowicz





Let's share our model with users aka let's put it into production!

What Has to Go Right?



What is needed for an ML model to perform well in production?

What Can Go Wrong?

📶 Orange 奈	20:08	20% 🗲	•II Oran	ge 🗢 20:09	21% 🛃
≡	28-Day Months in Year	+	\equiv	30-Da	+
M Wha	at months in a year have 28 d	ays? ௴	М	What months in a year have 30)days? ピ
			S	April, June, September, and No have 30 days. 企 <i>导</i>	ovember

Concept and data drifts are one of the main challenges of production ML systems!

MLOps is about maintaining the trained <u>model performance</u>* in production. The performance may degrade due to factors outside of our control so we ought to monitor the performance and if needed, roll out a new model to users.

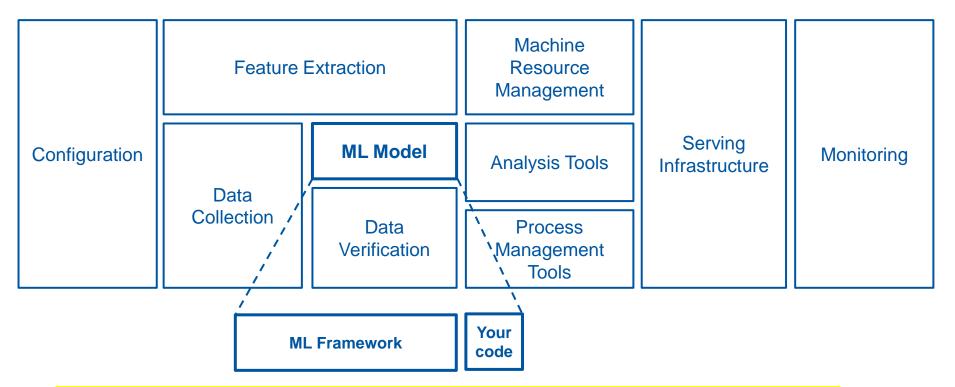
ML Model = Data + Code

MLOps = ML Model + Software

- + Algorithm
- + Weights
- + Hyperparameters

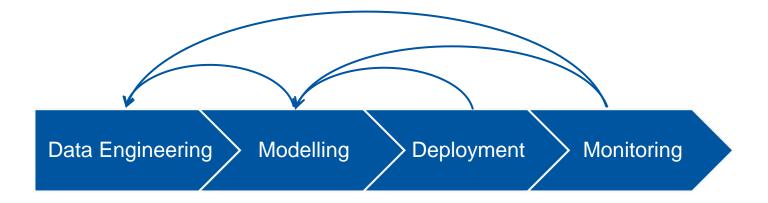
- + Scripts
- + Libraries
- + Infrastructure
- + DevOps

MLOps = ML Model + Software



Good news: most of these components come as ready-to-use frameworks

MLOps Pipeline



Data Engineering

Reproducibility Traceability Data-driven ML

Modelling

Deployment

Monitoring

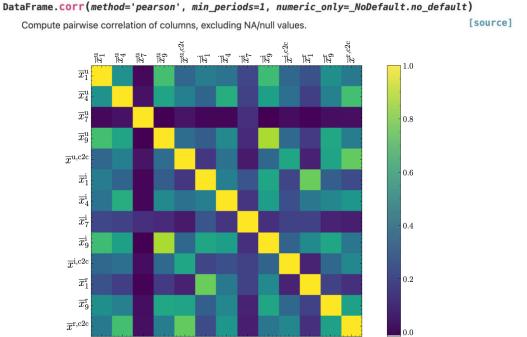
Exploratory Data Analysis

For structured data:

 schema as required tables, columns and datatypes

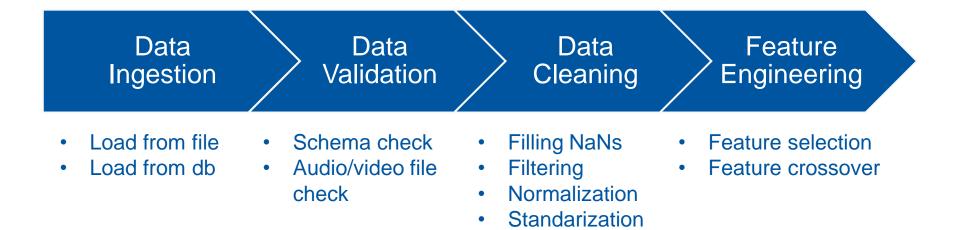
For unstructured data:

- resolution, image extension
- frequency, duration, audio codec



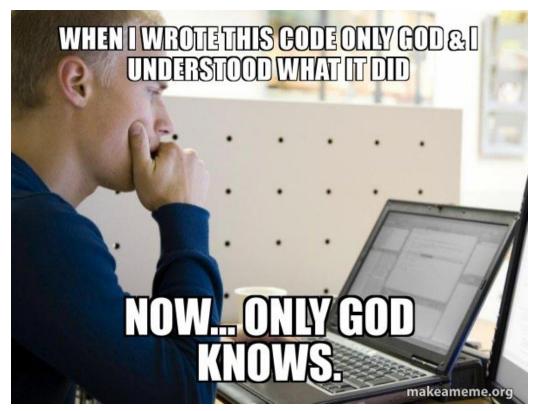
Initial exploration allows indetifying requirements for input data in produciton.

Data Processing Pipeline



We need to reproduce some of those steps (e.g. subtracting mean) in production!

Reproducibility



https://sites.google.com/princeton.edu/rep-workshop/

Keeping Track of Data Processing

- Version Input Data DVC framework
- Version Processing Script GitLab
- Version Computing Environment Docker

Data Provenance – where does data come from? Data Lineage – how data is manipulated?

Import Libraries

import plotly.offline as pyo
Set motebook mode to work in offline
pyo.init_notebook_mode()

import sys
sys.path.append('..')
from magnumspl.spcmetry.CosThetaGeometry import CosThetaGeometry
from magnumspl.spcmladapter.amays.AmsysToolAdapter import AnsysToolAdapter

Analysis executed on 2021-05-26 10:46:25 Loaded MagNum API version 0.0.1 Loaded Tool Adapter version 0.0.1 for ANSYS 2021R1

Build Geometry

In [

No	Туре	Nco	Radius	Phi	Alpha	Current	Condname	NI	N2	Imag	Tur
1	1		30	phi_1	0	11850	FNAL40_NC	2	20	0	0
2	1		30	26.5021	28	11850	FNAL40_NC	2	20	0	0
3	1	3	30	55.7611	59	11850	FNAL40_NC	2	20	0	0
4	1	2	30	70.3836	70	11850	FNAL40_NC	2	20	0	0
6	1	16	45.55	0.15	0	11850	FNAL40_NC	2	20	0	0
6	1	18	45.55	30.1226	33	11850	FNAL40_NC	2	20	0	0

Plot Geometry



Notebook Good Practices

- Linear flow of execution
- Little amount of code
- Extract reusable code into a package
- Pre-commit for cleaning notebook before committing to a repository
- Set parameters on top so that notebook can be treated as a function (papermill and scrapbook packages)

It is OK, to do exploratory quick&dirty model development. Once we start communicating the model outside, we need to clean it!

٠

From Model-driven to Data-driven ML

	Model-driven ML	Data-driven ML
Fixed component	Dataset	Model Architecture
Variable component	Model Architecture	Dataset
Objective	High accuracy	Fairness, low bias
Explainability	Limited	Possible

https://datacentricai.org

https://spectrum.ieee.org/andrew-ng-data-centric-ai

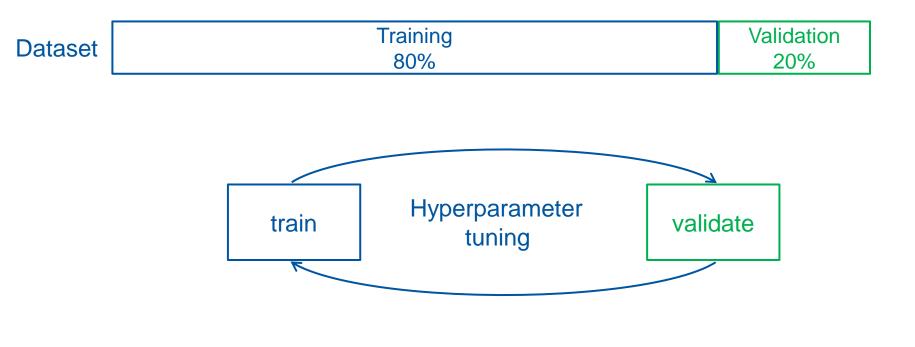
Modelling

Training challenges Rare events Analyzing results

Modelling

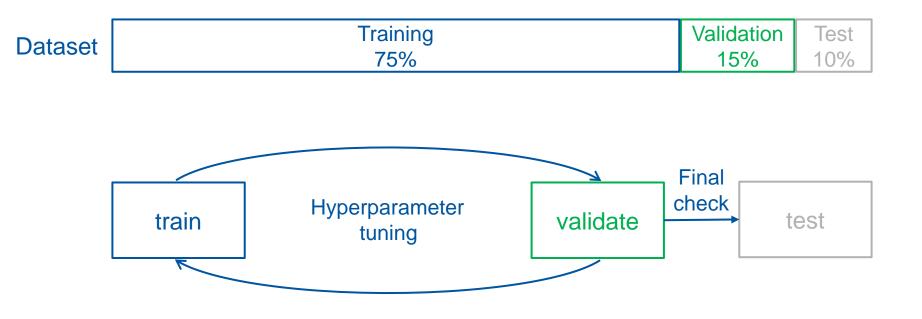
Deployment

Selecting Data for Training



With this approach, the model eventually sees the entire dataset.

Selecting Data for Training



Splitting dataset in three allows to perform a final check with unseen data. 19

Balancing Datasets

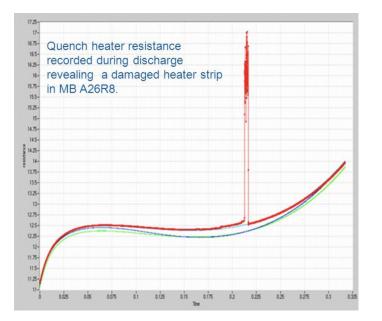
20

Consider a binary classification problem with a dataset composed of 200 entries. There are 160 negative examples (no failure) and 40 positive ones (failure).

Expected:	Training	Validation	Test
	75%	15%	10%
	(120 + <mark>30</mark>)	(24+6)	(16+4)
Random:	Training	Validation	Test
	75%	15%	10%
	(131 + 19)	(19+11)	(10+10)

For continuous values it is important to preserve statistical distribution. Although for big datasets it is not an issue, it is still a low-hanging-fruit.

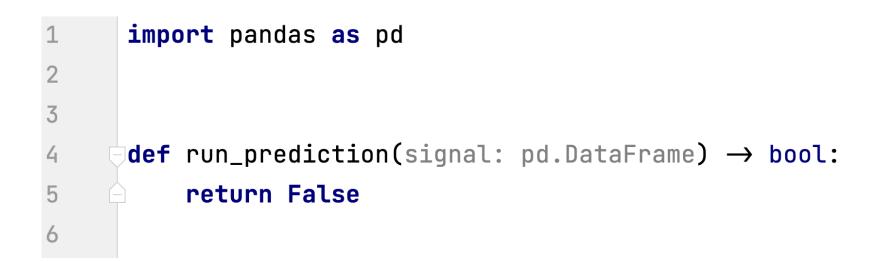
Rare Events



There were 3130 healthy signals (Y=False) and 112 faulty ones (Y=True)

C. Obermair, Extension of Signal Monitoring Applications with Machine Learning, Master Thesis, TU Graz M. Brice, LHC tunnel Pictures during LS2, <u>https://cds.cern.ch/images/CERN-PHOTO-201904-108-15</u>

Rare Events



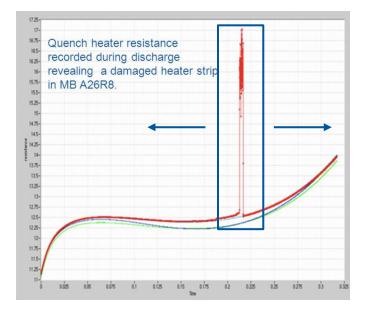
This naive model is guaranteed to achieve 97% average dataset accuracy?!

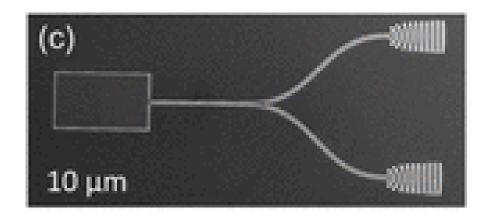
Rare Events

		Groun	d truth	Avg accuracy = $\frac{\text{TN}}{\text{TN} + \text{FN}} = 97\%$
		Y = True	Y = False	Precision = $\frac{TP}{TP + FP} = \frac{0}{0}$
Model	Y = True	0 true positive	0 false positive	
	Y = False	112 false negative	3130 true negative	$\operatorname{Recall} = \frac{TP}{TP + FN} = \frac{0}{0 + 112} = 0$
				$F1_{score} = \frac{2}{1/Precision + 1/Recall}$

It is a valuable conversation to decide if precision or recall (or both) is more important. $_2$

Data Augmentation





New examples obtained by shifting the region left and right

New examples obtained by rotating/shifting/hiding

JH. Kim et al. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip, Nano Letters 2017

What else can we do?

When one of the values of Y is rare in the population, considerable resources in data collection can be saved by randomly selecting within categories of Y. [...]

The strategy is to select on Y by collecting observations (randomly or all those available) for which Y = 1 (the "cases") and a random selection of observations for which Y = 0 (the "controls").

We can also collect more data of particular class (if even possible).

G. King and L. Zeng, "Logistic Regression in Rare Events Data," Political Analysis, p. 28, 2001. <u>https://en.wikipedia.org/wiki/Cross-validation_(statistics)</u>

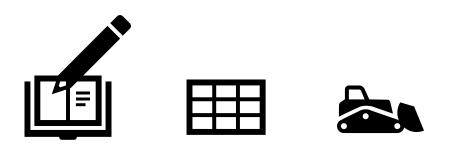
Training Tracking

- 1. Pen & Paper
- 2. Spreadsheet

-

- 3. Dedicated framework
 - Weights and Biases
 - Neptune.ai
 - Tensorflow

. . .



Error Analysis

#	Signal	Noise	Gap in signal	Bias	Wrong sampling
1	Magnet 1	x	X		
2	Magnet 2			Х	х
3	Magnet 3	x	x		

Such analysis may reveal issues with labelling or rare classes in data. For unstructured data, a cockpit could help in analysis. Useful in monitoring of certain classes of inputs.

Andrej Karpathy 🤣 @karpathy

When you sort your dataset descending by loss you are guaranteed to find something unexpected, strange and helpful.

...

Deployment

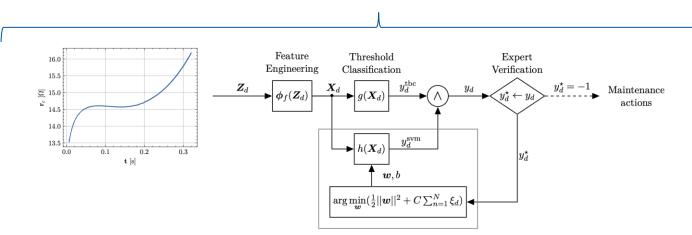
Degrees of automation Modes of deployment Reproducible environments

Modelling

Degrees of Automation

Full Automation

Human inspection Shadow mode



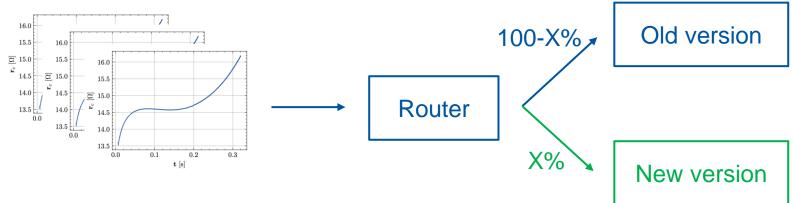
Support Vector Machine

Human in

the loop

Starting from Shadow mode we can collect more training data in production!

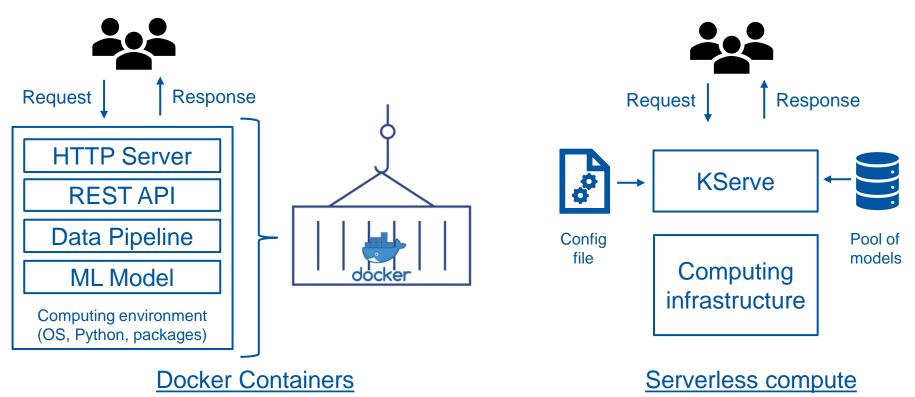
Modes of Deployment



- In **Canary** deployment there is a gradual switch between versions
- In Blue/green deployment there is an on/off switch between versions

https://hbr.org/2017/09/the-surprising-power-of-online-experiments https://en.wikipedia.org/wiki/Blue-winged_parrot

Reproducible Environments



14 CERN School of Computing

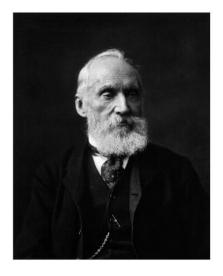
We will play with those during the exercise sessions!

Monitoring

Useful metrics Relevant frameworks

Modelling

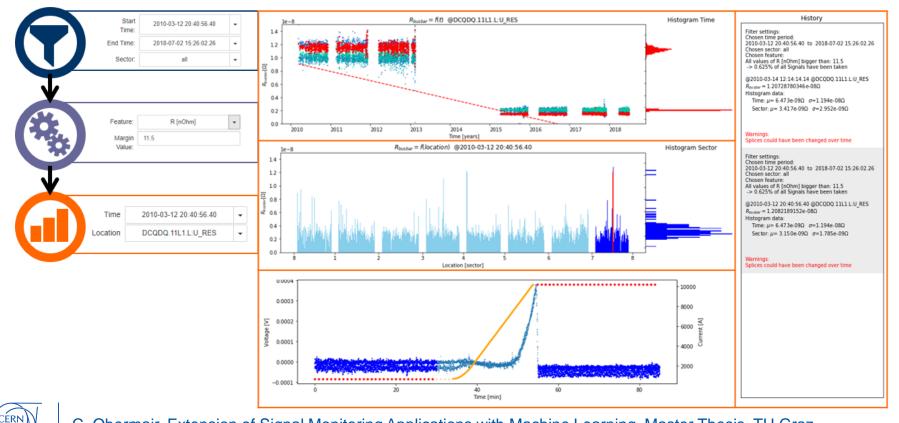
If you can't measure it, you can't improve it William Thomson, Lord Kelvin



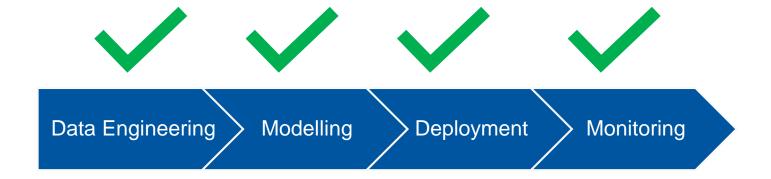
Relevant Metrics

- Model metrics
 - Distribution of input features data/concept drift
 - Missing/malformed values in the input
 - Average output accuracy/classification distribution concept drift
- Infrastructure metrics
 - Logging errors
 - Memory, CPU resources utilization
 - Latency and jitter

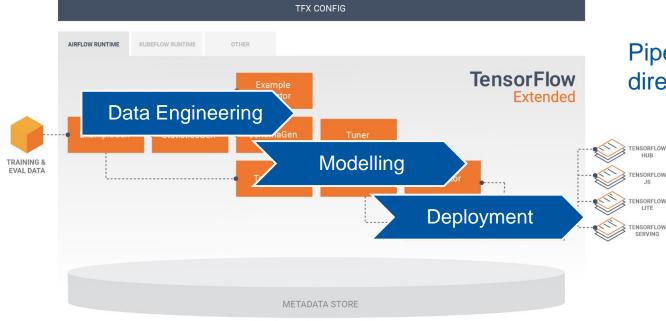
Monitoring Matters



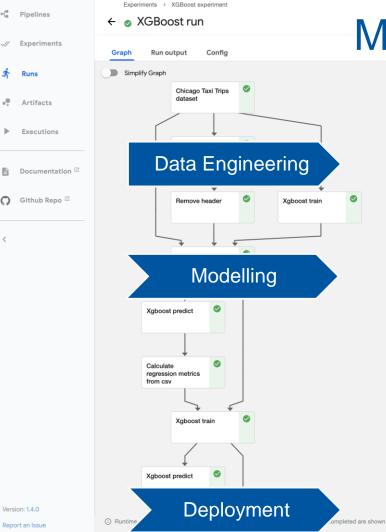
C. Obermair, Extension of Signal Monitoring Applications with Machine Learning, Master Thesis, TU Graz



MLOps Pipeline with Tensorflow



Pipeline represented as DAG directed acyclic graph



MLOps Pipeline with Kubeflow

https://ml.cern.ch

https://www.kubeflow.org/docs/started/

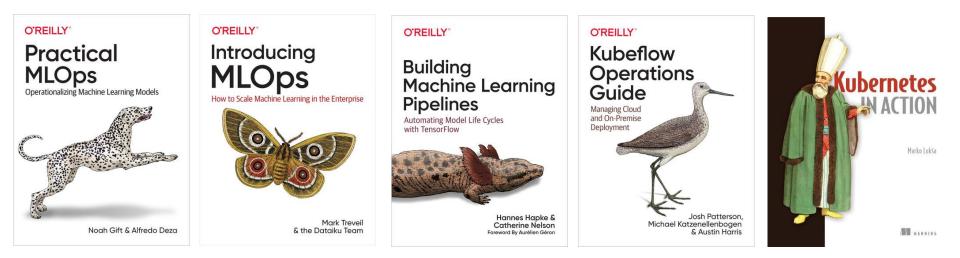
39

Conclusion

	Development ML	Production ML
Objective	High-accuracy model	Efficiency of the overall system
Dataset	Fixed	Evolving
Code quality	Secondary importance	Critical
Model training	Optimal tuning	Fast turn-arounds
Reproducibility	Secondary importance	Critical
Traceability	Secondary importance	Critical

I do hope the presented MLOps concepts will allow your models to transition From Good to Great

Resources



Machine Learning Engineering for Production (MLOps) Specialization

