
Ivan Donchev Kabadzhov
09/03/2023

14th Inverted CERN School of Computing (2023)

CPU Performance Profiling
on Linux in the HEP Context

1

Goals of this lecture

● Familiarize with several common
performance bottlenecks - e.g.
core bound, memory bound, etc.

● Use performance analysis tools to
identify hotspots:
○ perf stat
○ perf record
○ perf report

● Interpret CPU flame graphs

2

Introduction

3

Motivation

● Problem: If experiments preserve
their computing models, they will be
very soon CPU bound

● Finding performance bottlenecks is
usually difficult:
○ Complicated CPU architectures
○ Overhead from measurements
○ Missing symbols and stack frames
○ Concurrency issues

4

“Fast tools don’t just allow users to accomplish tasks faster; they allow
users to accomplish entirely new types of tasks, in entirely new ways” [src]

https://link.springer.com/article/10.1007/s41781-021-00078-8
https://blog.nelhage.com/post/reflections-on-performance/

Performance Analysis Processes

● System Level:
○ Kernel
○ Disk
○ Network

● Application Level:
○ CPU Utilization
○ Algorithmic complexity

● Hardware Level:
○ Cache misses
○ Branch mispredictions
○ Data dependencies

5

https://www.brendangregg.com/linuxperf.html

Pipeline of the CPU

6

● Front end:
○ fetches instructions from the memory
○ decodes them into microoperations (μops)

● Back end (execution engine):
○ Reorder buffer:

■ stores the the μops until they retire
■ allocates and renames registers

○ Scheduler:
■ queues the μops until all their source

operands are ready → dispatches
them through an execution port

https://uops.info/background.html

Common Problems in the Pipeline

7

● Front end:
○ Code Duplication
○ Code Layout (Locality)
○ Frequent Branching

● Back end (execution engine):
○ Core Bound:

■ Data Dependencies
■ Divisions and Special Functions

○ Memory Bound
■ False Sharing
■ Scattered Memory Accessing

https://uops.info/background.html

Top-down Microarchitecture Analysis

8

● During any cycle, a pipeline slot can either be empty or filled with a uOp.
● If a slot is empty during one clock cycle ⇒ attribute this to a stall ⇒ check

if the stall is due to Front-end or Back-end
○ Front-end’s inability to fill the slot with a uOp ⇔ Front-End Bound
○ Back-end is not ready to handle Front-end’s uOp ⇔ Back-End Bound

● If the processor is not stalled then a pipeline slot will be filled with a uOp
at the allocation point
○ If the uOp eventually retires ⇔ Retiring
○ If it does not retire ⇔ an incorrect branch prediction by the Front-end

or a clearing event, i.e. pipeline flush ⇔ Bad Speculation

Top-down Microarchitecture Analysis

9

https://easyperf.net/blog/2019/02/09/Top-Down-performance-analysis-methodology

CPU Performance Profiling

10

Stack Traces

11

Code path snapshot, e.g. from gdb (C++) and pdb (Python)

$ gdb ./exec

>>> bt

#0 c () at test.cpp:4

#1 0x30d9 in b () at f.cpp:8

#2 0x30e9 in a () at g.cpp:12

#3 0x3104 in main () at M.cpp:16

C++ $ python -m pdb test.py

(Pdb) where

 t.py(12)<module>()

-> a()

 t.py(9)a()

-> return b() …

Idea of CPU Profiling

12

Record stacks at a timed interval

● Pros: Low (deterministic) overhead
● Cons: Coarse accuracy, but usually efficient

https://www.brendangregg.com/Slides/JavaOne2016_JavaFlameGraphs/

Perf

13

● Is the de-facto-standard profiling infrastructure on Linux
● Provides access to performance data including operating system software

events and hardware performance events
● Supports counting, sampling (and also tracing) mode
● Includes tools to collect, display and analyze performance data
● Answers the questions:

○ Which parts of the program take the most execution time?
○ Do software or hardware events indicate an actual performance issue?
○ Which code-paths are causing CPU level 2 cache misses?
○ Are the CPUs stalled on memory I/O?

● But does not answer the question: How to fix the performance issue?

https://github.com/brendangregg/perf-tools

Perf

14

$ perf

usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

The most commonly used perf commands are:

 diff Read perf.data files and display the differential profile

 list List all symbolic event types

 record Run a command and record its profile into perf.data

 report Read perf.data (created by perf record) and display the profile

script Read perf.data (created by perf record) and display trace output

 stat Run a command and gather performance counter statistics

See 'perf help COMMAND' for more information on a specific command.

Cherry-picked some interesting (for this presentation) perf tools:

perf_events

15

● perf_events instruments "events", which are a unified interface for different
kernel instrumentation frameworks. Events can be collected, include
timestamps, code paths, etc. The types of events include:
○ Hardware Events: CPU performance monitoring counters. For instance:

■ cpu-cycles
■ cache-references, cache-misses
■ branch-misses

○ Software Events: These are low level events based on kernel counters
■ page-faults
■ context-switches

● See all perf_events with perf list and enable them with -e

Cookbook for Profiling

16

1. perf stat - Check the rate of events to roughly estimate the volume of
data you will be capturing

2. perf record - Run the program and collect profile data

3. perf report - Analyze the data and display the profile

Sidebar: Program under investigation

17

● We will go through a simple (C++ compiled) HEP analysis in RDF
● Basic idea: We have a columnar data in a ROOT file. We will be filtering data

based on some interesting events and create new columns.
● Functionality: Plot the pt of the tri-jet system with mass closest to 172.5 GeV,

and the leading b-tag discriminator among the 3 jets in the triplet [requires
looping on combination of objects in the same collection, and extracting
properties of a combination other than the key used to sort them] (src,
benchmark 6)

● The exact example is at https://github.com/ikabadzhov/iCSC-Profiling

https://github.com/root-project/opendata-benchmarks
https://github.com/ikabadzhov/iCSC-Profiling

perf stat

18

● Often used to get initial clue on the application under investigation
● Can also bind this tool to a specific process or thread (-p/-t)
● Can collect samples from specific set of CPUs only (-C)
● Can measure a specific set of interesting events/metrics (-e/-M)

$ perf stat -r3 ./rdf args # -r3 => 3 runs, get deviations as well (superior to time)

 Performance counter stats for './rdf args' (3 runs):

 37480.10 msec task-clock # 1.002 CPUs utilized (+- 0.14%)

 139 context-switches # 3.717 /sec (+- 10.86%)

 7 cpu-migrations # 0.187 /sec (+- 17.17%)

 335844 page-faults # 8.982 K/sec (+- 7.03%)

 167819805846 cycles # 4.488 GHz (+- 0.15%)

 346334459275 instructions # 2.07 insn per cycle (+- 0.04%)

 55620973671 branches # 1.488 G/sec (+- 0.05%)

 1155592432 branch-misses # 2.08% of all branches (+- 0.13%)

 37.3921 +- 0.0525 seconds time elapsed (+- 0.14%)

perf stat -M TopdownL1 (Intel only)

19

$ perf stat -M TopdownL1 ./rdf args # alternatively `--topdown -a`
 Performance counter stats for './rdf original input/ 30':

 6938004364 INT_MISC.RECOVERY_CYCLES # 0.16 Bad_Speculation (49.99%)
 168185520160 CPU_CLK_UNHALTED.THREAD # 0.50 Retiring (49.99%)
 338892912067 UOPS_RETIRED.RETIRE_SLOTS (49.99%)
 415591157317 UOPS_ISSUED.ANY (49.99%)
 78717271802 IDQ_UOPS_NOT_DELIVERED.CORE # 0.12 Frontend_Bound
 # 0.22 Backend_Bound (50.02%)
 7070038631 INT_MISC.RECOVERY_CYCLES (50.02%)
 168136953070 CPU_CLK_UNHALTED.THREAD (50.02%)
 415194423171 UOPS_ISSUED.ANY (50.02%)

 37.586720560 seconds time elapsed

 36.663338000 seconds user
 0.894419000 seconds sys

 53,331883054 seconds time elapsed

perf record

20

● --call-graph=fp - uses frame pointers (and is the default)
● --call-graph=dwarf - records (user) stack dump (a small study on it)
● -F99 - profiling frequency (in Hertz)
● Can also bind this tool to a specific process or thread (-p/-t)
● Can collect samples from specific set of CPUs only (-C)
● Can collect samples from a specific event, default is cycles (-e)

$ perf record -g -o df.data --call-graph=fp -F99 ./df args

[perf record: Woken up 165 times to write data]

[perf record: Captured and wrote 42.086 MB original.data (5201 samples)]

https://trofi.github.io/posts/215-perf-and-dwarf-and-fork.html

perf report

21

Caveat: Read only .data files from the same machine
$ $ perf report -i original.data --stdio | awk '(NR >= 4 && NR <= 9) || (NR >= 12 && NR <= 20)'
Total Lost Samples: 0
#
Samples: 5K of event 'cycles:u'
Event count (approx.): 193410341416
#
Children Self Command Shared Object Symbol
 97.32% 0.00% rdf libROOTDataFrame.so [.]
ROOT::Detail::RDF::RLoopManager::Run
 |
 ---ROOT::Detail::RDF::RLoopManager::Run
 ROOT::Detail::RDF::RLoopManager::RunTreeReader
 |
 |--96.55%--ROOT::Detail::RDF::RLoopManager::RunAndCheckFilters
 | |
 | |--91.87%--Run (inlined)
 | | ?? (inlined)

Usually, more useful not to pass --stdio, see next slide

perf report

22

● Expand/Collapse (`+`/`-`/`e`)
● Filter symbol by name (`/`)
● Can show actual functions

and instructions in the object
code (annotate). Press `a` in
the report

● And a lot more (see with `h`)

● `H` → go the hottest instruction
● `tab` → go to the next hottest

Problems of the perf report

23

● Sometimes hard to
make sense from the
output

● Broken stack frames

[unknown]

?? (inlined)

??

https://www.brendangregg.com/Slides/JavaOne2016_JavaFlameGraphs/

Solution 1: Fixing broken frames

24

● If working on a remote machine ⇒ ask admins for more access privileges!
● C++:

○ Compile the software with: -O2 -g -fno-omit-frame-pointer
○ Inlined frames are okay, they were likely optimized from -O2
○ When relying on (external) frameworks → build them from source
○ Enable debugging information for glibc (src, but use with care!)

LD_LIBRARY_PATH=/usr/lib/debug
● Python (>=3.12, since 2022):

○ Need to tell Python that profiling support is enabled, 2 ways:
○ Set an environment variable PYTHONPERFSUPPORT=1
○ Use the -X perf option, i.e. python -X perf script.py

https://www.gnu.org/software/hurd/faq/debugging_inside_glibc.html
https://www.hpc.dtu.dk/?page_id=1180
https://docs.python.org/pt-br/dev/howto/perf_profiling.html

Solution 2: Flame Graphs

25

● Visualizes a collection of stack traces:
○ Top edges - who is running on-CPU
○ Width - number of samples
○ Top-down - call stack
○ Custom color codes, i.e. Java colors:

■ Red - user level
■ Orange - kernel
■ Yellow - C++

● Get stackcollapse-perf.pl and flamegraph.pl from here and then:

$ perf script -i original.data | ./stackcollapse-perf.pl | \

 ./flamegraph.pl -w 1500 --colors java > original.svg

https://www.brendangregg.com/Slides/JavaOne2016_JavaFlameGraphs/
https://www.brendangregg.com/blog/2017-07-30/coloring-flamegraphs-code-type.html
https://github.com/brendangregg/FlameGraph

Solution 2: Flame Graphs

26

(RDF specific)
decompression
⇒ disregard

Search

search for a
function name
(or via ctrl+f)

I/O

~30% of all
samples
were here

Function: original_find_trijet (52,598,984,053 samples, 31.19%)

decompression ...
the x-axis does not
represent time! e.g.
this is not in the end

Optimization

27

Understanding “What is Going On”

28

... original_find_trijet(Vec<XYZTVector> &jets) {

 const auto c = ROOT::VecOps::Combinations(jets, 3);

 float distance = 1e9; const auto top_mass = 172.5;

 for (auto i = 0u; i < c[0].size(); i++) {

 auto p1 = jets[c[0][i]];

 auto p2 = jets[c[1][i]];

 auto p3 = jets[c[2][i]];

 const auto tmp_mass = (p1 + p2 + p3).mass();

 const auto tmp_distance = std::abs(tmp_mass -

top_mass);

 if (tmp_distance < distance) {

 distance = tmp_distance; idx = i;

 }}

 return {c[0][idx], c[1][idx], c[2][idx]};}

● The Combinations function
returns the indices that
represent all unique
combinations of elements, i.e.:
v=RVecD{-0.5,3.14,42.};
Combinations(v,2);
⇒ {{0,0,1}, {1,2,2}}

● Do we need to create a
2-dimensional vector to
represent all combinations?

https://root.cern/doc/master/group__vecops.html#ga134d68284fca51f3460c8c3c508ad351

Understanding “What is Going On”

29

... original_find_trijet(Vec<XYZTVector> &jets) {

 const auto c = ROOT::VecOps::Combinations(jets, 3);

 float distance = 1e9; const auto top_mass = 172.5;

 for (auto i = 0u; i < c[0].size(); i++) {

 auto p1 = jets[c[0][i]];

 auto p2 = jets[c[1][i]];

 auto p3 = jets[c[2][i]];

 const auto tmp_mass = (p1 + p2 + p3).mass();

 const auto tmp_distance = std::abs(tmp_mass -

top_mass);

 if (tmp_distance < distance) {

 distance = tmp_distance; idx = i;

 }}

 return {c[0][idx], c[1][idx], c[2][idx]};}

So many `-e instructions` !

Improved Version

30

... direct_find_trijet(Vec<XYZTVector> &jets) {

 float distance = 1e9; const auto top_mass = 172.5;

 std::size_t idx1 = 0, idx2 = 1, idx3 = 2;

 const auto n_jets = jets.size();

 for (std::size_t i = 0; i < n_jets - 2; i++) {

 auto p1 = jets[i];

 for (std::size_t j = i + 1; j < n_jets - 1; j++) {

 auto p2 = jets[j];

 for (std::size_t k = j + 1; k < n_jets; k++) {

 auto p3 = jets[k];

 const auto tmp_mass = (p1 + p2 + p3).mass();

 const auto tmp_distance = std::abs(tmp_mass - top_mass);

 if (tmp_distance < distance) {

 distance = tmp_distance; idx1 = i; idx2 = j; idx3 = k;

 }}}} return {idx1, idx2, idx3}; }

● No need to allocate
extra memory to
store combinations

● Sequential memory
access only

Warning! Ensure that the
optimized code is correct!

Flame Graph of the Improved Version

31
Function: direct_find_trijet (19,244,401,542 samples, 14.55%)

Takeaways:

32

● You should not guess why the execution of a program is slow

● Instead make use of profiling tools to understand why the program is slow

● In particular, you should now know how to analyze performance with:

○ perf stat

○ perf record/report

○ Flame graphs

● Man pages are your best friends: perf, perf stat, perf record, perf report

● Last but not least, another very power profiling tool is VTune (Intel only)

https://man7.org/linux/man-pages/man1/perf.1.html
https://man7.org/linux/man-pages/man1/perf-stat.1.html
https://man7.org/linux/man-pages/man1/perf-record.1.html
https://man7.org/linux/man-pages/man1/perf-report.1.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html#gs.phlyp7

References and Very Useful Links

33

● Perf examples - https://www.brendangregg.com/perf.html
● Some presentations and articles on the perf profiling topic:

○ https://indico.cern.ch/event/1177921/
○ https://files.gotocon.com/uploads/slides/conference_60/2394/original

/YOW2022_flame_graphs.pdf
○ http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/
○ https://easyperf.net/categories/#performance%20analysis

● Intel’s Top-down Microarchitecture Analysis Cookbook -
https://www.intel.com/content/www/us/en/develop/documentation/vtun
e-cookbook/top/methodologies/top-down-microarchitecture-analysis-met
hod.html

● To go through the example - https://github.com/ikabadzhov/iCSC-Profiling

https://www.brendangregg.com/perf.html
https://indico.cern.ch/event/1177921/
https://files.gotocon.com/uploads/slides/conference_60/2394/original/YOW2022_flame_graphs.pdf
https://files.gotocon.com/uploads/slides/conference_60/2394/original/YOW2022_flame_graphs.pdf
http://sandsoftwaresound.net/perf/perf-tutorial-hot-spots/
https://easyperf.net/categories/#performance%20analysis
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-cookbook/top/methodologies/top-down-microarchitecture-analysis-method.html
https://github.com/ikabadzhov/iCSC-Profiling

And sincere thanks to
Guilherme Amadio

&
Enrico Guiraud

for their guidance
&

Giovanna Lazzari Miotto
for her help producing the benchmarks 34

Questions?

35

Backup Slides

36

Use Case: Version Differences

37

● General workflow:
○ Code → Debug → Code → Measure/Profile
○ Optimize → Debug → Optimize → Measure/Profile

● Want to check how the new performance profile compare to the old one
○ Poor man’s solution: read reports and flame graphs from different tabs
○ perf diff - Display a differential profile (similar to perf report)
○ Differential flamegraphs (src):

■ Red - more samples (color intensity - degree of difference)
■ Blue - less samples (color intensity - degree of difference)

$ perf script -i original.data | ./stackcollapse-perf.pl > out.folded1

$ perf script -i direct.data | ./stackcollapse-perf.pl > out.folded2

$./difffolded.pl out.folded1 out.folded2 | ./flamegraph.pl -w 1500 > d.svg

https://www.brendangregg.com/blog/2014-11-09/differential-flame-graphs.html

Another Direction of Optimization

38

● A “classical example” in profiling is matrix multiplication
● It is very important the understand the memory access of the program and

choose the optimal one

● In the original case, using Combinations, recall that:
v=RVecD{-0.5,3.14,42.};
Combinations(v,2);
⇒ {{0,0,1}, {1,2,2}}

● What would be the implications, if the returned result is instead:
{{0,1}, {0,2}, {1,2}}?

● You can try it out on github - see transposed_find_trijet!

https://github.com/ikabadzhov/iCSC-Profiling/blob/main/rdf.cpp#L104-L124

Digging the Example Further

39

● It easy to see that the initial version of the find_trijet has complexity:
○ O(N^3) time (it is precisely N choose K=3, convince yourself why)
○ O(N^3) space (same reasoning as above)

● It is also easy to see that the latter version has complexity:
○ O(N^3) time (still brute-force go through all combinations)
○ O(1) space (no extra space allocations!)

● In particular, the underlying problem in find_trijet is to find a combination of 3
distinct elements of the input vector, so that the mass of the sum has a value
closest to a const value ⇒ version of the 3Sum Closest problem (O(N^2) time)

● However, I could not make the solution of the latter problem work here, since
p1.mass() + p2.mass() is different than (p1 + p2).mass()! Think why it matters!

https://leetcode.com/problems/3sum-closest/
https://github.com/ikabadzhov/iCSC-Profiling/blob/main/rdf.cpp#L158-L190

Digging the Example Further

40

... nsquare_find_trijet(Vec<XYZTVector> &jets) {
 float distance = 1e9; const auto top_mass = 172.5;
 std::size_t idx1 = 0, idx2 = 1, idx3 = 2;
 ROOT::RVec<std::size_t> inds(jets.size()); std::iota(inds.begin(), inds.end(), 0);
 std::sort(inds.begin(), inds.end(), [&jets](const auto &a, const auto &b) {
 return jets[a].mass() < jets[b].mass(); });
 for (std::size_t i = 0; i <= jets.size() - 2; ++i) {
 std::size_t j = i + 1, k = jets.size() - 1;
 while (j < k) {
 const auto tmp_mass = (jets[inds[i]] + jets[inds[j]] + jets[inds[k]]).mass();
 if (tmp_mass == top_mass)
 return {inds[i], inds[j], inds[k]};
 const auto tmp_distance = std::abs(tmp_mass - top_mass);
 if (tmp_distance < distance) {
 distance = tmp_distance; idx1 = inds[i]; idx2 = inds[j]; idx3 = inds[k]; }
 if (tmp_mass < top_mass) ++j;
 else --k;
 }}
 return {idx1, idx2, idx3}; }

ROOT/RDF Jitted Code

41

ROOT/RDF (see this): Extra complication - JIT-ting!

On top of the regular set of actions to profile, need
all steps below:

● Build ROOT from source with extra flags to
read jitted symbols

● Add extra Perf permissions
(kernel.perf_event_paranoid=-1)

● Set environment variable CLING_PROFILE=1
● Demangle the jitted symbols in the produced

.data file Flame graph by: Guilherme Amadio

https://github.com/giulio-crognaletti/Profiling-RDF

