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Introduction

Introduction

Many advances in Deep Learning, deployed in real-life settings

Safety-Critical domains requires reliable uncertainty estimates

1 :
1Jakob Gawlikowski et al. A survey of uncertainty in deep neural networks. 2021.
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Recap on Neural Network training from a probabilistic perspective

Introduction to uncertainty

Introduction to Bayesian Neural Network

Introduction to Variational Inference

Examples and other approaches to uncertainty quantification
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Introduction

Recap on Neural Network

Given a dataset: D = {(xi, yi)}Ni=1 of input-output pairs

We define a parametric function (aka a Neural Net) ŷ ≡ f(x;w) for
describing D

Problem: how to chose w so that ŷi(xi) is close to yi for all
input-output pairs of D?
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Introduction

Neural Networks Training

Introduce a loss function L(y; ŷ) and minimize it:

ŵ = argmin
w
L(y; ŷ) (1)

A common choice for regression is the sum of squared error:

L(w) =

N∑
i=1

(yi − f(xi;w))2 (2)

To control over-fitting add a regularization term:

ŵ = argmin
w

[
N∑
i=1

L(yi; ŷi) + λ|w|α2

]
(3)

Setting α = 2 leads to the L2 or Ridge regularization, α = 1 to L1
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Introduction

Neural Networks Training: Probabilistic perspective

We may explicitly model the aleatoric noise ϵ inherent to the data

y(x) = f(x;w) + ϵ(x) (4)

One common assumption is gaussian noise ϵ(x) = N (0, σ2)

The loss function is viewed as the negative log likelihood p(D|w, I):

Under the assumption of i.i.d. additive gaussian noise the likelihood
and the loss function are :

p(Y |X,w, σ2) =

N∏
i=1

N (yi|f(xi;w), σ2) (5)

L(w) =
1

2σ2

N∑
i=1

(yi − f(xi;w))2 + const. (6)
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Introduction

Neural Networks Training: Probabilistic perspective II

Similarly, the regularizer is interpreted as a log-prior probability
distribution over the models’ parameters p(w|I).
Using Bayes Theorem we obtain the posterior distribution over the
parameters:

p(w|D, I) = p(D|w, I)p(w|I)
p(D)

(7)

The optimal ŵ is obtained by maximizing the log posterior :

ŵMAP = argmax
w

[log(p(D|w, I)) + log(p(w|I)) + const.] (8)

The adoption of a normal distribution as prior recovers the L2
regularization term, while a Laplace distribution recovers the L1.
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Introduction

Introduction to Bayesian Neural Networks

At the end of the training we have a point estimate for the
parameters ŵ

Goal: Quantifying uncertainty on the prediction of unseen inputs x∗

Deep Neural Networks do not fully capture uncertainty2 3

We have to take into account the epistemic or model uncertainty
arising from the uncertainty associated to ŵ

When combined with probability theory NN can capture uncertainty in a
principled way: Bayesian Neural Network

2Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. 2016.

3Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective
of generalization. 2020.
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Bayesian methods meet Neural Networks Predictive distribution

Predictive distribution

Bayesian inference starts from a model p(y|x,w, I) and the posterior
p(w|D)
The prediction for a new input x∗ is given by the predictive
distribution:

p(y|x∗,D, I) =
∫

p(y|x∗,w, I)p(w|D)dw (9)

It is a Bayesian model average of many models, weighted by their
posterior probabilities

The non Bayesian predictions are recovered if
p(w|D) ∼ δ(w − ŵMAP)
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Bayesian methods meet Neural Networks Predictive distribution

Predictive distribution II

Eq. (9) is the core of Bayesian NN: marginalize over the posterior
distribution of the weights rather than optimize it!

Problem: It is highly non trivial to evaluate the predictive
distribution

Warning: We need to decouple the epistemic and aleatoric
uncertainty in the predictive distribution

Warning: Small uncertainties do not imply good predictive
performance

To get some insights let’s start from the simplest NN: Linear Regression
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Bayesian methods meet Neural Networks Predictive distribution

Interlude: Linear Regression

Data : y = 1 + x+ x2 and noise N (0, σ2 = 1)

Model: y(x) = w1 + w2x+ w3x
2 = wTϕ(x), homeschedastic

gaussian noise, gaussian prior

Log-posterior of the model:

log(p(w|D)) = 1

2

N∑
i=1

(yi −wTϕ(xi))
2 +

λ

2
wTw; λ = 0.001 (10)

It is possible to show that the predictive distribution is given by4:

p(y|x,D, σ2
P) = N (y|ŵT

MAPϕ(x), σ
2
P) (11)

σ2
P = σ2︸︷︷︸

Aleatoric

+ϕ(x)TSϕ(x)︸ ︷︷ ︸
Epistemic

(12)

4C. Bishop. Pattern Recognition and Machine Learning. 2006.
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Bayesian methods meet Neural Networks Predictive distribution

Interlude: Linear Regression II
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Bayesian methods meet Neural Networks Variational Inference

Evaluating the predictive distribution

P (y|x∗,D) =
∫

p(y|w,x∗)p(w|D)dw (13)

Problem: It is highly non trivial to evaluate the predictive
distribution

Many possible approaches:
MCMC
Laplace approximation
Variational Inference

Variational Inference: Approximate the posterior p(w|D) with a
tractable p.d.f. q(w|θ)

Problem: We need do adjust θ to get the best aproximation
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Bayesian methods meet Neural Networks Variational Inference

Variational Inference I

The objective function for measuring the quality of the approximation
may be derived from the Kullback-Leibler divergence:

KL [q(w|θ)||p(w|D)] =
∫

q(w|θ)log q(w|θ)
p(w|D)

dw

Using Bayes’ theorem p(w|D) = (p(D|w)p(w))/p(D) and
re-arranging the terms we obtain:∫

q(w|θ)logp(D|w)dw − KL [q(w|θ)||p(w)] = log(p(D))− KL [q(w|θ)||p(w|D)]
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Bayesian methods meet Neural Networks Variational Inference

Variational Inference II

∫
q(w|θ)logp(D|w)dw − KL [q(w|θ)||p(w)] = log(p(D))− KL [q(w|θ)||p(w|D)]

The last term is positive and log(p(D)) is constant so:∫
q(w|θ)logp(D|w)dw − KL [q(w|θ)||p(w)] ≤ log(p(D))

The left hand side term will be our objective function, known as
variational free energy or ELBO :

F(θ) = KL [q(w|θ)||p(w)]− Eq(w|θ)[log(p(D|w))]

θ̂ = argmin
θ
F(θ)
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Bayesian methods meet Neural Networks Variational Inference

Variational Inference III

Common choice is a diagonal gaussian distribution as approximant
distribution (Mean Field Approximantion)

Backpropagation-compatible algorithm5

The predictive distribution for a given input x∗ is approximate as:

p(y|x∗) ≈ 1

N

N∑
i=1

p(y|x∗,wi); wi ∼ N (µ,σ) (14)

5Charles Blundell et al. Weight uncertainty in neural network. PMLR, 2015.
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Bayesian methods meet Neural Networks Variational Inference

MC-Dropout

Drop out each hidden unit by sampling from a Bernoulli distribution
N times6 7 :

p(y|x∗) ≈ 1

N

N∑
i=1

p(y|x∗,wi) (15)

Applicable also to Recurrent Neural Networks

6Gal and Ghahramani, Dropout as a bayesian approximation: Representing model uncertainty
in deep learning.

7Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. 2017.
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Bayesian methods meet Neural Networks Variational Inference

Interlude: NN for classification
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Bayesian methods meet Neural Networks Variational Inference

Epistemic and Aleatoric decoupling: Regression

Denoting the predictive distribution as p(y|x,D) and the predictive
variance as Var[y]:

Var[y] = Varp(w|D)[Ep(y|x,w)[y]]︸ ︷︷ ︸
Epistemic

+Ep(w|D)[Varp(y|x,w)[y]]︸ ︷︷ ︸
Aleatoric

(16)

For instance, homoschedastic gaussian noise and MC-dropout:

E[y] ≈ 1

N

N∑
i=1

f(x,wi) (17)

Var[y] ≈ 1

N

N∑
i=1

(f(x,wi)− E[y])2 + σ2 (18)
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Bayesian methods meet Neural Networks Variational Inference

Epistemic and Aleatoric decoupling: Classification

Typically a NN is trained to predictit the posterior distribution over K
exclusive and exaustive classes, trough the softmax activation function

The total uncertainty can be estimated trough the Shannon Entropy:

H[y] =
∑
i

p(yi)ln(p(yi)) (19)

Maximized in case of a flat distribution

It can be decomposed as :

H[p(y|x,D)] = I[y,w|x,D]︸ ︷︷ ︸
Epistemic

+Ep(w|D)[H[p(y|x,w)]]︸ ︷︷ ︸
Aleatoric

(20)

where I[y,w|x,D] is the information gain about the model
parameters
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Bayesian methods meet Neural Networks Variational Inference

Epistemic and Aleatoric decoupling: Classification
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Further topics

Quality estimates

Main idea: compute the predicted confidence interval, and count the
percentage of ground-truth points that fall inside.

For a calibrated model we expect, on average, X% of ground-truth
points falling inside the predicted X% confidence intervals.

For classification compare the predicted probabilities and the
empirical frequency of correct labels.

8

8Gawlikowski et al., A survey of uncertainty in deep neural networks.
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Further topics

Interlude: Active Learning

Deep learning often requires large amounts of labelled data

Train a model by querying as few labelled data as possible

Active Learning:

Label only informative points: epistemic uncertainty (BALD)
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Further topics

Interlude: Active Learning II

Figure: Mean test accuracy and standard deviation on the two moon dataset as a
function of the training size. Results are averaged over multiple training loops.
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Further topics

Further Topics

Deep Ensamble9

MultiSWAG10

Evidential Regression and classification11 12

Conformal prediction13

distribution-free uncertainty quantification method
provides prediction sets with guaranteed frequentist coverage
probability. Even with a completely misspecified models!
cannot distinguish between epistemic and aleatoric uncertainty

9Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. 2017.

10Wilson and Izmailov, Bayesian deep learning and a probabilistic perspective of
generalization.

11Alexander Amini et al. Deep evidential regression. 2020.
12Murat Sensoy, Lance Kaplan, and Melih Kandemir. Evidential deep learning to quantify

classification uncertainty. 2018.
13Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal

prediction and distribution-free uncertainty quantification. 2021.
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Further topics

Further readings

Books:

Information theory, inference and learning algorithms. MacKay, David
JC. Cambridge university press, 2003.
Pattern Recognition and Machine Learning. Christopher M. Bishop.
Springer New York, 2006
Probabilistic machine learning: an introduction. Kevin P. Murphy .MIT
press, 2022.
Probabilistic machine learning: Advanced topics. Kevin P. Murphy.
MIT Press, 2023.

High Energy Physics applications:

Chapter 18 Artificial Intelligence for High Energy Physics. P. Calafiura,
D. Rousseau, K. Terao. WorldScientific 2022
Bollweg, Sven, et al. ”Deep-learning jets with uncertainties and more.”
SciPost Physics 8.1 2020
Araz, Jack Y., and Michael Spannowsky. ”Combine and conquer:
event reconstruction with Bayesian ensemble neural networks.” Journal
of High Energy Physics 2021.4
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Backup: Overconfident classification

From ”Probable Networks and Plausible Predictions - A Review of Practical
Bayesian Methods for Supervised Neural Networks” by David MacKay, 1996
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Backup: Regression

From ”Bayesian Deep Learning and a Probabilistic Perspective of
Generalization” by Andrew Gordon Wilson Pavel Izmailov, 2022
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Bayes by Backprop

For applying back-propagation we have to replace the derivative of an
expectation with the expectation of the derivative

Proposition 1

1 Let ϵ a random variable with p.d.f. q(ϵ) and w = t(θ, ϵ) where t is a
deterministic function

2 Assuming that q(w|θ) is such that q(ϵ)dϵ = q(w|θ)dw
3 Then, for a function f with derivatives in w we have:

∂

∂θ
Eq(w|θ)[f(w, θ)] = Eq(ϵ)

[
∂f(w, θ)

∂w

∂w

∂θ
+

∂f(w, θ)

∂θ

]

Basically, It is a generalization of the ”Reparametrization Trick”
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Gaussian Variational Posterior

Variational posterior is a diagonal gaussian distribution

Parametrization trick: a sample of w is given by a deterministic
function of a random variable: w = t(θ, ϵ) = µ+ log(1 + exp(ρ))ϵ
where: ϵ ∈ N (0, I)

The objective function is: f(w, θ) = logq(w|θ)− log(P (w)P (D|w))

Update variational parameters: µ∗ ← µ− α∆µ ; ρ∗ ← ρ− α∆ρ
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Backup: Reparametrization trick

From ”An Introduction to Variational Autoencoders” by Diederik P. Kingma and
Max Welling, 2019
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