Multi-photon Atom Interferometry via cavity-enhanced Bragg Diffraction

D. O. SABULSKY, FOR THE MIGA CONSORTIUM
LSBB CNRS/UAR 3538

Increasing the sensitivity of atom interferometry:

why and how?

Why?

Further development of quantum technologies and fundamental physics experiments based on cold atoms.

Improving the sensitivity of atom interferometry for:

EP and general relatively tests

Tests of gravity and quantum gravity

<u>Limits on Dark matter and energy theories</u>

Observation of Lense-Thirring effect?

Prospective gravitation wave detectors

How?

Increase the space-time area of the interferometer with scalable techniques.

In essence, we increase the space time area of the interferometer (on the order of cm²):

How to improve the scale factor?

T or momentum.

More generally:

Sensitivity	Noise	Systematics
Large momentum transfer atom optics	Spin squeezing	Multiple atomic isotopes / species
Ultracold samples / continuous cooling	Spin entanglement	Measurement correlation
Bright atomic flux	Non-demolition	-

A marginally stable cavity for multi-photon interactions

Marginally stable? Do you mean semi-degenerate?

Why bother with this complication?

1. Optical gain can be significant – relaxes power requirements for Bragg diffraction

Stability diagram for a two curved mirrors optical cavity

- 2. Centimetric beam diameter for 1 m cavity
- 3. Propagates any beam shape that is injected, like a flat top!

arXiv: 2009.00941

Radius of Curvature for a symmetric two mirror cavity as a function of distance between mirrors

$$G = \frac{r_2(1 - r_1^2)(1 - r_L^2)}{[1 - r_1r_2(1 - r_L^2)]^2}.$$

$$\mathcal{F} = \frac{\pi\sqrt{r_1r_2(1 - r_L^2)}}{1 - r_1r_2(1 - r_L^2)}.$$

$$\mathcal{F} = \frac{\pi \sqrt{r_1 r_2 (1 - r_L^2)}}{1 - r_1 r_2 (1 - r_L^2)}$$

Theory (and hopes): arXiv: 1701.01473

Experiment (in UHV):

How it started:

Astigmatism, elliptical mode, due to lens and injected beam not centered

Reduced astigmatism, elliptical mode

Ring mode, red arrow: clipping by piezo-stack @ diameter of 19 mm.

Eventually: Resonant mode,

The hope:

How does it work?

The cavity-enhanced Bragg diffraction bench

Diffraction and interference

Demonstrating inertial sensitivity

We tried:

- Scanning the piezo (kind of worked)

We considered:

-An EOM for two frequency Bragg

We ended up:

-Tilting the entire experiment

How?

The experiment rests on a multiton concrete block on compressed air active-vibration isolation...

Literally (small angle):

Tilt tests

I. Spectroscopic data

II. Interferometer data

III. Inclinometer data

<<All match>>

Spectroscopic shift matches interferometer cantilever effect across diffraction orders

Comparing multiple beam sizes over multiple tilts, we find **no deviation** from the expected linear scale factor increase

A curious phenomena is observed

More application to atom interferometry via enhancing Bragg diffraction.

This theoretical plot implies:

0.00

Radius, r [m]

0.01

0.02

As we scan the laser frequency through the cavity resonance, we observe a *spatial* variation of the beam.

It is a ring mode, whose position of maximal intensity is controllable.

As it so happens, we observed this in the lab for some time...

Does it work for interferometry?

(...yes.)

...but there's more!

Scanned Cavity Interferometry

We apply:

- a linear frequency sweep
- a Gaussian amplitude modulation

We observe:

30

Interferometer time, T^2 [ms²]

 a large increase in spatial selectivity, more atoms participate

20

10

Unexpected coherence!

50

In summary

- Working toward LMT atom optics for μrad sensitivity in a horizontal configuration
- Used a marginally stable resonator for cavity-enhanced Bragg diffraction
- Multi-photon exchange and interference observed
- Applicability to inertial sensors demonstrated

- Construction of MIGA ongoing!

Message from the Director of LSBB

The LSBB is *open to collaborations* and to hosting any project that respects the low noise environment.

This includes seismic, chemical, electromagnetic, thermal, and radiative (pending the depth) studies.

Contact can be made via:

direction@lsbb.eu

