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Very long-baseline atom interferometers would be excellent accelerometers, 
ULDM sensors, mid-frequency GW detectors and more!

LISA LIGO

Complication: Since they are excellent sensors, atom gradiometers are 

sensitive to MANY small effects.

Implication: The sensitivity to time-dependent effects is limited by 

time-dependent noise sources
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Gravity gradient noise (GGN)
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Mass density fluctuations induce time-dependent accelerations on the atoms → 
time-dependent phase shift → time-dependent noise 

Vertical displacement at 
the surface

Horizontal speed of propagation
SITE-DEPENDENT
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Mass density fluctuations induce time-dependent accelerations on the atoms → 
time-dependent noise 

GWScalar ULDM
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GGN-limited projections (100 m baseline)
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Mass density fluctuations induce time-dependent accelerations on the atoms → 
time-dependent noise 

Significant loss of 
sensitivity in the 
target frequency 

range!

What simple solutions could we employ to mitigate the GGN floor?

Scalar ULDM GW
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𝛿φ= 1e-5 1/√Hz
N = 1e10
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Solution 1: Choosing quiet sites (100 m baseline)

Select sites as close as possible to the NLNM line

O(103) difference 
between NHNM 
and NLNM curves

Scalar ULDM GW

T = 1.4 s, 
n = 5494, 
Δx = 50 m, 
𝛿φ= 1e-5 1/√Hz
N = 1e10
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Solution 2: Adjusting T and Δz (GW)
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Solution 2: Adjusting T and Δz (GW)

Max T

1-2 orders of magnitude loss in 
sensitivity 

Better suppression of GGN!Choose large T and position the experiments away from the surface

GW
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Solution 2: Adjusting T and Δz (ULDM)

AIO
N paper

Better suppression of GGN!1-2 orders of magnitude loss in 
sensitivity 

M
ax T

Choose large T and position the AIs away from the surface
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Solution 3: selecting sites with high cH

L = 1 km
T = 1.7 s, 

n = 2500, 
Δx = 970 m, 

𝛿φ= 1e-5 1/√Hz
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Solution 3: selecting sites with high cH

Geological strata with high 
Rayleigh wave propagation speed 
can effectively suppress GGN!
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L = 1 km
T = 1.7 s, 

n = 2500, 
Δx = 970 m, 

𝛿φ= 1e-5 1/√Hz

Choose sites with high Rayleigh wave propagation speed 



Solution 4: implementing multigradiometer configurations
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We can benefit from probing different length scales



Solution 4: implementing multigradiometer configurations
 

g

Example configurations

NHNM

L = 1 km
T = 1.7 s, 
n = 2500, 
𝛿φ= 1e-5 1/√Hz
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Solution 4: implementing multigradiometer configurations
 

2 to 3 equally-spaced 
interferometers

Almost an order of magnitude 
sensitivity improvement between 

0.1 Hz and 1 Hz! 

g

Example configurations

L = 1 km
T = 1.7 s, 
n = 2500, 
𝛿φ= 1e-5 1/√Hz

NHNM
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Solution 4: implementing multigradiometer configurations

 

The gain from adding more than 3 interferometers is less dramatic

~1/√N enhancement

NHNM

L = 1 km
T = 1.7 s, 
n = 2500, 
𝛿φ= 1e-5 1/√Hz
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A longer decay length renders the multi-gradiometer set-up less useful

Solution 4: implementing multigradiometer configurations

L = 1 km
T = 1.7 s, 
n = 2500, 
𝛿φ= 1e-5 1/√Hz NHNM
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Longer decay length renders the multi-gradiometer set-up less useful

Solution 4: implementing multigradiometer configurations

A multigradiometer configuration may be useful in strata with low cH 

L = 1 km
T = 1.7 s, 
n = 2500, 
𝛿φ= 1e-5 1/√Hz NHNM
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Very long-baseline atom gradiometers will be excellent accelerometers, ULDM sensors, 
mid-frequency GW detectors and more!

The sensitivity of terrestrial long-baseline experiments at low-frequencies is limited  by 
GGN.

Can regain sensitivity in the frequency window (0.1-10 Hz) by:

1. Choosing quiet sites
2. Selecting optimised sequence parameters
3. Selecting sites with high Rayleigh wave propagation speeds
4. Employing a multigradiometer configuration

Future work: Mitigation of GGN through active noise-filtering techniques (seismometer 
array), multi-strata models (Rayleigh overtones).


