

Battling Gravity Gradient Noise in ULDM and GW searches with Vertical Atom Gradiometry

Leonardo Badurina

Based on

PHYSICAL REVIEW D 107, 055002 (2023)

Ultralight dark matter searches at the sub-Hz frontier with atom multigradiometry

Leonardo Badurina[®], ^{1,*} Valerie Gibson[®], ² Christopher McCabe[®], ¹ and Jeremiah Mitchell[®]

¹Theoretical Particle Physics and Cosmology Group, Department of Physics,
King's College London, Strand, London WC2R 2LS, United Kingdom

²Cavendish Laboratory, Department of Physics, University of Cambridge,
Cambridge CB3 OHE, United Kingdom

(Received 13 November 2022; accepted 10 February 2023; published 3 March 2023)

Terrestrial Very Long-Baseline Atom Interferometry Workshop, March 14 2023

Very long-baseline atom gradiometers would be excellent accelerometers, mid-frequency GW detectors, ULDM sensors and more!

GW characteristic strain

Very long-baseline atom gradiometers would be excellent accelerometers, mid-frequency GW detectors, ULDM sensors and more!

GW characteristic strain

Very long-baseline atom gradiometers would be excellent accelerometers, mid-frequency GW detectors, ULDM sensors and more!

Scalar ULDM

Vector ULDM (coupled to B-L current)

Very long-baseline atom gradiometers would be excellent accelerometers, mid-frequency GW detectors, ULDM sensors and more!

(coupled to B-L current)

Aside: theory space for linearly-coupled scalar ULDM

Aside: theory space for linearly-coupled scalar ULDM

Aside: theory space for linearly-coupled scalar ULDM

Aside: constraints on linearly-coupled scalar ULDM

Aside: projected constraints

Aside: projected constraints

Mass density fluctuations induce time-dependent accelerations on the <u>atoms</u> \rightarrow time-dependent phase shift \rightarrow time-dependent noise

Mass density fluctuations induce time-dependent accelerations on the <u>atoms</u> \rightarrow time-dependent phase shift \rightarrow time-dependent noise

$$egin{align} \overline{\Phi}_{
m GGN} &= \left| ilde{A} e^{-qz_0/\lambda_{
m GGN}} + ilde{B} e^{-z_0/\lambda_{
m GGN}}
ight| \xi_V \ \widetilde{A}, -\widetilde{B} \propto rac{\sin \left(rac{\omega T}{2}
ight)^2}{\omega^2} \end{aligned}$$

<u>Assumptions</u>: Isotropic sourcing around the shaft, single geological layer (so only fundamental Rayleigh mode)

Mass density fluctuations induce time-dependent accelerations on the <u>atoms</u> \rightarrow time-dependent phase shift \rightarrow time-dependent noise

<u>Assumptions</u>: Isotropic sourcing around the shaft, single geological layer (so only fundamental Rayleigh mode)

Mass density fluctuations induce time-dependent accelerations on the <u>atoms</u> \rightarrow time-dependent phase shift \rightarrow time-dependent noise

GGN-limited projections (100 m baseline)

Mass density fluctuations induce time-dependent accelerations on the atoms \rightarrow time-dependent noise

GGN-limited projections (100 m baseline)

Mass density fluctuations induce time-dependent accelerations on the atoms \rightarrow time-dependent noise

GGN-limited projections (100 m baseline)

Solution 1: Choosing quiet sites (100 m baseline)

Solution 1: Choosing quiet sites (100 m baseline)

Select sites as close as possible to the NLNM line

1-2 orders of magnitude loss in sensitivity

1-2 orders of magnitude loss in sensitivity

Better suppression of GGN!

Choose large T and position the experiments away from the surface

1-2 orders of magnitude loss in sensitivity

Better suppression of GGN!

Choose large T and position the AIs away from the surface

$$\lambda_{
m GGN} = rac{c_H}{\omega_a} \simeq 100 \ {
m m} igg(rac{250 \ {
m m \ s^{-1}}}{c_H}igg)^{-1} igg(rac{2.5 \ {
m Hz}}{\omega}igg) \ \lambda_{
m GGN} \gg \Delta z \ \omega \ll \pi/T$$

$$\lambda_{
m GGN} = rac{c_H}{\omega_a} \simeq 100~{
m m} igg(rac{250~{
m m~s}^{-1}}{c_H}igg)^{-1} igg(rac{2.5~{
m Hz}}{\omega}igg) \ \lambda_{
m GGN} \gg \Delta z \ \omega \ll \pi/T \ ar{\Phi}_{
m GGN} \propto rac{\Delta z}{\lambda_{
m GGN}} \propto rac{1}{c_H}$$

$$\lambda_{
m GGN} = rac{c_H}{\omega_a} \simeq 100 \ {
m m} igg(rac{250 \ {
m m \ s}^{-1}}{c_H}igg)^{-1} igg(rac{2.5 \ {
m Hz}}{\omega}igg) \ \lambda_{
m GGN} \gg \Delta z \ \omega \ll \pi/T \ ar{\Phi}_{
m GGN} \propto rac{\Delta z}{\lambda_{
m GGN}} \propto rac{1}{c_H}$$

Geological strata with high Rayleigh wave propagation speed can effectively suppress GGN!

$$\lambda_{
m GGN} = rac{c_H}{\omega_a} \simeq 100 \ {
m m} igg(rac{250 \ {
m m \ s^{-1}}}{c_H}igg)^{-1} igg(rac{2.5 \ {
m Hz}}{\omega}igg) \ \lambda_{
m GGN} \gg \Delta z \ \omega \ll \pi/T \ ar{\Phi}_{
m GGN} \propto rac{\Delta z}{\lambda_{
m GGN}} \propto rac{1}{c_H}$$

Geological strata with high Rayleigh wave propagation speed can effectively suppress GGN!

Choose sites with high Rayleigh wave propagation speed

Solution 4: implementing multigradiometer configurations

We can benefit from probing different length scales

Example configurations

2 to 3 equally-spaced interferometers

Almost an order of magnitude sensitivity improvement between 0.1 Hz and 1 Hz!

$$\lambda_{
m GGN} = rac{c_H}{\omega_a} \simeq 100 \ {
m m} igg(rac{250 \ {
m m \ s^{-1}}}{c_H}igg)^{-1} igg(rac{2.5 \ {
m Hz}}{\omega}igg) \ \lambda_{
m GGN} \lesssim \Delta z \ \omega \lesssim \pi/T$$

$$\lambda_{
m GGN} = rac{c_H}{\omega_a} \simeq 100 \ {
m m} igg(rac{250 \ {
m m \ s}^{-1}}{c_H}igg)^{-1} igg(rac{2.5 \ {
m Hz}}{\omega}igg) \ \lambda_{
m GGN} \lesssim \Delta z \ \omega \lesssim \pi/T \ igg \ \Phi \propto \Delta z/\omega$$

$$\Phi_{
m GGN} \propto |{
m exp}(-\omega_a z_i/c_H) - {
m exp}(-\omega_a z_j/c_H)|/\omega_a^2$$

$$egin{align} \lambda_{
m GGN} &= rac{c_H}{\omega_a} \simeq 100 \ {
m m} \left(rac{250 \ {
m m \ s}^{-1}}{c_H}
ight)^{-1} \left(rac{2.5 \ {
m Hz}}{\omega}
ight) \ & \lambda_{
m GGN} \lesssim \Delta z \ & \omega \lesssim \pi/T \ & \downarrow \ & \Phi \propto \Delta z/\omega \ & \Phi_{
m GGN} \propto |{
m exp}(-\omega_a z_i/c_H) - {
m exp}(-\omega_a z_j/c_H)|/\omega_a^2 \ & \downarrow \ & d_\phi^{
m best} \ \ {
m for} \ z_1 = L \ {
m and} \ z_1 = \Delta z \ {
m small} \ & \end{pmatrix}$$

$$\lambda_{
m GGN} = rac{c_H}{\omega_a} \simeq 100 \ {
m m} igg(rac{250 \ {
m m \ s}^{-1}}{c_H}igg)^{-1} igg(rac{2.5 \ {
m Hz}}{\omega}igg) \ \lambda_{
m GGN} \gg \Delta z \ \omega \ll \pi/T$$

$$egin{align} \lambda_{
m GGN} &= rac{c_H}{\omega_a} \simeq 100 \ {
m m} \left(rac{250 \ {
m m \ s^{-1}}}{c_H}
ight)^{-1} \left(rac{2.5 \ {
m Hz}}{\omega}
ight) \ & \lambda_{
m GGN} \gg \Delta z \ & \omega \ll \pi/T \ & lacksquare$$
 $\Phi \propto \omega \Delta z \ & \Phi_{
m GGN} \propto \omega \Delta z \ & \end{array}$

The gain from adding more than 3 interferometers is less dramatic

A longer decay length renders the multi-gradiometer set-up less useful

A multigradiometer configuration may be useful in strata with low c_H

Very long-baseline atom gradiometers will be excellent accelerometers, ULDM sensors, mid-frequency GW detectors and more!

Very long-baseline atom gradiometers will be excellent accelerometers, ULDM sensors, mid-frequency GW detectors and more!

The sensitivity of terrestrial long-baseline experiments at low-frequencies is limited by GGN.

Very long-baseline atom gradiometers will be excellent accelerometers, ULDM sensors, mid-frequency GW detectors and more!

The sensitivity of terrestrial long-baseline experiments at low-frequencies is limited by GGN.

Can regain sensitivity in the frequency window (0.1-10 Hz) by:

- 1. Choosing quiet sites
- 2. Selecting optimised sequence parameters
- 3. Selecting sites with high Rayleigh wave propagation speeds
- 4. Employing a multigradiometer configuration

Very long-baseline atom gradiometers will be excellent accelerometers, ULDM sensors, mid-frequency GW detectors and more!

The sensitivity of terrestrial long-baseline experiments at low-frequencies is limited by GGN.

Can regain sensitivity in the frequency window (0.1-10 Hz) by:

- 1. Choosing quiet sites
- 2. Selecting optimised sequence parameters
- 3. Selecting sites with high Rayleigh wave propagation speeds
- 4. Employing a multigradiometer configuration

Future work: Mitigation of GGN through active noise-filtering techniques (seismometer array), multi-strata models (Rayleigh overtones).