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AdV Noise budget

e Radiation pressure noise and shot noise were the fundamental limits to the detector sensitivity during O3
AdV Noise Curve: Pin =18.0 W
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AdV+ Noise budget

* Newtonian noise is expected to have dominant contribution to the O4b sensitivity (lower limit)
AdV+ Noise Curve: Pin =40.0 W
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AdV+ Magnetic noise projection

* Magnetic noise is expected to limit several frequency bands during O5 (Fiori et al, 2020)
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https://www.mdpi.com/2075-4434/8/4/82

Newtonian noise - fundamentals

* Mirror acceleration
1

© 04,0 = 6 [ AV p() X = (6.0 = 3 (B G 0)) )
where & (7, t) is the seismic displacement field, p the density
and é)rro = (F—Tg)/|F — To|
* Relies on finite element/difference simulations of elastic wave
equation
* Elastic properties of the medium and the noise source properties
need to be known

* For surface detectors, the linear dependence of NN and seismic
surface displacement allows for designing a Wiener filter given by
the residual

- SN -1___,

.« R)=1- CSN(w)-(Css(w)) Cns(w)

Cnn(w)
correspond to the cross and auto-spectral densities between
observed seismic noise and ‘expected’ Newtonian noise
(Badaracco & Harms 2019)

- - -
, where CSN' Css, CNN'

z Test mass !
y'd

. . 4. 4. 4 4 4 4 &

Surface wave—3»

A toy representation of seismic surface wave inducing mirror
motion due to gravitational coupling, v = 25m/s f = 20 Hz
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https://arxiv.org/pdf/1903.07936.pdf

Newtonian noise cancellation — Central Building Array layout

* Atotal of 55, 5 Hz geophones deployed in the central e Station positions were updated in May 2022 for optimal
building (CEB) Newtonian noise cancellation
* 15 geophones level 1 * Data acquired continuously at 500 sps and integrated with
* 40 geophones level 2 Virgo DAQ
29 . . , NNC array CEB | [ , . 29 ! ) ) NNC array CEB after upgrade . J .
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Geophone locations in the CEB prior to the upgrade in May 2022; Geophone locations in the CEB after the upgrade in May 2022; Red
The blue and the red dots represent the level 1 and level 2 dots with black edges correspond to the geophones whose
geophones respectively positions were changed
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Newtonian noise cancellation — End Buildings Array layout

* Atotal of 30, 5 Hz geophones deployed in the West End  * A total of 28, 5 Hz geophones deployed in the North End

Building (WEB) Building (NEB)
) i NNC array WEB : i : ; i NNC array NEB
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X st (M) X s (M)
Geophone locations in the WEB represented using the blue dots; Geophone locations in the NEB represented using the blue dots;
Coordinate system origin at the CEB beamsplitter Coordinate system origin at the CEB beamsplitter
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NNC array — Noise PSD characteristics

* Spatial variation between 10-20 dB for frequencies between

10-20 Hz
* Both broadband and sharp spectral noise observed

* Performance of the NNC 5 Hz geophones are comparable to
the GURALP seismometer in the CEB down to 0.4 Hz
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‘Mode of the PSD estimates for the CEB NNC geophones and the Seismic noise in band 10-40 Hz is composed of broadband as well
CEB GURALP seismometer (red curve) starting at GPS time as sharp spectral noise originating from machines at the site

1359417600; PSD win length 600 s, 300 s overlap, total duration
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Noise characteristics — day-night variation

* For frequencies above 10 Hz a factor 4-5 difference in PSDs
are observed

* Above 20 Hz most noises are generated by machinery at the
site and a day-night variation is not observed

* Maximum seismic noise PSDs are observed at around noon
every-day

* An order of magnitude difference in PSDs can be observed
between noisy and quiet times, especially in the frequency

band 2-6 Hz
H
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Average PSDs estimated every hour of the day showing strong Average PSDs estimated every hour of the day showing weak or no
diurnal variation between 2-15 Hz diurnal variation for frequencies greater than 25 Hz

3/14/2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop 10




Noise PSD characteristics — Spatial variation in the 2-3 Hz band

o |  PSD averaged inthe band 2-3 Hz |, , . * PSDs computed every 600 s with an overlap of 300
{L_ s between consecutive windows
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Spatial distribution of seismic noise PSDs averaged in the
frequency band 2-3 Hz.
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Noise PSD characteristics — Spatial variation in the 10 - 15 Hz band

_ l . PSD averaged in the band 10 - 15 Hz | , 1 * Noise PSDs averaged in the frequency band 10-15
%_ -— Hz show a variation of about 7 dB
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Spatial distribution of seismic noise PSDs averaged in the
frequency band 10-15 Hz.
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Noise PSD characteristics — Spatial variation for the 18.5 Hz noise peak
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Spatial distribution of seismic noise PSDs for the peak at 18.5317

Hz

e Spatial variation of seismic noise PSDs can be used
to infer location of noise sources within the building

125 e String PSD variation of about 30 dB observed

-130
e Spatial variation of the noise PSDs for the 18.5317

Hz shows a dominant SSE-NNW

-135
e Supply fan of the Air Handling Unit located in the
CEB cleanroom has already been identified to be
g 140 the source of this noise (https://tds.virgo-
gw.eu/?content=3&r=20911)
-145
-150

PSD 10log, O(mzlslez)
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https://tds.virgo-gw.eu/?content=3&r=20911

Noise phase characteristics — normalized interstation cross-correlations

* Normalized cross-correlation between stations i and j for M windows can be expressed as

M 5oyt
2k=1 Xi(NX; () , where X(f) = fft(x(t))

CCU = real

(EHLL XX ) Ty X, (DX} ()

* Cross-correlations >=0.8 for the
frequency band 0.4-3 Hz

* Dominated by anisotropic
distribution of surface wave
sources

* Mixture of horizontally and
near-vertical propagating waves
(body waves)

Normalized cross-correlation
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Normalized frequency-domain cross-correlation of all 1485 station pairs in the CEB NNC array
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Noise phase characteristics — cross-correlations for anisotropic noise source distribution

Normalized cross-correlation

For any noise source distribution between azimuth ¢, and ¢, and vertical angle 8; and 6,, the theoretical CCF can be expressed as
g:ii F(6,9,f) cos(% (sinf cospi + sind sing j + cos6 k )7 — 7)) s.t. Zg:gi y¢=%2pg & f) =1

0=6
+ CCF=3g-%
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Beampower expressed in polar coordinates (p, ¢) showing
a dominant plane wave propagation between azimuths
290° — 340°
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Noise phase characteristics — spatial distribution of cross-correlation for 12.81 Hz peak

Observed cross-correlations Estimated cross-correlations

12.81 Hz Normalized cross-correlation 12.81 Hz Normalized cross-correlation
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Spatial distribution of noise cross-correlations at 12.8 Hz show a for a dominantly horizontally propagating wave at V = 370
horizontally propagating wave m/s. q = 2909 ¢, = 34.0°
3/14/2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop

16




Wiener filter — NN prediction

* Given P input channels (geophones) and a filter h of L coefficients the predicted NN can be expressed as

* YyN = Zp - Oxn mhp where x,lz is the k" input sample of the pt™ geophone

* Since yyy is not available, assuming yp4rm = Ynn, the optimal filter i is a solution to the problem

* min[(Yparm — Ynn)?] = min[(yDARM - Z§=1 m= Oxn mh )

* Using the Wiener-Hopf formulation, the optimal filter h can be expressed as,

+ h=R1Q
b11 P12  Prp .
$21 @ ) 1
where R = “ : ” ?P |:> Full Rank /qbzi,,\
bep-11 Pe-12  be-p b3y
bp1 Pp2 ®pp 0=
Cij(0) C;(1) G-
Cij(—=1) C;;(0) Cij(L—2)
and ¢;; = : : , Cij () = x(O)x(t + 1) '
Cy(-L+ 1) Cy(-1) ;5 (0) Pey
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Noise cancellation steps

3/14/2023

* The first second Seismometer input (500 Buffer 101 samples
output is not Hz) D B (FIR order-1)
possible ‘
Low Pass FIR filter : : SEISM, SEISM, || ... SEISMy
Order 20 X dec rate == Decimate input (100 Hz)
Detrend input
Scaling faFtc_)rs during ; Scaling
training
5Hz Highpass
(FIR)
: : LFilter using Wiener coeff,
Wiener or Adaptive coeff }—p or CNN filter
* Add all wiener/CNN
Pon—. Upsample — filtered seismometer [ Subtract from Target
resampling To Target channel channels channel

Terrestrial Very-Long-Baseline Atom Interferometry Workshop




Wiener filter — Static vs Dynamic (CEB_SEIS V as target)

e About 10 dB better performance for transients

10-20 Hz =m) 25-27 dB

e 20-30 Hz =% 20-25dB * About 2 dB better performance for transients
e 30-40Hz ™) 16-18 dB e Similar performance in 30-40 Hz band
10 Performance of a static Wiener filter 10 Performance of a dynamic Wiener filter
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Adaptive filters

* Two broad classes of algorithms exist for solving the Wiener problem:

* Least Mean Square (LMS/NLMS) * Recursive least square (RLS)
* Stochastic gradient method (O (LP)) « min(CE L A"e?(m))
* h(n)=h(n—1)+un)x(n — 1e(n) e h(n) = h(n — 1) + Rl (n)x(n)e(n) (Gauss-Newton like)

a
un) = ,0<a<2,6=0
x(m)xT(n)+6 A 2Ryt (-1 x()xT (MRxL(n-1)

. -1 — 71— 1p-1 _ —
Ryx(n) =17 Ry (n—1) 1+A71x(M)Ryx (n—-1)xT (n)

e [PNLMS (Improved | DroDortlonate NLMS) « Complexity = O(L?P?) per sample (not feasible)
° k) =
M( )= Yo x2 (k= m)glpm(k 1)+81pNLMS » Stabilized Fast Transversal algorithms (Slock and Kailath, 1991)
( ) « O(LP)
h;(k -1 . )
. gip,l(k D=—"+1+p) Solves the exact quadratic problem

2|[h(k=Dll1+e€ * Good tracking even in noisy environment

 Computationally expensive

ezO,—1Sﬁ<1
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https://ieeexplore.ieee.org/document/80769
https://ieeexplore.ieee.org/document/5495903

Wiener vs Adaptive filters (CEB_SEIS V as target)

Comparison between Wiener & Adaptive filters

-15 .

e |IPNLMS performs about 4 dB worse

m | ‘ than Wiener/Dynamic-Wiener during
20 LI TRRTTIOY LR SRR -
M”“ww MJMUHH o vkl il i HM'WH quiet times
3 1y |  During short-burst transients IPNLMS
e does better than static Wiener filter
3 o5 1 but worse than Dynamic Wiener or
3 FTF-RLS
5
S
* Performance of FTF RLS comparable to
=0T | the dynamic Wiener filter
Static Wiener
Dynamic Wiener
IPNLMS
FTF-RLS
_35 | | | | | I I
0 1 2 4 5 6 7 8 9
Time (s) x10%
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Wiener vs Adaptive filters at the onset (CEB_SEIS_V as target)

Comparison between Wiener & Adaptive filters

0 : :
[S)tatic V}fiir\}ger * |IPNLMS converges quickly for a = 0.5,
ynamic vviener
IPNLMS and f = —0.75
.l FTF-RLS ]

* FTF RLS takes a bit longer (= 800s) to
reach steady state, but performs

gE_E 10 _ comparable to the dynamic Wiener
5 filter
o * Slow convergenceisduetod =1 —
s 1 e
X LP
\IU‘*’WV\WW‘A\M * However, if A is made smaller, the
o0k i numerical stability of the algorihm is

compromised

_25 | 1 | | 1 | | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time (s)
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Wiener vs Adaptive filters during transients (CEB_SEIS V as target)

15 Comparison between Wiener & Adaptive filters for transients

Static Wiener FTF RLS performs within a dB of the
Dynamic Wiener

IPNLMS dynamic Wiener filter
FTF-RLS

* During quiet-times its performance is
between the static and the dynamic
Wiener filters

N
S
T

* Performance can be improved by
modifying the rescue procedure
e Soft-constrained initialization is in
~ play
* Decorrelate inputs to stabilize the
condition number of the forward
and backward predictor matrices

_30 | | I I | | | | |
5 5.01 502 503 504 505 506 507 508 5.09 5.1

Time (s) <10
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Wiener vs Adaptive filters (CEB_SEIS N as target)

Comé)arison between Wiener and Adaptive filters with CEB SEIS N as target

Static Wianer  Maximum gain of about 10 dB during
4+ ——— Dynamic Wiener | quiet times (was 25 dB for V-target)
IPNLMS * Performance worse by about 2-3 dB
ol ———FTF-RLS § ) .
during noisy-times

e Static Wiener filter performance worse
for transients
* Unfavorable wave-types

err target)

20log, 0(fft /fft

e |IPNLMS performance comparable to or
better than FTF-RLS for transients

* Performance worse by 3-4 dBs during
guiet-times

* Performance of FTF RLS comparable to
dynamic Wiener filter performance
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Wiener vs Adaptive filters during transients (CEB_SEIS N as target)

ComEarison between Wiener and Adaptive filters with CEB SEIS N as target

Static Wiener * During noisy times, performance of all
al — Dynamic Wiener| | algorithms are comparable except for
———IPNLMS a : .
FTERLS th(? static Wiener filter, which adds
ol | noise to the data-stream
%
S
Et 21 | * FTF RLS performance is close to
(<))
E dynamic Wiener filter and
o .
8‘; outperforms IPNLMS marginally (1 — 2
< dB)
AN

* Overall cancellation of the horizontal
channel using vertical channels as
input is a challenging problem and is a

5 5.05 5.1 5.15 5.2 scenario similar to NN-cancellation
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Conclusions

e 55 vertical component 4.5 Hz geophones in the CEB, 28 in the NEB and 30 in the WEB were installed
e Data digitization at 500 sps performed within the sensors and data readout was integrated with the Virgo DAQ
system (time synchronized)

* Sensor locations - optimization studies based on seismic wavefield characteristics and simulated NN were
performed

* Anonline NNC implementation has been done based on the static Wiener filter case
(https://git.ligo.org/virgo/virgoapp/NNCfilter/-/tree/NNCTest01)

* Adaptive filter options were explored: LMS (different classes) and RLS (FTF, FLA)
* FTF-RLS were found to be robust, and were tested offline
* Performance could be enhanced by designing better rescue algorithms

* A challenging problem of subtracting the horizontal seismic noise channel by using the vertical channel was
considered
* Gain of about 10 dB during quiet times and about 7-8 dB during noisy times could be achieved
* Performance worse by about 15 dB compared to the scenario when the vertical channel was used as
target
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https://git.ligo.org/virgo/virgoapp/NNCfilter/-/tree/NNCTest01

Questions?

Terrestrial Very-Long-Baseline Atom
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