Environmental noise monitoring at AdV+

Soumen Koley, Jan Harms, Irene Fiori, Maria Tringali, Tomek Bulik, Mariusz Suchenek et al.

Contents

AdV/AdV+ noise budget

NNC array layout

Seismic noise amplitude characteristics

- Temporal variation
- Spatial variation

Wavefield decomposition

- Interstation cross-correlation
- Cross-correlation reconstruction

Wiener filter

- Theory
- Implementation
- Performance

Adaptive filters

• Performance

AdV Noise budget

Radiation pressure noise and shot noise were the fundamental limits to the detector sensitivity during O3

AdV+ Noise budget

Newtonian noise is expected to have dominant contribution to the O4b sensitivity (lower limit)

AdV+ Magnetic noise projection

Magnetic noise is expected to limit several frequency bands during O5 (Fiori et al, 2020)

Newtonian noise - fundamentals

- Mirror acceleration
 - $\delta \vec{a}(\vec{r_0},t) = G \int dV \, \rho(\vec{r}) \times \frac{1}{|\vec{r}-\vec{r_0}|^3} \Big(\xi(\vec{r},t) 3 \Big(\vec{e}_{rr_0} \xi(\vec{r},t) \Big) \Big) \vec{e}_{rr_0},$ where $\xi(\vec{r},t)$ is the seismic displacement field, ρ the density and $\vec{e}_{rr_0} = (\vec{r}-\vec{r_0})/|\vec{r}-\vec{r_0}|$
 - Relies on finite element/difference simulations of elastic wave equation
 - Elastic properties of the medium and the noise source properties need to be known

- For surface detectors, the linear dependence of NN and seismic surface displacement allows for designing a Wiener filter given by the residual
 - $R(\omega) = 1 \frac{\overrightarrow{C_{SN}}(\omega).\left(\overrightarrow{C_{SS}}(\omega)\right)^{-1}.\overrightarrow{C_{NS}}(\omega)}{C_{NN}(\omega)}$, where \overrightarrow{C}_{SN} , \overrightarrow{C}_{SS} , \overrightarrow{C}_{NN} , correspond to the cross and auto-spectral densities between observed seismic noise and 'expected' Newtonian noise (Badaracco & Harms 2019)

A toy representation of seismic surface wave inducing mirror motion due to gravitational coupling, v = 25m/s f = 20 Hz

Newtonian noise cancellation – Central Building Array layout

- A total of 55, 5 Hz geophones deployed in the central building (CEB)
 - 15 geophones level 1
 - 40 geophones level 2

Geophone locations in the CEB prior to the upgrade in May 2022; The blue and the red dots represent the level 1 and level 2 geophones respectively

- Station positions were updated in May 2022 for optimal Newtonian noise cancellation
 - Data acquired continuously at 500 sps and integrated with Virgo DAQ

Geophone locations in the CEB after the upgrade in May 2022; Red dots with black edges correspond to the geophones whose positions were changed

Newtonian noise cancellation – End Buildings Array layout

- A total of 30, 5 Hz geophones deployed in the West End Building (WEB)
- A total of 28, 5 Hz geophones deployed in the North End Building (NEB)

Geophone locations in the WEB represented using the blue dots; Coordinate system origin at the CEB beamsplitter

Geophone locations in the NEB represented using the blue dots; Coordinate system origin at the CEB beamsplitter

NNC array – Noise PSD characteristics

 Performance of the NNC 5 Hz geophones are comparable to the GURALP seismometer in the CEB down to 0.4 Hz

`Mode of the PSD estimates for the CEB NNC geophones and the CEB GURALP seismometer (red curve) starting at GPS time 1359417600; PSD win length 600 s, 300 s overlap, total duration

86400 s

- Spatial variation between 10-20 dB for frequencies between 10-20 Hz
- Both broadband and sharp spectral noise observed

Seismic noise in band 10-40 Hz is composed of broadband as well as sharp spectral noise originating from machines at the site

Noise characteristics – day-night variation

- Maximum seismic noise PSDs are observed at around noon every-day
- An order of magnitude difference in PSDs can be observed between noisy and quiet times, especially in the frequency band 2-6 Hz

Average PSDs estimated every hour of the day showing strong diurnal variation between 2-15 Hz

- For frequencies above 10 Hz a factor 4-5 difference in PSDs are observed
- Above 20 Hz most noises are generated by machinery at the site and a day-night variation is not observed

Average PSDs estimated every hour of the day showing weak or no diurnal variation for frequencies greater than 25 Hz

Noise PSD characteristics – Spatial variation in the 2-3 Hz band

- PSDs computed every 600 s with an overlap of 300 s between consecutive windows
 - Averaged for a week of data
 - Starting time 1359417618 s
- Spatial variation of the noise PSDs are within 2 dBs
- Noise originates far-away from sources like roads, bridges etc.
 - Little attenuation while propagating through the NNC array

Spatial distribution of seismic noise PSDs averaged in the frequency band 2-3 Hz.

Noise PSD characteristics – Spatial variation in the 10 - 15 Hz band

- Noise PSDs averaged in the frequency band 10-15
 Hz show a variation of about 7 dB
 - About 2-3 dB lower than that observed for the 6-8 Hz band
- Noise propagation "dominantly" SE NW

Spatial distribution of seismic noise PSDs averaged in the frequency band 10-15 Hz.

Noise PSD characteristics – Spatial variation for the 18.5 Hz noise peak

- Spatial variation of seismic noise PSDs can be used to infer location of noise sources within the building
- String PSD variation of about 30 dB observed

- Spatial variation of the noise PSDs for the 18.5317
 Hz shows a dominant SSE-NNW
- Supply fan of the Air Handling Unit located in the CEB cleanroom has already been identified to be the source of this noise (https://tds.virgo-gw.eu/?content=3&r=20911)

Spatial distribution of seismic noise PSDs for the peak at 18.5317 Hz

Noise phase characteristics – normalized interstation cross-correlations

• Normalized cross-correlation between stations i and j for M windows can be expressed as

•
$$CC_{ij} = \text{real}\left(\frac{\sum_{k=1}^{M} X_i(f) X_j^*(f)}{\sqrt{\sum_{k=1}^{M} X_i(f) X_i^*(f) \sum_{k=1}^{M} X_j(f) X_j^*(f)}}\right)$$
, where $X(f) = \text{fft}(x(t))$

- Cross-correlations >= 0.8 for the frequency band 0.4-3 Hz
- Dominated by anisotropic distribution of surface wave sources
- Mixture of horizontally and near-vertical propagating waves (body waves)
 - Cross-correlation functions
 with no zero-crossing

Normalized frequency-domain cross-correlation of all 1485 station pairs in the CEB NNC array

Noise phase characteristics – cross-correlations for anisotropic noise source distribution

• For any noise source distribution between azimuth ϕ_1 and ϕ_2 and vertical angle θ_1 and θ_2 , the theoretical *CCF* can be expressed as

•
$$CCF = \sum_{\theta=\theta_1}^{\theta=\theta_2} \sum_{\phi=\phi_1}^{\phi=\phi_2} F(\theta,\phi,f) \cos(\frac{2\pi f}{V}(\sin\theta\cos\phi\hat{i} + \sin\theta\sin\phi\hat{j} + \cos\theta\hat{k})(\overrightarrow{r_i} - \overrightarrow{r_j}))$$
 s.t. $\sum_{\theta=\theta_1}^{\theta=\theta_2} \sum_{\phi=\phi_1}^{\phi=\phi_2} F(\theta,\phi,f) = 1$

 $290^{\circ} - 340^{\circ}$

Noise phase characteristics – spatial distribution of cross-correlation for 12.81 Hz peak

Spatial distribution of noise cross-correlations at 12.8 Hz show a horizontally propagating wave

Spatial distribution of theoretical noise cross-correlations for a dominantly horizontally propagating wave at V = 370 m/s. $\phi_1=290^0$, $\phi_2=340^0$

Wiener filter – NN prediction

- Given P input channels (geophones) and a filter h of L coefficients, the predicted NN can be expressed as
 - $y_{NN}=\sum_{p=1}^{P}\sum_{m=0}^{L}x_{n-m}^{p}h_{m}^{p}$, where x_{k}^{p} is the k^{th} input sample of the p^{th} geophone
 - Since y_{NN} is not available, assuming $y_{DARM} \approx y_{NN}$, the optimal filter h is a solution to the problem

•
$$\min[(y_{DARM} - y_{NN})^2] \Rightarrow \min[(y_{DARM} - \sum_{p=1}^{P} \sum_{m=0}^{L-1} x_{n-m}^p h_m)^2]$$

ullet Using the Wiener-Hopf formulation, the optimal filter h can be expressed as,

•
$$h = R^{-1}Q$$

where
$$R = \begin{pmatrix} \phi_{11} & \phi_{12} & \dots & \phi_{1P} \\ \phi_{21} & \phi_{22} & \cdots & \phi_{2P} \\ \vdots & \ddots & \vdots \\ \phi_{(P-1)1} & \phi_{(P-1)2} & \dots & \phi_{(P-1)P} \\ \phi_{P1} & \phi_{P2} & \cdots & \phi_{PP} \end{pmatrix}$$
 Full Rank

$$\operatorname{and} \phi_{ij} = \begin{pmatrix} C_{ij}(0) & C_{ij}(1) & \cdots & C_{ij}(L-1) \\ C_{ij}(-1) & C_{ij}(0) & \cdots & C_{ij}(L-2) \\ \vdots & & \ddots & \vdots \\ C_{ij}(-L+2) & C_{ij}(-L+1) & \cdots & C_{ij}(1) \\ C_{ij}(-L+1) & C_{ij}(-L) & \cdots & C_{ij}(0) \end{pmatrix}, C_{ij}(\tau) = x(t)x(t+\tau)$$

$$Q = \begin{pmatrix} \phi_{1y} \\ \phi_{2y} \\ \phi_{3y} \\ \vdots \\ \vdots \\ \vdots \\ \phi_{Py} \end{pmatrix}$$

Noise cancellation steps

Wiener filter – Static vs Dynamic (CEB_SEIS_V as target)

Adaptive filters

Two broad classes of algorithms exist for solving the Wiener problem:

- Least Mean Square (LMS/NLMS)
 - Stochastic gradient method (O(LP))

•
$$h(n) = h(n-1) + \mu(n)x(n-1)e(n)$$

• $\mu(n) = \frac{\alpha}{x(n)x^T(n) + \delta}$, $0 < \alpha < 2$, $\delta \approx 0$

- IPNLMS (Improved proportionate NLMS)
 $\mu(k) = \frac{\alpha}{\sum_{m=0}^{L-1} x^2(k-m)g_{ip,m}(k-1) + \delta_{IPNLMS}}$
- $g_{ip,l}(k-1) = \frac{1-\beta}{2l} + (1+\beta) \frac{h_l(k-1)}{2||\mathbf{h}(k-1)||_{1+\beta}}$
- $\epsilon \approx 0.-1 < \beta < 1$

- Recursive least square (RLS)
 - $\min(\sum_{m=0}^{L-1} \lambda^{n-m} e^2(m))$
 - $h(n) = h(n-1) + R_{xx}^{-1}(n)x(n)e(n)$ (Gauss-Newton like)
 - $R_{xx}^{-1}(n) = \lambda^{-1} R_{xx}^{-1}(n-1) \frac{\lambda^{-2} R_{xx}^{-1}(n-1)x(n)x^{T}(n)R_{xx}^{-1}(n-1)}{1 + \lambda^{-1}x(n)R_{xx}^{-1}(n-1)x^{T}(n)}$
 - Complexity $\approx O(L^2P^2)$ per sample (not feasible)
 - Stabilized Fast Transversal algorithms (Slock and Kailath, 1991)
 - O(LP)
 - Solves the exact quadratic problem
 - Good tracking even in noisy environment
 - Computationally expensive

Wiener vs Adaptive filters (CEB_SEIS_V as target)

- than Wiener/Dynamic-Wiener during quiet times
- During short-burst transients IPNLMS does better than static Wiener filter but worse than Dynamic Wiener or FTF-RLS
- Performance of FTF RLS comparable to the dynamic Wiener filter

Wiener vs Adaptive filters at the onset (CEB_SEIS_V as target)

- IPNLMS converges quickly for $\alpha=0.5$, and $\beta=-0.75$
- FTF RLS takes a bit longer ($\approx 800s$) to reach steady state, but performs comparable to the dynamic Wiener filter
- Slow convergence is due to $\lambda = 1 \frac{1}{LP} \ (\approx 1)$
- However, if λ is made smaller, the numerical stability of the algorithm is compromised

Wiener vs Adaptive filters during transients (CEB_SEIS_V as target)

- FTF RLS performs within a dB of the dynamic Wiener filter
- During quiet-times its performance is between the static and the dynamic Wiener filters
- Performance can be improved by modifying the rescue procedure
 - Soft-constrained initialization is in play
 - Decorrelate inputs to stabilize the condition number of the forward and backward predictor matrices

Wiener vs Adaptive filters (CEB_SEIS_N as target)

- Maximum gain of about 10 dB during quiet times (was 25 dB for V-target)
- Performance worse by about 2-3 dB during noisy-times
- Static Wiener filter performance worse for transients
 - Unfavorable wave-types
- IPNLMS performance comparable to or better than FTF-RLS for transients
- Performance worse by 3-4 dBs during quiet-times
- Performance of FTF RLS comparable to dynamic Wiener filter performance

Wiener vs Adaptive filters during transients (CEB_SEIS_N as target)

- During noisy times, performance of all algorithms are comparable except for the static Wiener filter, which adds noise to the data-stream
- FTF RLS performance is close to dynamic Wiener filter and outperforms IPNLMS marginally (1 – 2 dB)
- Overall cancellation of the horizontal channel using vertical channels as input is a challenging problem and is a scenario similar to NN-cancellation

Conclusions

- 55 vertical component 4.5 Hz geophones in the CEB, 28 in the NEB and 30 in the WEB were installed
- Data digitization at 500 sps performed within the sensors and data readout was integrated with the Virgo DAQ system (time synchronized)
- Sensor locations optimization studies based on seismic wavefield characteristics and simulated NN were performed
- An online NNC implementation has been done based on the static Wiener filter case (https://git.ligo.org/virgo/virgoapp/NNCfilter/-/tree/NNCTest01)
- Adaptive filter options were explored: LMS (different classes) and RLS (FTF, FLA)
- FTF-RLS were found to be robust, and were tested offline
- Performance could be enhanced by designing better rescue algorithms
- A challenging problem of subtracting the horizontal seismic noise channel by using the vertical channel was considered
 - Gain of about 10 dB during quiet times and about 7-8 dB during noisy times could be achieved
 - Performance worse by about 15 dB compared to the scenario when the vertical channel was used as target

Questions?

