

QuVis Applets in Czech

Zdeňka Koupilová, Petr Kácovský

Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

The Quantum Mechanics Visualisation Project

- the QuVis project is led by Antje Kohnle (University of St Andrews)
- a collection of research-based interactive applets
- single purpose applets
- covering advanced high school level to advanced undergraduate university level
- to help students make connections between multiple representations, and explore relationships between quantities

https://www.st-andrews.ac.uk/physics/quvis/

University of St Andrew

Rychlé

snímkování

Stop

Translation into Czech

Why to translate QuVis applets?

- focus on concepts rather than mathematical representations \rightarrow suitable for pre-service teachers' QM courses
- pre-service teachers need to acquire terminology in their native language
- certain applets are appropriate to be used even at secondary school level

Translation procedure

- with permission of the authors
- based on the source codes provided
- the translations were reviewed/proofread for precision and appropriateness
- further translations planned

Availability

- freely available on the web
- certain applets supplemented by student worksheets (see below)

Implementation in an undergraduate pre-service teachers' QM course

- frontally in lessons
- in small-group work during active learning periods
- as a basis for ConcepTests within the Peer Instruction method
- as a homework (mainly task sequences integrated into applets or prepared worksheets)

Worksheets with a sequence of tasks

Purpose and form

• worksheets for undergraduate students • encouraging students to work independently • using applets to solve tasks in the worksheets • based on materials from original applets, but also including new, supplementary tasks (both computational and conceptual)

References

Kohnle A. et al (2010). Developing and evaluating animations for teaching quantum mechanics concepts. Eur. J. Phys. 31 1441 Kohnle A. et al. (2012). A new multimedia resource for teaching quantum mechanics concepts Am. J. Phys. 80, 148-153

Progress

- worksheets developed within a bachelor's thesis of Martin Landa, under supervision
- five worksheets prepared,
- three of them currently translated into English
- 10–18 tasks in every worksheet

Quantum information

Má Eva zachytávat fotony?

Vypnout odposlech

Two dimensional potentials

Úkoly QuVis Vlastní stavy energie ve dvoudimenzionálním kvantovém oscilátoru Aplet zobrazuje vlastní stavy energie pro částici ve dvouroz- X měrném harmonickém oscilátoru. Potenciální energie je rovna V = 1/2 $m\omega^2 (x^2+y^2)$, kde *m* je hmotnost částice a parametr ω určuje průběh potenciální energie (jde o analogii úhlové frekvence scilátoru). Hamiltoninán se dá rozdělit na dvě části – první čás závisí jen na souřadnici x, druhá na souřadnici y - každou část lze řešit samostatně jako jednodimenzionální problém. Vlastní stav je jednoznačně určen pomocí dvou kvantových čísel nx a ny. Ovládání Energie Kvantová čísla $(n_x, n_y) = (2, 4)$ ✓ Zobrazit energie $E_x = (n_x + 0.5)\hbar\omega$ $E_x = 2,5 \hbar \omega$ $E_{\rm v}=(n_{\rm v}+0.5)\hbar\omega$ ----- $E_v = 4.5 \hbar \omega$ $E_{\text{total}} = E_{\text{x}} + E_{\text{y}} = 7 \, \hbar \omega$ Ex

Úkoly QuVis Animace Vytvoření kvantového šifrovacího klíče – protokol BB84, polarizované fotony Zdroj jednotlivých fotonů (V) Zpět na úvod Báze náhodně Přednastavené báze Co zobrazovat: Alice Eva Bob Alice a Bob Klíč Steiná báze? Báze Výsledek Báze Výsledek generování klíče ANO +45/-45 1 H/V +45/-45 0 ANO CHYBA vytvořené bity klíče +45/-45 0 +45/-45 0 H/V 1 ANO 0 +45/-45 0 +45/-45 0 +45/-45 0 ANO analýza chyb +45/-45 0 +45/-45 0 H/V NE v klíči H/V 0 H/V +45/-45 0 Vymazat měření Eva zvolila špatnou bázi Poslední vytvořené bity klíče (při stejné Chyby (ve všech měřeních) Hlavní ovládání bázi) Poslat polarizovaný foton Bobovi Bob 0 0 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 0 Celkem: N_{celk} = 100 Jednotlivý foton Nepřerušovaně 0011111110011111101 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 1 1 Bity klíče: N_{klč} = 57 0.5 N_{celk} Poslat 100 fotonů 010000110010010 Chyby:

Quantum key distribution (BB84 protocol) using photons					
_	_				•

2 chvb! Je přítomen odposlech. Vvřadit celý klíč

N_{chyb} = 12 0.25 N_{klič}

Pravděp.: Nchyb =0.211 0.25

http://fyzweb.cz/materialy/kvantovka/applety.php

zdenka.koupilova@mff.cuni.cz

- Landa, M. (2021). Úlohy pro práci s aplety axiom o měření v kvantové mechanice. Bachelor thesis. Charles University, Faculty of Mathematics and Physics. Supervisor Koupilová, Z.
- Koupilová Z., & Kácovský P. (2020). Conceptual Problems and Graphical Representation in Introductory Course of Quantum Physics. In Džubinská Andrea, Reiffers Marián (editors): 20th Conference of Czech and Slovak Physicists Proceedings, 107-108, Equilibria, s.r.o., Košice
- Koupilová, Z., & Kácovský, P. (2022). Interactive applets in introductory course of quantum physics: Their role not only in distance learning. In AIP Conference Proceedings (Vol. 2458, No. 1). AIP Publishing.