# Metallurgy of Low Carbon Steel And Potential for A Passivated Magnetite Layer

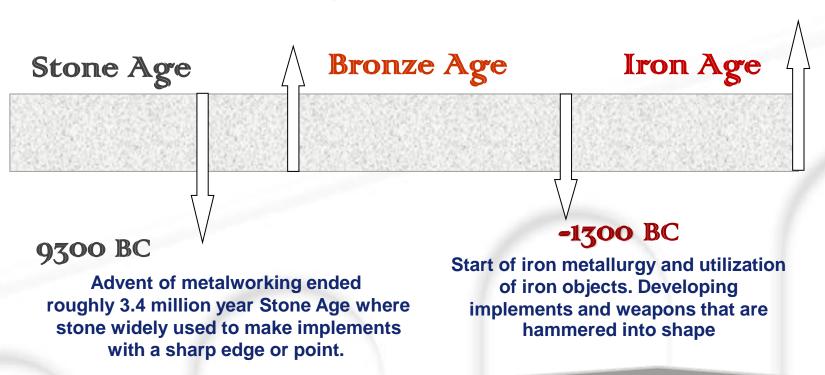


Dan Henkel Material Forensics LLC March 27, 2023

### History of Steel

- **Crystallography of Ferrous Alloys**
- Microstructures of Carbon and Stainless Steel
- Comparison of Steel Grades
- Welding Carbon Steel to Stainless Steel
- Properties of Magnetite
- **Potential for a Magnetite Passive Layer**

| $\triangleright$ |
|------------------|
|                  |
| $\square$        |
|                  |
| O                |
| Q                |


# Historic Metallurgy

### **700** AD

#### 3300 BC

Innovation of the technique of smelting ore

Widespread use of iron or steel coinciding with other changes in society, including differing agricultural practices, religious beliefs and artistic styles



# What is Steel?

Steel is an alloy of iron and carbon.

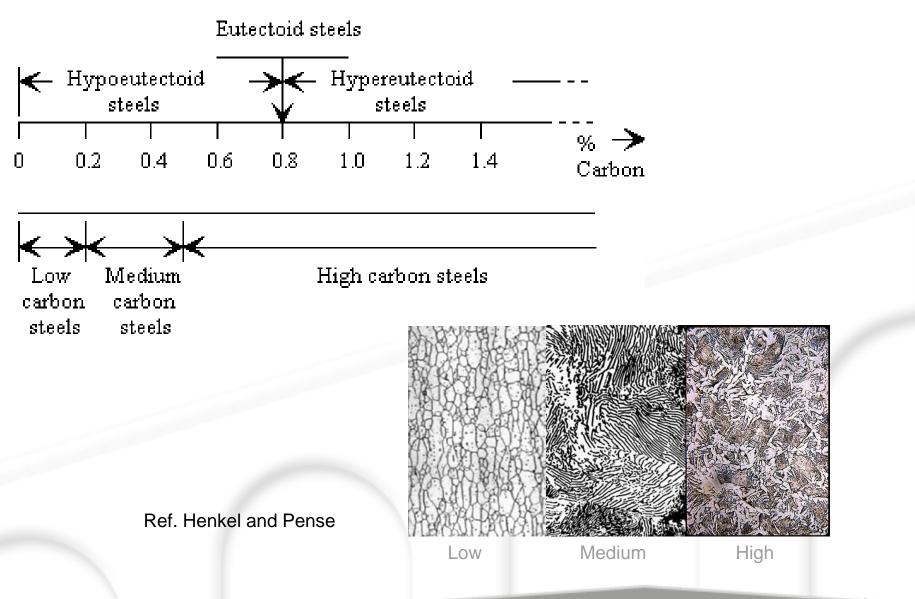
Additional elements may also present <u>naturally</u>: manganese, phosphorus, sulfur, silicon, and traces of oxygen, nitrogen and aluminum.

Additional alloying elements sometimes <u>added</u>: nickel, chromium, molybdenum, boron, titanium, vanadium and niobium.

### **Steelmaking Process** (Controlling carbon and oxygen)

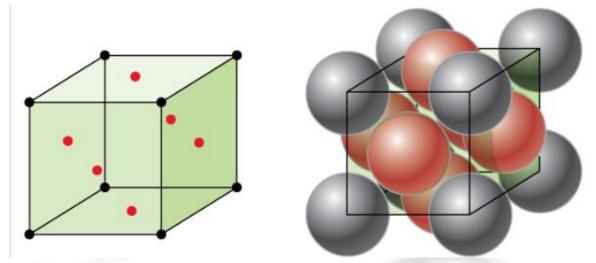
### ○ Iron extracted from iron ore

- $\circ$  Blast furnace coke (carbon ) used as reducing agent to reduce  $Fe_2O_3$  to pig iron
- $\circ \quad \mathbf{Fe}_{2}\mathbf{O}_{3} + \mathbf{3CO} \mathbf{2Fe} + \mathbf{3CO}_{2}$
- Pig iron contains about 4% carbon along with impurities
- Converting pig iron to steel (1855)
  - Pig iron and <30% steel scrap are charged into barrel-shaped refractory-lined converter
  - Pure oxygen is lanced into liquid metal to form iron oxide  $Fe + O_2 FeO$
  - Carbon in the steel reacts with iron oxide to form iron and carbon monoxide


FeO + C - Fe + CO



Slag-forming fluxes (lime) are added Carbon drastically reduced along with impurities (S, P) Molten steel cast into slabs, billets or blooms


Ref. Smith, Principles of Mat. Sci. & Eng.

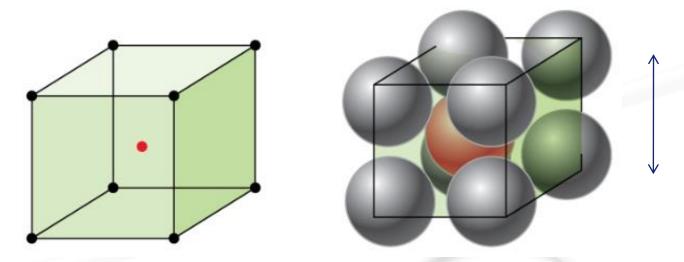
# **Percent Carbon in Steel**



### γ Austenitic Iron Face-Centered Cubic (FCC)

- Close-packed structure
- Carbon diffusivity 2x10<sup>-5</sup> m<sup>2</sup>/s
- 2.08% at 1148°C; decreases to 0.83% at 723°C

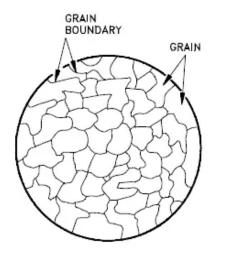


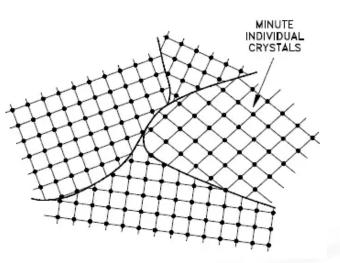

Packing fraction is 74%. So, the void space in the unit cell will be (100-74) = 26%.

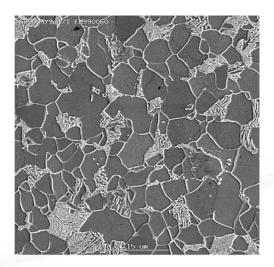
Ref. Henkel and Pense

# $\alpha$ Ferritic Iron

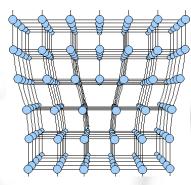
### **Body-Centered Cubic (BCC)**

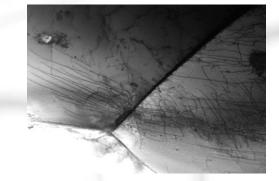

- Not a close-packed structure
- Carbon diffusivity 22x10<sup>-5</sup> m<sup>2</sup>/s
- Carbon solubility 0.02% at 723°C; decreases to 0.005% at 0°C





Packing fraction is 68%. So, the void space in the unit cell will be (100-68) = 32%.

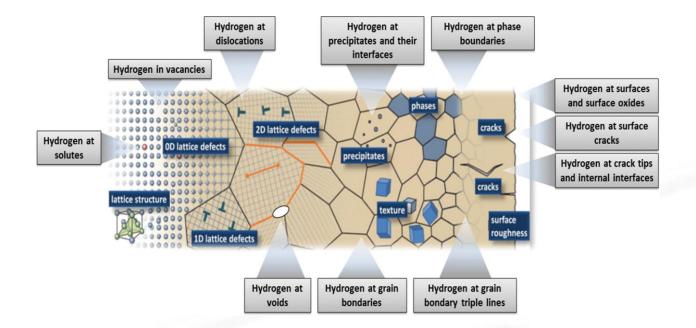
Ref. Henkel and Pense


# Microstructure discovered in late 1800's







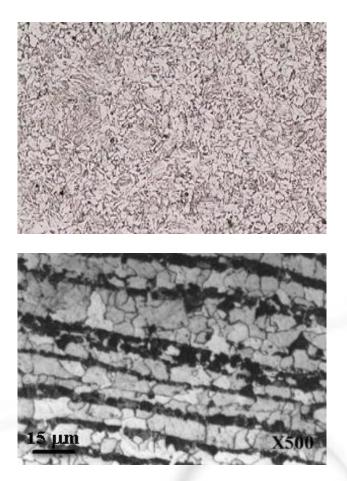


### Dislocations discovered in early 1960's



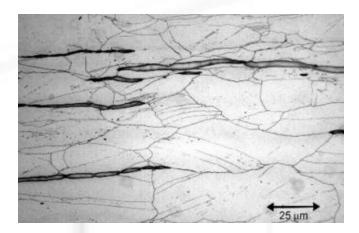


Ref. RWK Honeycombe

# **Defects that Trap Hydrogen**




Ref. M. Koyama, M. Rohwerder, et al


### **Microstructures**

#### **X52 Pipe Steel**

#### **304L Stainless Steel**







Ref. Henkel and Pense

# **Steel Standards**

AISI 1020 0.2C, 0.5Mn (ferritic steel)

# API X60 0.16C, 1.65Mn, 0.45Si, 0.02P, 0.01S, 0.08V, 0.05Nb and 0.04Ti

(ferritic, bainitic, or pearlitic steel)

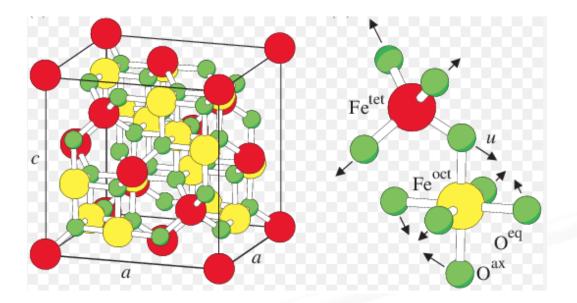
#### S355J2+AR 0.22C, 1.60Mn, 0.55Si, 0.03P, 0.03S, 0.30Ni

(ferritic, bainitic, or pearlitic steel)

S is short for structural steel 355 refers to minimum yield strength (355 MPa) JR means impact strength is 27 minimum at room temp +AR means as rolled; +N means normalized



# Magnetite


 $6Fe_2O_3 - 4Fe_3O_4 + O_2$ 



#### Hematite - red rust, porous, easily spalled or removed, leaving clean surface

Magnetite –matte black, nonreflective, non-porous, tightly adhering, may reduce binding energy and requirement for bakeout

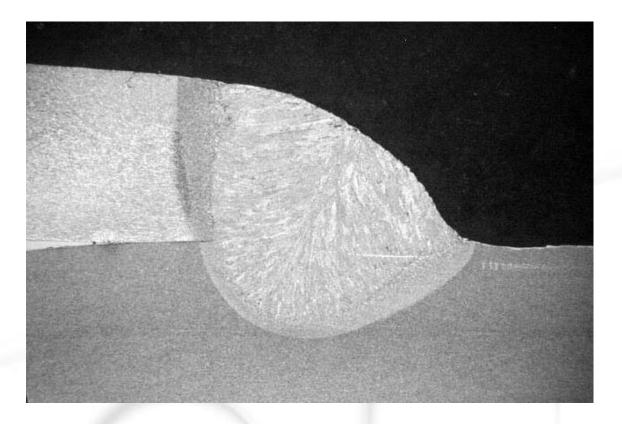
### **Properties of Magnetite**



#### Inverse-spinel

- •Close-packed structure, similar to fcc
- •Unit cell has thirty-two oxygen atoms
- •Iron cations at octahedral and tetrahedral sites
- •Unit cell edge length is 0.839 nm.

Ref. Fleet, 1986

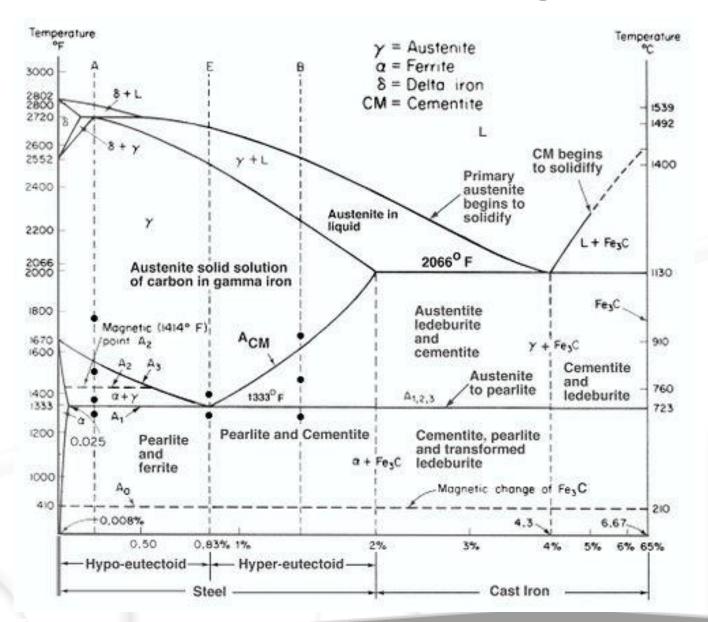

# **Experimental Passivation**



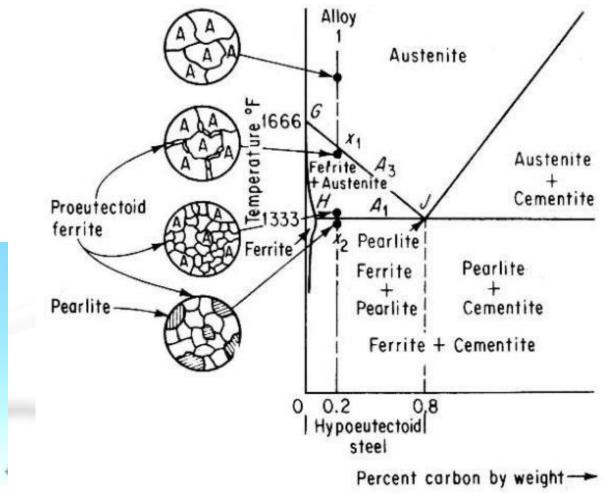
Courtesy: D. Manos

# **Welding Carbon Steel to Stainless Steel**

(MIG weld with 309L filler)

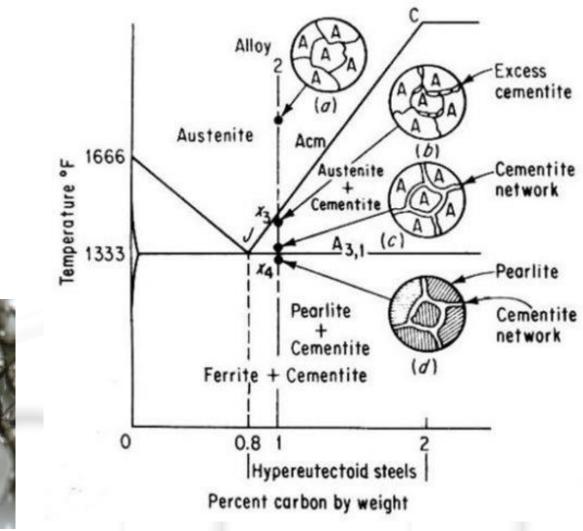



Ref. K. Easterling


Thank you

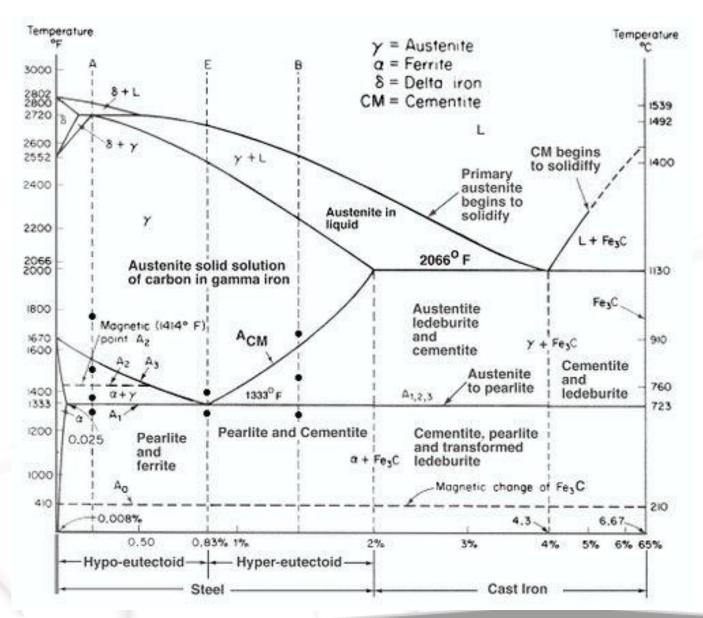


### **Iron Carbon Phase Diagram**



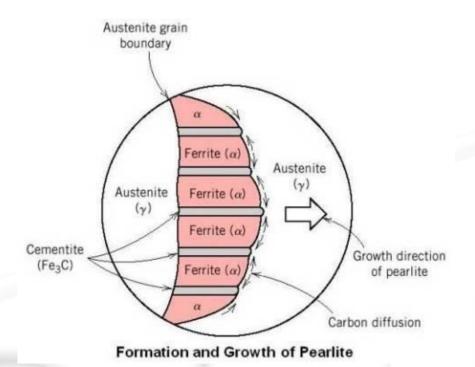

### Low Carbon Steel Hypoeutectoid

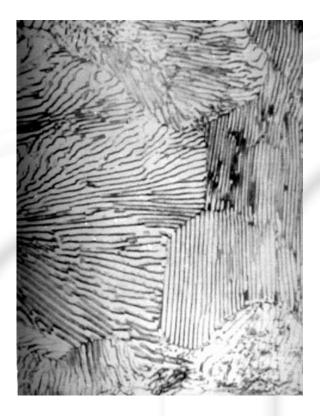




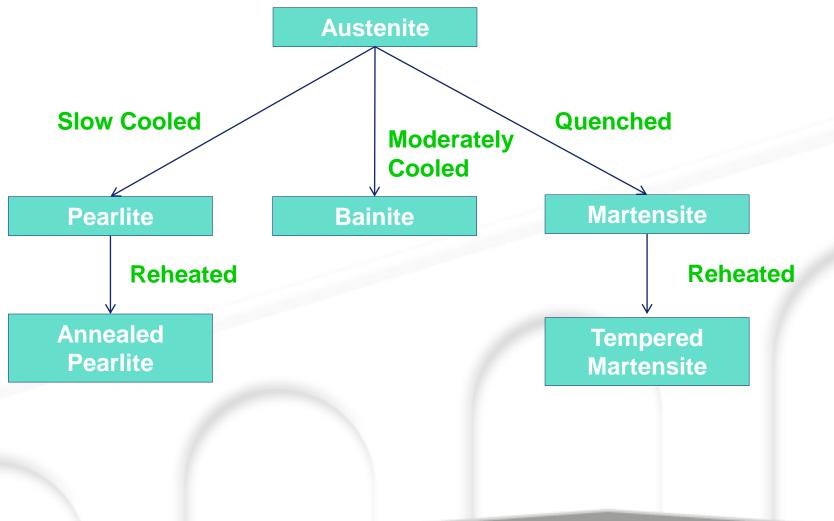

### High Carbon Steel Hypereutectoid







# Fe-C Equilibrium Phase Diagram




# Pearlite

- 2-Phase eutectoid structure of  $\gamma + \alpha$
- Lamellar structure of alternating plates
- Resembles mother-of-pearl
- Composition unchanged from 0°C to 723°C
- Intermediate hardness & ductility





# **Non-Equilibrium Kinetics**



# **Major Classifications of Steels**

| SAE designation | Туре                              |
|-----------------|-----------------------------------|
| 1xxx            | Carbon steels                     |
| 2xxx            | Nickel steels                     |
| 3xxx            | Nickel-chromium steels            |
| 4xxx            | Molybdenum steels                 |
| 5xxx            | Chromium steels                   |
| 6xxx            | Chromium-vanadium steels          |
| 7xxx            | Tungsten steels                   |
| 8xxx            | Nickel-chromium-molybdenum steels |
| 9xxx            | Silicon-manganese steels          |
|                 |                                   |

#### Carbon steels

|                  | 10xx      |  |
|------------------|-----------|--|
|                  | 11xx      |  |
|                  | 12xx      |  |
|                  | 15xx      |  |
| Manganese steels |           |  |
|                  | 13xx      |  |
| Nickel steels    |           |  |
|                  | 23xx      |  |
|                  | 25xx      |  |
| Nickel-chromiu   | im steels |  |
|                  | 31xx      |  |
|                  | 32xx      |  |
|                  | 33xx      |  |
|                  | 34xx      |  |
|                  |           |  |

Plain carbon (Mn 1.00% max) Resulfurized Resulfurized and rephosphorized Plain carbon (Mn 1.00% to 1.65%)

Mn 1.75%

Ni 3.50% Ni 5.00%

Ni 1.25%, Cr 0.65% or 0.80% Ni 1.25%, Cr 1.07% Ni 3.50%, Cr 1.50% or 1.57% Ni 3.00%, Cr 0.77%

Molybdenum steels

40xx

44xx

Mo 0.20% or 0.25% or 0.25% Mo & 0.042 S Mo 0.40% or 0.52%

Chromium-molybdenum (Chromoly) steels

41xx

Cr 0.50% or 0.80% or 0.95%, Mo 0.12% or 0.20% or 0.25% or 0.30%

Nickel-chromium-molybdenum steels

| 43BVxx Ni 1.82%, Cr 0.50%, Mo 0.12% or 0.35%   0.03% min | o, V   |
|----------------------------------------------------------|--------|
| 47xx Ni 1.05%, Cr 0.45%, Mo 0.20% or 0.35%               | ,<br>D |
| 81xx Ni 0.30%, Cr 0.40%, Mo 0.12%                        |        |

Molybdenum steels

40xx

44xx

Mo 0.20% or 0.25% or 0.25% Mo & 0.042 S Mo 0.40% or 0.52%

Chromium-molybdenum (Chromoly) steels

41xx

Cr 0.50% or 0.80% or 0.95%, Mo 0.12% or 0.20% or 0.25% or 0.30%

Nickel-chromium-molybdenum steels

| 43xx   | Ni 1.82%, Cr 0.50% to 0.80%, Mo 0.25%              |
|--------|----------------------------------------------------|
| 43BVxx | Ni 1.82%, Cr 0.50%, Mo 0.12% or 0.35%, V 0.03% min |
| 47xx   | Ni 1.05%, Cr 0.45%, Mo 0.20% or 0.35%              |
| 81xx   | Ni 0.30%, Cr 0.40%, Mo 0.12%                       |
|        |                                                    |

### Nickel-molybdenum steels

| 46xx                     | Ni 0.85% or 1.82%, Mo 0.20% or 0.25%             |
|--------------------------|--------------------------------------------------|
| 48xx                     | Ni 3.50%, Mo 0.25%                               |
| Chromium steels          |                                                  |
| 50xx                     | Cr 0.27% or 0.40% or 0.50% or 0.65%              |
| 50xxx                    | Cr 0.50%, C 1.00% min                            |
| 50Bxx                    | Cr 0.28% or 0.50%, and added boron               |
| 51xx                     | Cr 0.80% or 0.87% or 0.92% or 1.00% or 1.05%     |
| 51xxx                    | Cr 1.02%, C 1.00% min                            |
| Chromium-vanadium steels |                                                  |
| 61xx                     | Cr 0.60% or 0.80% or 0.95%, V 0.10% or 0.15% min |
|                          |                                                  |

Tungsten-chromium steels

72xx

Silicon-manganese steels

92xx

High-strength low-alloy steels

9xx xxBxx xxLxx W 1.75%, Cr 0.75%

Si 1.40% or 2.00%, Mn 0.65% or 0.82% or 0.85%, Cr 0.00% or 0.65%

Various SAE grades Boron steels Leaded steels

# **Structural Steels**

ASTM - Composition, strength, hardness, etc.

- A36 Bridges and buildings
- A515 Pressure vessels, boilers
- A542 Chemical and refinery vessels
- A553 Cryogenic tanks
- A662 Pressure vessels, low temperature

# **Mechanical Properties**

|               | TS   | YS   | Elong. |
|---------------|------|------|--------|
| 1010          | 325  | 180  | 28     |
| 1080          | 800  | 480  | 24     |
| A36           | 400  | 220  | 23     |
| A516 Grade 70 | 485  | 260  | 21     |
| 4340          | 1960 | 1570 | 10     |