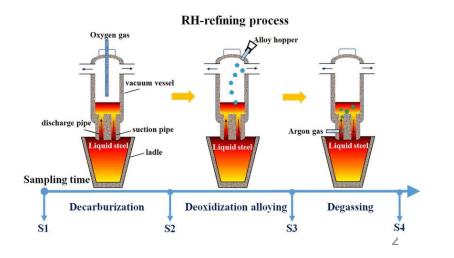
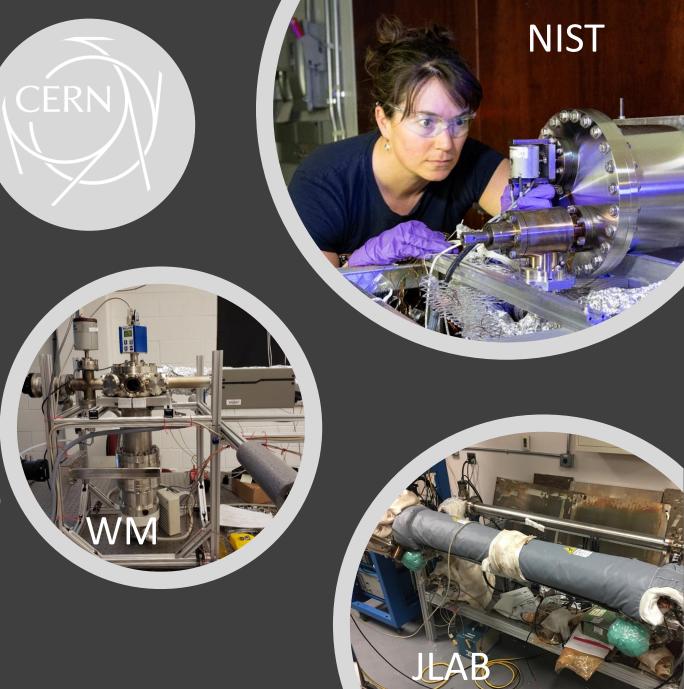
#### A review of recent outgassing studies on mild and stainless steels (mostly mild steel) CERN, JLAB, NIST, WM


Presented by James Fedchak NIST

Beampipes for Gravitational Wave Telescopes 2023 Tuesday March 28 9AM

#### Introduction: Why Mild Steel for Vacuum Systems?

- Commonly used as structural steel or for pipes
- Historically, not considered for UHV systems
- Modern secondary refining processes may reduce H<sub>2</sub>
- Possible low-cost alternative to stainless steel
  - Gravity Wave Detectors
  - Large vacuum systems
- Park et al (2016) obtained excellent outgassing results for 3 Korean mild steels
- CERN, JLAB, NIST & WM have confirmed Park et al's H<sub>2</sub> results
- Pump-down (water outgassing) of mild-steel still a subject of research






# Outline

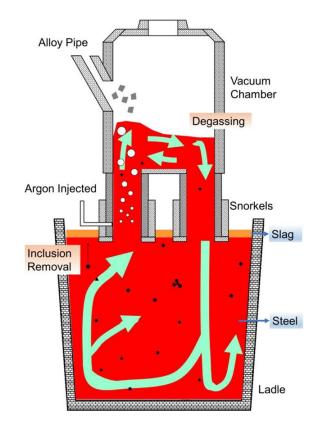
Recent mild-steel results from NIST, JLAB, CERN, W&M:

- Brief History of mild-steel outgassing
- Brief description of apparatus
  - National Institute for Standards and Technology (NIST)
  - Jefferson National Laboratory (JLAB)
  - William & Mary (WM)
  - CERN described in more detail by Ivo and Carlo
- Compare H<sub>2</sub> outgassing results (after 150 °C bake)
- Compare water outgassing results (pumpdown)



# Why Should Mild Steel have low outgassing?

To my knowledge, since 1950s, **mild steel** production **often** uses the **Ruhrstahl-Heraeus** process (RH) or other degassing process for **hydrogen reduction** and decarburization.


• RH is a secondary metallurgy process in which liquid steel is subjected to a vacuum treatment for decarburization and degassing H<sub>2</sub> and O<sub>2</sub>

**Stainless steel** is typically produced from recycled steel in an electric arc furnace

- As produced, most stainless steels contain significant dissolved H<sub>2</sub>
- High temperature **heat-treatment** (vacuum-firing) is required to

We sent out 4 samples for hydrogen concentration testing

| Sample Identification: | <u>Hydrogen</u> |  |
|------------------------|-----------------|--|
|                        | <u>ppm</u>      |  |
| A36 Steel # 1          | 0.5             |  |
| A36 Steel # 2          | 0.5             |  |
| 304L Blank             | 3.6             |  |
| 316L Blank             | 1.9             |  |

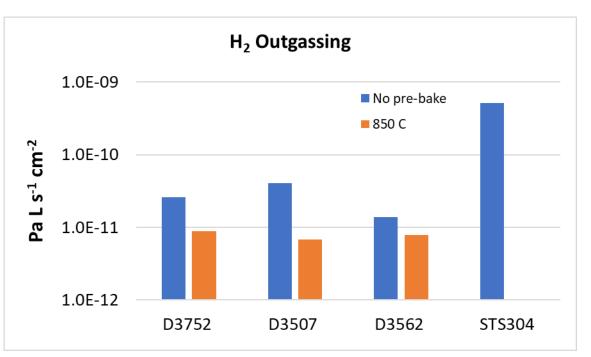


RH process

### Older Literature Values on Mild Steel Outgassing

#### Table 4. Metals

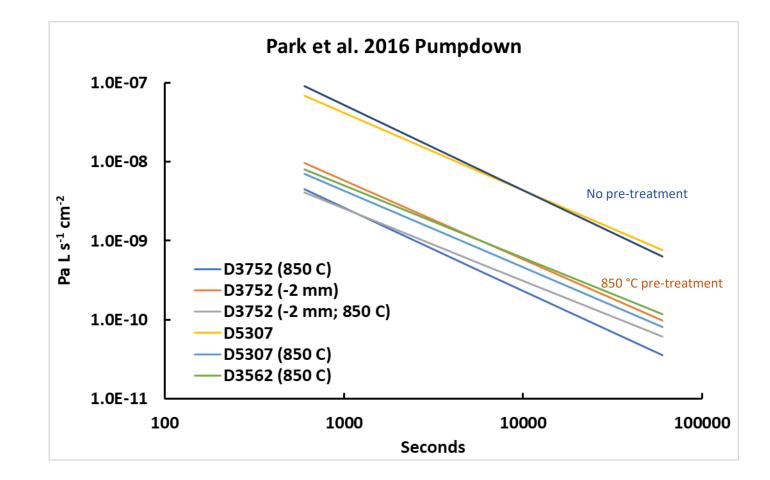
| Material                                  | $K_1$ torr l. s <sup>-1</sup> cm <sup>-2</sup> × 10 <sup>10</sup> | ο α <sub>ι</sub> | $K_{10}$ torr l. s <sup>-1</sup> cm <sup>-2</sup> × 10 <sup>10</sup> | α <sub>10</sub> | Ref |
|-------------------------------------------|-------------------------------------------------------------------|------------------|----------------------------------------------------------------------|-----------------|-----|
| Aluminium (fresh)                         | 63                                                                | 1.0              | 6.0                                                                  | 1.0             | 9   |
| Aluminium (degassed 24 h)                 | 41.4                                                              | 3.2              | 3.06                                                                 | 0.9             | 9   |
| Aluminium (3 h in air)                    | 66.5                                                              | 1.9              | 4.75                                                                 | 0.9             | 9   |
| Aluminium (fresh)                         | 62                                                                | 1.0              | 3.25                                                                 | 0.9             | 9   |
| Aluminium (anodised-2 µm pores)           | 2760                                                              | 0.9              | 322                                                                  | 0.9             | 9   |
| Aluminium (bright rolled)                 | _                                                                 | _                | 75                                                                   | 1               | 13  |
| Duralumin                                 | 1700                                                              | 0.75             | 350                                                                  | 0.75            | 13  |
| Brass (wave-guide)                        | 4000                                                              | 2.0              | 100                                                                  | 1.2             | 13  |
| Copper (fresh)                            | 400                                                               | 1.0              | 41.5                                                                 | 1.0             | 9   |
| Copper (mech. polished)                   | 35                                                                | 1.0              | 3.56                                                                 | 1.0             | 9   |
| OFHC copper (fresh)                       | 188                                                               | 1.3              | 12.6                                                                 | 1.3             | 9   |
| OFHC copper (mech. polished)              | 19                                                                | 1.1              | 1.63                                                                 | 1.1             | 9   |
| Gold (wire fresh)                         | 1580                                                              | 2.1              | 5.1                                                                  | 1               | 9   |
| Mild steel                                | 5400                                                              | 1                | 500                                                                  | 1               | 13  |
| Mild steel (slightly rusty)               | 6000                                                              | 3.1              | 130                                                                  | 1               | 13  |
| Mild steel (chromium plated polished)     | 100                                                               | 1                | 9.0                                                                  | _               | 13  |
| Mild steel (aluminium spray coated)       | 600                                                               | 0.75             | 100                                                                  | 0.75            | 13  |
| Steel (chromium plated fresh)             | 70.5                                                              | 1                | 5.8                                                                  | 1               | 9   |
| Steel (chromium plated polished)          | 91                                                                | 1                | 8.0                                                                  | 1               | 9   |
| Steel (nickel plated fresh)               | 42.4                                                              | 0.9              | 4.94                                                                 | 0.9             | 9   |
| Steel (nickel plated)                     | 27.6                                                              | 1.1              | 2.33                                                                 | 1.1             | 9   |
| Steel (chemically nickel plated fresh)    | 83                                                                | 1                | 7.05                                                                 | 1               | 9   |
| Steel (chemically nickel plated polished) | 52.2                                                              | 1                | 4.6                                                                  | 1               | 9   |
| Steel (descaled)                          | 3070                                                              | 0.6              | 2950                                                                 | 0.7             | 9   |
| Molybdenum                                | 52                                                                | 1.0              | 3.67                                                                 | 1               | 9   |
| Stainless Steel EN58B                     | _                                                                 | _                | 14                                                                   | 1.6             | 13  |
| Stainless Steel 18/9/1 (electro polished) | _                                                                 |                  | 2                                                                    |                 | 15  |
| (vapour degreased)                        | _                                                                 | _                | 1                                                                    | _               | 15  |
| (diversey cleaned)                        | _                                                                 | _                | 3                                                                    | _               | 15  |
| Stainless steel                           | 1750                                                              | 1.1              | 210                                                                  | 0.75            | 13  |
| Stainless steel                           | 900                                                               | 0.7              | 200                                                                  | 0.75            | 13  |
| Stainless steel ICN 472 (fresh)           | 135                                                               | 0.9              | 14.7                                                                 | 0.9             | 9   |
| Stainless steel ICN 472 (sanded)          | 82.8                                                              | 1.2              | 10.4                                                                 | 0.8             | 9   |
| Stainless Steel NS22S (mech. polished)    | 17.1                                                              | 0.5              | 4.6                                                                  | 0.7             | 9   |
| Stainless Steel NS22S (electro polished)  | 42.8                                                              | 1.0              | 4.28                                                                 | 1.0             | 9   |
| Stainless Steel NS22S                     | 144                                                               | 1.3              | 13.5                                                                 | 1.9             | 9   |
| Zinc                                      | 2210                                                              | 1.4              | 322                                                                  | 0.8             | 9   |
| Titanium                                  | 113                                                               | 0.6              | 18.4                                                                 | 1.1             | 9   |
| Titanium                                  | 40                                                                | 1.0              | 3.68                                                                 | 1               | 9   |


Elsey, R. J. (1975). Outgassing of vacuum materials-II. Vacuum, 25(8), 347–361. https://doi.org/10.1016/0042-207X(75)91653-X

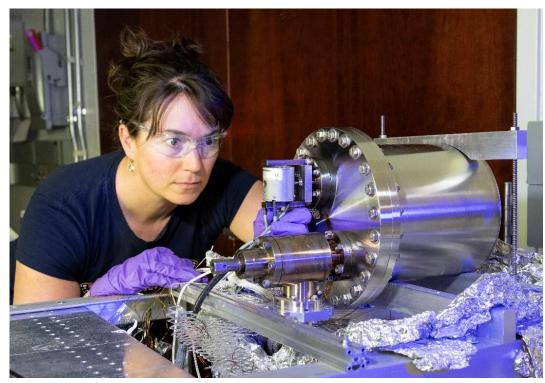
- Elsey (1975) and Ishimori et al (1971), for e.g., show mild steel outgassing higher than stainless steel
- Back in the 1990's, Dylla and Blanchard questioned the values of outgassing for mild steel relative to SS
- According to Park et al. (2016), vacuum degassing was developed in the 1950's, but only 10% of Japanese plants used the process by the 1970's

# Park et al 2016 H<sub>2</sub> Outgassing

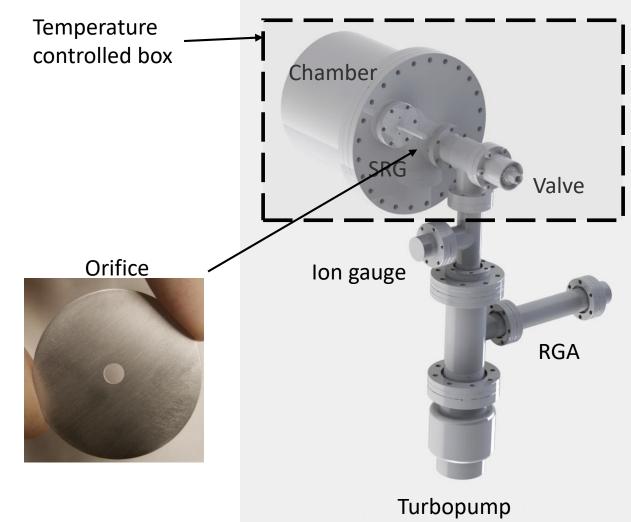
3 Korean Mild Steels Tested: D3752, D307, D3562


- Rate-of Rise (RoR) with spinning rotor gauge (SRG)
- 304 measurements similar to NIST and other benchmarks
- Mild steel better by more than 10X
- 850 °C shows modest improvement
  - (this will not be true for H<sub>2</sub>O outgassing)
- QUESTION: was there a background subtraction for non-mild-steel components?
  - Very important for low outgassing RoR measurements

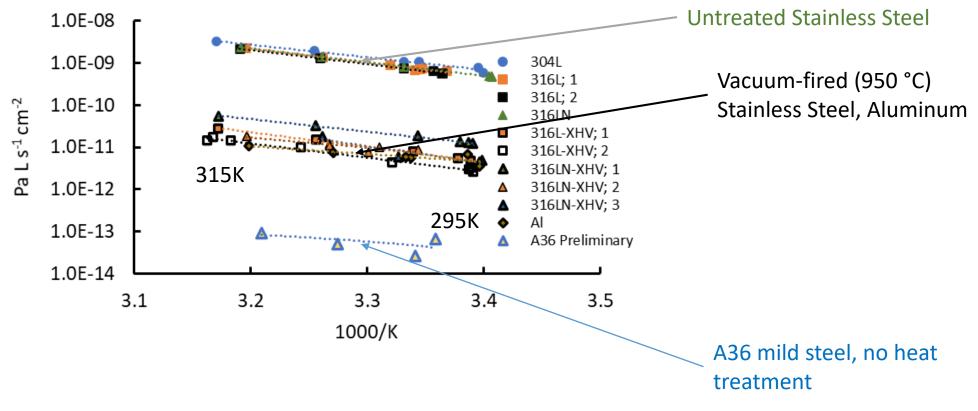



sample chambers were baked at 150 °C for 48 h

## Park et al 2016 Pumpdown Curves


- Outgassing was measured at 24 °C after 48-h in situ bakeout followed by a 5-h N<sub>2</sub> exposure
- Not an air exposure?
- 2 to 3 orders of magnitude lower than stainless steel exposed to air
  - Same slope
- Baking at 850 °C lowed H<sub>2</sub>O outgassing

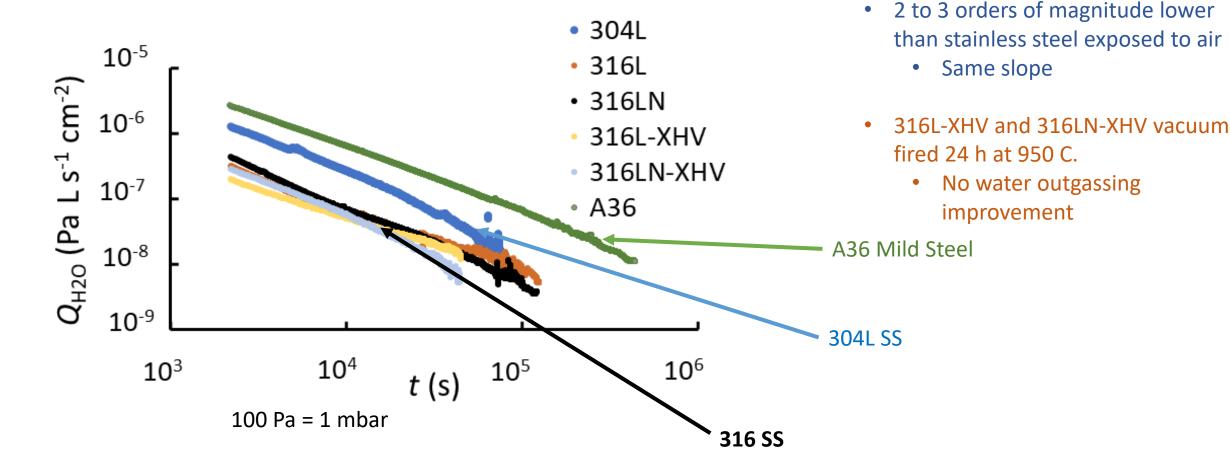



### NIST Outgassing Apparatus

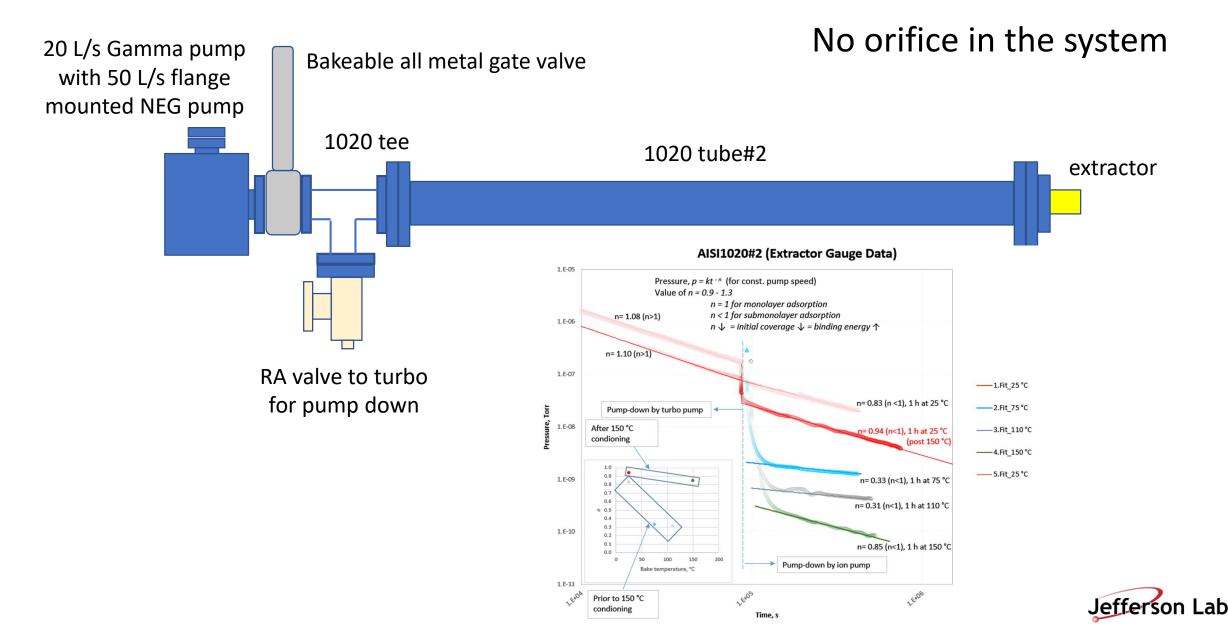


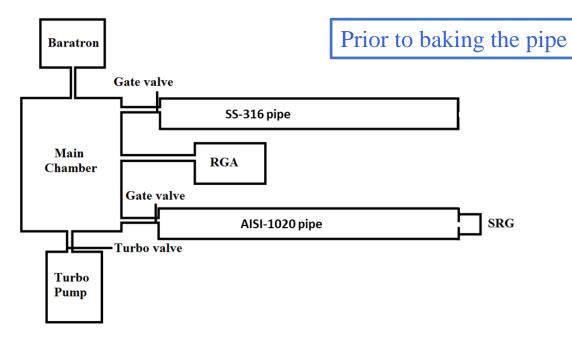
- Published outgassing results for 7 geometrically identical chamber– Applied Vacuum Division
  ≈ 6.4 L
  - ≈ 2000 cm<sup>2</sup>
- H<sub>2</sub> Outgassing: rate of rise (RoR)
- Pumpdown: throughput method
- We add A36 mild steel




# NIST H<sub>2</sub> Outgassing data (A36 PRELIMINARY DATA)

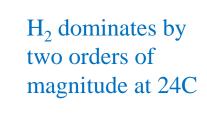



100 Pa = 1 mbar


Chambers baked 125-150 °C for  $\geq$  3 days

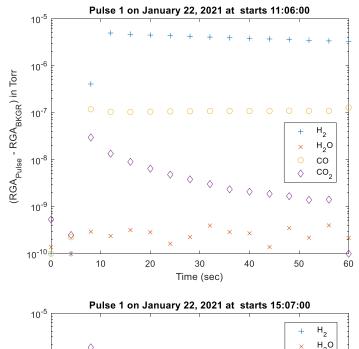
## NIST Water Outgassing data (A36 PRELIMINARY DATA)

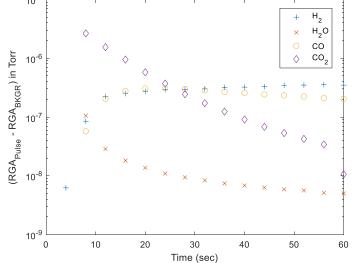



• Exposed to Air





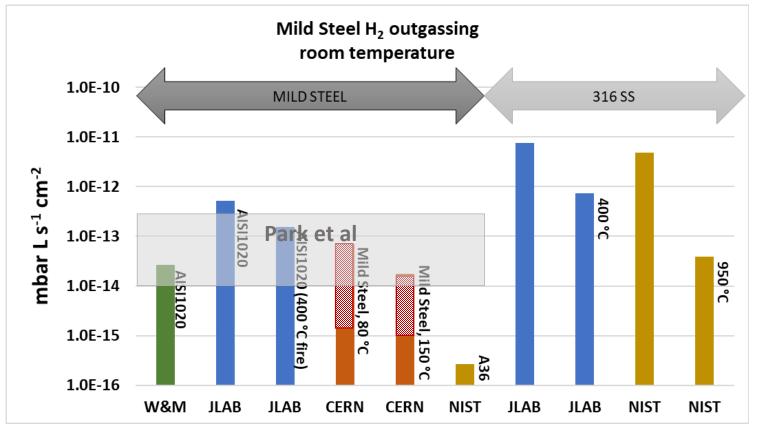

To determine the gas composition, we use a pulse gas release method:


- 1. Begin by closing Turbo (4-5 seconds) to monitor outgassing of main chamber
- 2. Pulse pipe (for 1-3 seconds) to equilibrate pressures. The pipe and the RGA chamber have nearly equal volumes.
- 3. Observe the **time dependent** signals at selected *amu*. With *amu* = [2 14 15 16 18 28 44] scan time is reduced to 2 or 4 seconds.



The  $CO_2::H_2$  ratio increases at temperatures above 60C

 $CO_2$  is 10 times larger than  $H_2$  at 70C.

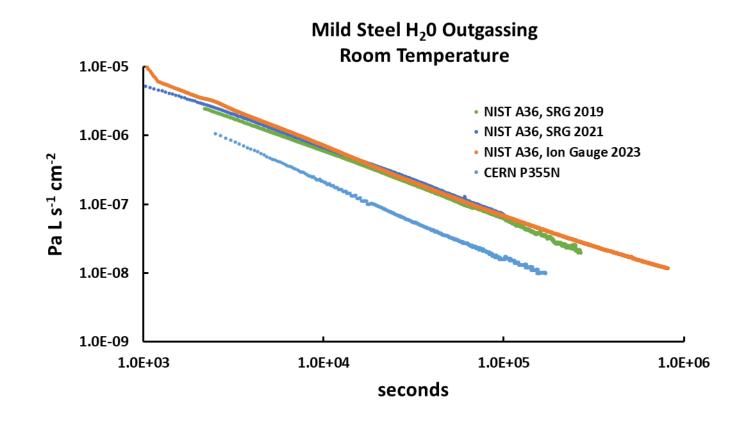





# Mild Steel H<sub>2</sub> outgassing

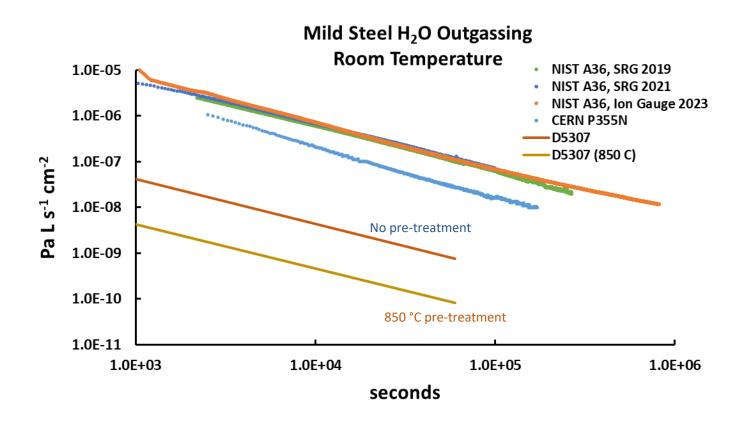
| Lab  | Mild Steel                                    | mbar L s-1 cm-1 |
|------|-----------------------------------------------|-----------------|
| W&M  | AISI1020, 150 °C, 48 h bake                   | 2.6E-14         |
| JLAB | AISI1020, 150 °C, 69 h bake                   | 5.2E-13         |
| JLAB | AISI1020 (pre-bake 400 °C), 150 °C, 48 h bake | 1.5E-13         |
| CERN | Mild Steel, 80 °C, 48 h                       | 1.5E-15         |
| CERN | Mild Steel, 80 °C, 48 h                       | 7.0E-14         |
| CERN | Mild Steel, 150 °C, 48 h                      | 1.0E-15         |
| CERN | Mild Steel, 150 °C, 48 h                      | 1.7E-14         |
| NIST | A36, 299 K, 100-150 C bake, 5 days            | 2.6E-16         |

| Lab  | Stainless Steel                      | mbar L s-1 cm-1 |
|------|--------------------------------------|-----------------|
| JLAB | SS316, 150 °C, 48 h bake             | 7.6E-12         |
| JLAB | SS316 (pre-bake 400 °C) 150 °C, 49 h | 7.3E-13         |
| NIST | 316L                                 | 4.9E-12         |
| NIST | 316L-XHV (950 °C Fire)               | 3.9E-14         |




- 150 °C, minimum 48 hour bakes (except where noted)
- All exposed to air before bake
- Other constituents (H<sub>2</sub>O, CO CO<sub>2</sub>) likely present

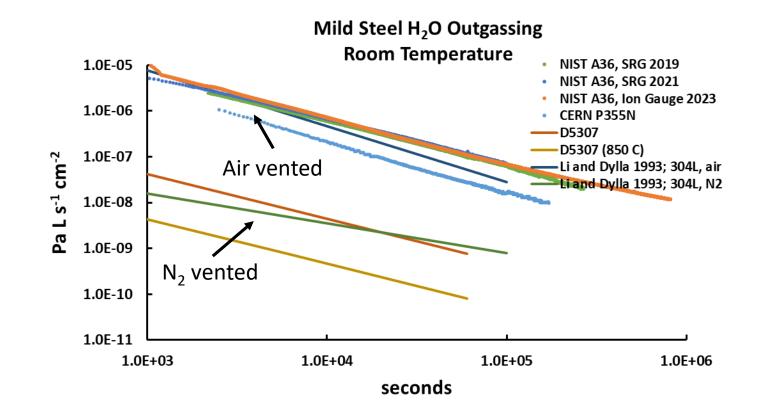
Evidence suggests that for a wide variety of mild steels H<sub>2</sub> outgassing will not be a concern for most applications


#### Mild Steel H<sub>2</sub>O Outgassing Comparison Throughput Method: NIST & CERN

- NIST has measured A36 3 times over 4 years
  - Two different gauges: SRG & IG
  - Very consistent measurements
- CERN measured 355N mild steel
  - 355N may be close to order of magnitude lower than A36
  - Similar slope



#### Mild Steel H<sub>2</sub>O Outgassing Comparison Throughput Method: NIST, CERN & Park


- Park et al 2016 results for D3507 (Korean) are 1 to 3 orders of magnitude lower
  - They probably vented with N<sub>2</sub> not air
- Similar slope to CERN and NIST



#### Mild Steel H<sub>2</sub>O Outgassing Comparison Throughput Method: NIST, CERN, Park, & Dylla

- Li & Dylla 1993 vented with air and dry N<sub>2</sub>
- CERN & NIST Data same order of magnitude as air vented 304L SS
- Slope of mild steel may be slightly slower for mild steel
- Park et al 2016 results similar order of magnitude to N<sub>2</sub> vented 304L SS

Pumpdown of mild steel from air may not be any improvement over 304L SS. It may be a little worse.



# Wrapping up ...

- Untreated Mild Steel H<sub>2</sub> outgassing is superior to stainless steel
  - Likely as good as, if not better than, Ti, vacuum-fired SS, or Al
- Water outgassing of untreated mild steel is similar to, or maybe worse, than stainless steel
- There is an indication that heat treatment improves mild steel water outgassing performance
  - Stainless steel water outgassing is not improved by this

#### <u>Going forward</u>:

- Modifying mild steel surface may improve water outgassing
  - We want to develop a process for magnetite coating
  - Test Magnetite coated mild steel for water outgassing
- Still need full investigation of water outgassing as a function of temperature



Aspect of the internal surface after accumulation measurements

Aspect of the inte pressure med

# Thank You!

Many thanks to Emmanuel Newsome, Fred Dylla and the folks at JLAB, WM, & CERN!

NIST

#### References

• BLEARS, J., GREER, E. J., & NIGHTINGALE, J. (1960). "Factors Determining the Ultimate Pressure in Large High-vacuum Systems. In Fundamental Problems in Vacuum Techniques Ultra-High Vacuum" (Vol. 20, Issue 3896, pp. 473–480). Elsevier. https://doi.org/10.1016/B978-1-4832-8302-9.50099-5

• Ishimori, N. Yoshimura, S. Hasegawa, and H. Oikawa, J. Vac. Soc. Jpn. 14, 295 (1971). "Outgassing Yoshio Rates of Stainless I Steel after Different Pretreatments"

• Elsey, R. J. (1975). Outgassing of vacuum materials-II. Vacuum, 25(8), 347–361. https://doi.org/10.1016/0042-207X(75)91653-X

• Li, M., & Dylla, H. F. (1993). Model for the outgassing of water from metal surfaces. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 11(4), 1702–1707. <u>https://doi.org/10.1116/1.578482</u>

• Park, C., Ha, T., & Cho, B. (2016). Thermal outgassing rates of low-carbon steels. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 34(2), 021601. <u>https://doi.org/10.1116/1.4936840</u>

• Fedchak, J. A., Scherschligt, J. K., Avdiaj, S., Barker, D. S., Eckel, S. P., Bowers, B., O'Connell, S., & Henderson, P. (2021). Outgassing rate comparison of seven geometrically similar vacuum chambers of different materials and heat treatments. Journal of Vacuum Science & Technology B, 39(2), 024201. <u>https://doi.org/10.1116/6.0000657</u>