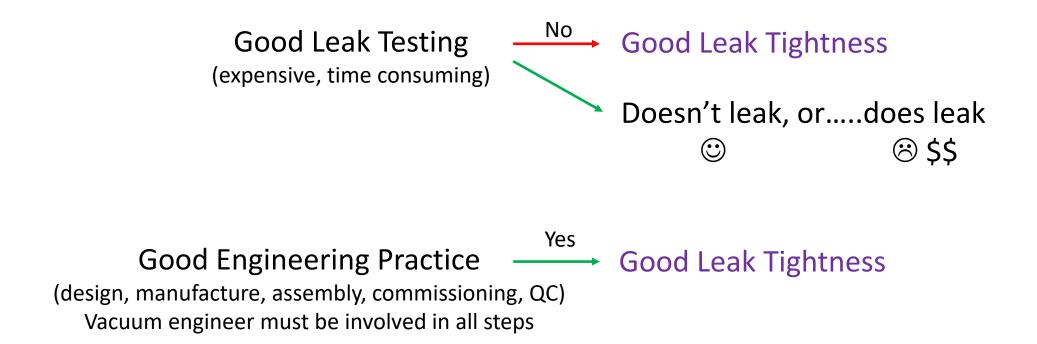
Beam Pipes for Gravitational Wave Telescopes 23-27 March 2023, Geneva.

Leak Detection: component production to system installation


Paul Cruikshank, TE-VSC, CERN

with inputs from P. Chiggiato, A. Grimaud, W. Maan, J. Perez Espinos, C. Scarcia, J. Somoza Ferreira

Outline

- Introduction
- Testing considerations & strategies
- Testing without flanges
- Cost (gu)estimates
- Summary

Opening Remarks....

Gravitation Wave Telescopes are a new adventure for us so please guide us as much as possible !

LHC Insulation Vacuum

• A few numbers.....

Characteristic	Quantity for LHC machine & distribution line (QRL)
Insulation vacuum system length	22,4 km & 25 km
Welds	~ 200 000 (> 60 000 in-situ)
Weld length	~ 100 000 m
Elastomer joints	~ 18000
Elastomer joint length	~ 22 000 m
Multi-layer insulation	~ 9 000 000 m ² or 200 m ² /m of cryostat
Vacuum subsectors	234
Vacuum subsector length	214 m (machine) & 428 m (QRL)
Vacuum subsector volume	~ 80 m ³
Fixed turbo pumps	178
Nominal turbo pumping speed	0,25 l/s/m of cryostat
Fixed vacuum gauges	974
Mobile turbo pumping groups	36
Mobile primary pumping groups	36

Machine	Туре	Year	Energy	Bakeout	Pressure [mbai	r] Length
inacs, Booster, ISOLDE, PS, n	-TOF and Antima	ter				2.6 Km
Linac 4	linac	2018	160 MeV	ion pumps	10 ⁻⁷	40 m
ISOLDE	electrostatic	1992	60 keV	_	10 ⁻⁶	150 m
REX-HIE ISOLDE	linac	2001-2016	5.5 MeV/u	partly	10 ⁻⁷ -10 ⁻¹²	50 m
MEDICIS		2017	_	_	10 ⁻⁶	10 m
Linac 3	linac	1994	4.2 MeV/u	ion pumps	10 ⁻⁸	30 m
LEIR	accumulator	1982/2005	72 MeV/u	complete	10 ⁻¹²	78 m
PSB	synchrotron	1972-2020	1-2 MeV	ion pumps	10 ⁻⁹	157 m
PS	synchrotron	1959	26 GeV	ion pumps	10 ⁻⁹ -10 ⁻¹⁰	628 m
AD	decelerator	1999	100 MeV	complete	10 ⁻¹⁰	182 m
ELENA	decelerator	2016		complete	10 ⁻¹²	31 m
PS to SPS TL	transfer lines	1976	26 GeV	_	10 ⁻⁸	1.3 km
SPS complex			1	1		15.7 Km
SPS	synchrotron	1976		extractions	10 ⁻⁹	7 km
SPS North Area		1976			10 ⁻³ -10 ⁻⁸	1.2 km
SPS HiRadMat	transfer line	2011	450 GeV	_	10 ⁻⁸	1.4 km
SPS to LHC TL		2004/06		_	10 ⁻⁸	2 x 2.7 km
AWAKE	wakefield acc	2017		_	10 ⁻⁸	730 m
LHC		1	1	1		109 Km
LHC Arcs (Beam vacuum)					<10 ⁻⁸	50 km
LHC Arcs (insulation vacuum)						50 Km
LSS RT separated beams	collider	2007	2 x 7 TeV		10	2 x 3.2 km
LSS RT recombination				complete	<10 ⁻¹⁰	570 m
Rxperimental areas						180 m
Beam dump lines TD62/68	transfer lines	2006	7 TeV	_	10 ⁻⁸	2 x 720 m
				Hig	h Vacuum	≈ 12
					HV-XHV	≈ 65
				Insula	tion vacuum	≈ 50
						≈ 127 kr

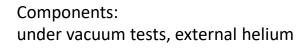
Vacuum of CERN's accelerators

Typical ET Build Sequence

Arm Vacuum - System Total length (m)	120000
Arm Vacuum - System length (m)	10000
Arm Vacuum - Vacuum Sector length (m)	5000
Arm Vacuum - Pipe String length (m)	312.5

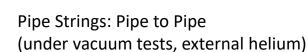
- Components: Manufacture 'Pipes' & 'Pumping Modules'
 - Inspect, clean, condition?, helium leak test, vacuum characteristation?, wrap?,
- Assemblies: Weld Pipes into x00 m 'Strings'
 - Inspect, clean?, pump, helium leak test new welds,
- 'Vacuum Sector': Weld 'Pumping Modules' between 'Strings'
 - Inspect, clean?, instrument, pump, helium leak test <u>new welds & CF instr flanges</u>, bake, global tests.

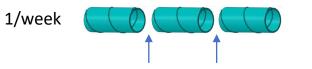
Vacuum System Item	Qty	Leak te	ests/day
		Factory	On-site
Arm Pipe (15m unit length, Ø 1.2 m)	8000	20/day	
Arm Pumping Module (1m unit /312.5m)	385	~ 1/day	
Arm Pipe String (312.5m lengths)	384		~ 1/day
Arm Vacuum Sectors (5000 m length)	24		~1/month

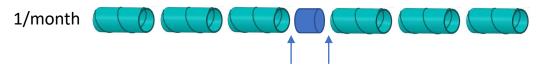

What leak test delivery rates to achieve ? I've assumed a 2 yr build period, ~ 400 working days.

Leak Testing: What could leak ?

- Ex-situ (components)
 - 15m Pipe
 - longitudinal weld (spiral or straight)
 - circumferential welds (if any)
 - material through-wall defects (porosity, inclusions, damage, weld arc errors, ..)
 - 1 m Pumping Module
 - welds, material defects, flange NC,...


- In-situ (x00 m Pipe Strings)
 - Pipe to Pipe circumferential welds
 - Degradation of validated components (transport, corrosion, etc)


- In-situ (5 km Vacuum Sector)
 - Pipe to Pumping Module circumferential welds
 - Vacuum Instrumentation CF flange connections



1/day

Vacuum Sector: Pipe String to Pipe String

Leak Testing Considerations

⇒ Assume manufacture/installation in 400 working days.
⇒ Use COTS vacuum equipment – mobile pumping groups, MSLD, etc.

Qty

8000

385

384

24

Big infrastructure cost

& space needs

Factory

*20/day

~ 1/day

Signal rise time (& recovery time) needs to be considered

 $P_{He} = \frac{q}{S_{eff, He}} \left(1 - e^{-\frac{I}{(V/S_{eff, He})}}\right)$

 $\tau = \frac{V(liters)}{S_{eff}(liters / s)}$

Time constant (s)

(with Seff 1000 l/s)

~ 15

~ 1

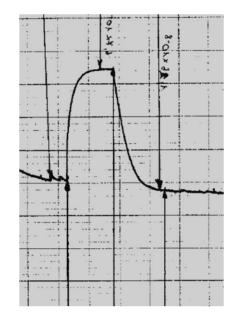
~ 312

~ 5000

Volume

(m3)

~ 15


~ 1

~ 312

~ 5000

S_{eff} needs to be in

~ 10000 l/s range

 $P_{He} = \frac{q}{S_{eff, He}} \left(e^{-\frac{\iota}{(V/S_{eff, He})}} \right)$

Assume target tightness: 10⁻¹⁰ mbarl/s per component (yes?)

Vacuum System Item

Arm Pipe (15m unit length, Ø 1.2 m)

Arm Vacuum Sectors (5000 m length)

Arm Pipe String (312.5m lengths)

Arm Pumping Module (1m unit /312.5m)

Leak tests/day

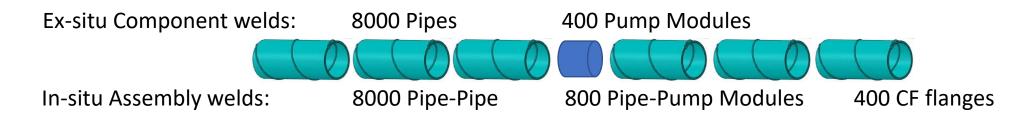
On-site

~ 1/day

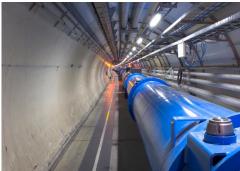
~1/month

Leak Testing: Strategy Options

Leak Test Strategy	Fixed Costs (std tests)	Variable Costs (leaks)
'Max' Testing Strategy (classic, preventive approach)	Ex-situ: 100 % Component leak test (\$\$\$), In-situ: 100 % Subsector leak test(\$\$), In-situ: Vacuum Sector leak test (\$),	NC localisation, repairs & retest (\$) NC localisation, repairs & retest (\$) NC localisation, repairs & retest (\$)
'Mid' Testing Strategy	In-situ: 100 % Subsector leak test(\$\$), In-situ: Vacuum Sector leak test (\$),	NC localisation, repairs & retest (\$\$) NC localisation, repairs & retest (\$)
'Min' Strategy (corrective approach)	In-situ: Vacuum Sector test (\$)	NC localisation, repairs & retest (\$\$\$)


Max, Mid or Min approach ?

Leak Test Strategy will depend on:


- ⇒ How many leak we expect to get (past experience from similar projects),
- ⇒ Fixed cost of 100% component test vs Variable costs of leak repairs in-situ
- \Rightarrow Solutions for in-situ leak localization
- \Rightarrow Solutions for in-situ leak repairs
- ⇒ Other constraints eg all 8000 Pipes need individual insulation/bakeout/vacuum characterizated before installation ?
- ⇒ Approach can be changed/tailored during execution.....

How many leaks ?

- LIGO experience on 20 m Pipes (report P990023-00-B)
 - Auto welding \Rightarrow visual inspection (plus x-ray or US ?) \Rightarrow manual weld repairs \Rightarrow leak test.
 - No leaks on ~ 1000 tube/components. Statistics on in-situ leaks to be gathered
- VIRGO experience
 - Statistics on component & in-situ leaks to be gathered
- LHC experience on insulation vacuum
 - Zero leaks on spiral weld of dipole cryostats (~ 1350 units)
 - Leaks of <u>1-5 ‰ welds</u> in overall project ~ 200k welds (auto & manual)
 - 2d inclusions, Cu contamination, poor manual/auto execution, damage, etc.
 - Some leaks only appear during or after cold thermal cycle
- Applying LHC experience to ET Arm Vacuum (120 km)
 - ~ 10000 ex-situ welds ⇒ qty of leaks: 10 50 range (< 1 % of Pipes may leak)
 - ~ 10000 in-situ welds ⇒ qty of leaks: 10 50 range (< 1 leak / km)

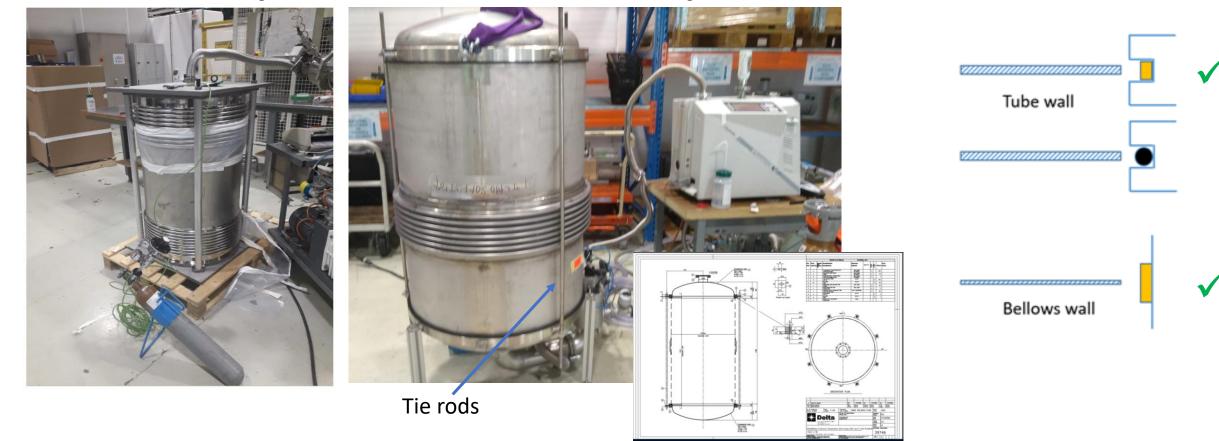
Vacuum Vessel Testing: With/without flanges

ARIA Cryostats without flanges -

LHC Cryostats with flanges

Leak Testing without flanges - ARIA experience (300m tall Ar distillation column)

28 cryogenic pipe elements



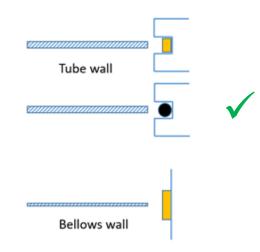
29 bellows elements

End Sealing without flanges

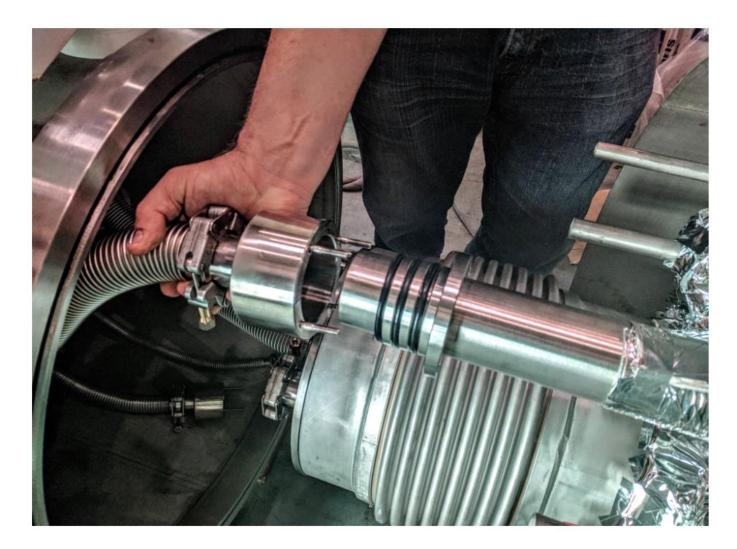
DCM bellow – end flanges

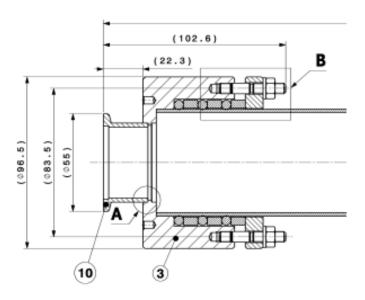
ARIA bellow – Ø723 mm, no flanges, 4 mm wall

End sealing without flanges

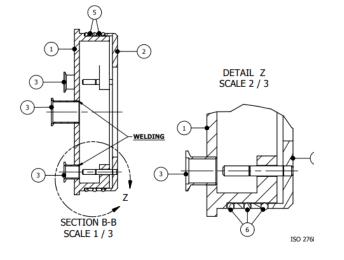

4 mm wall

Tie rods





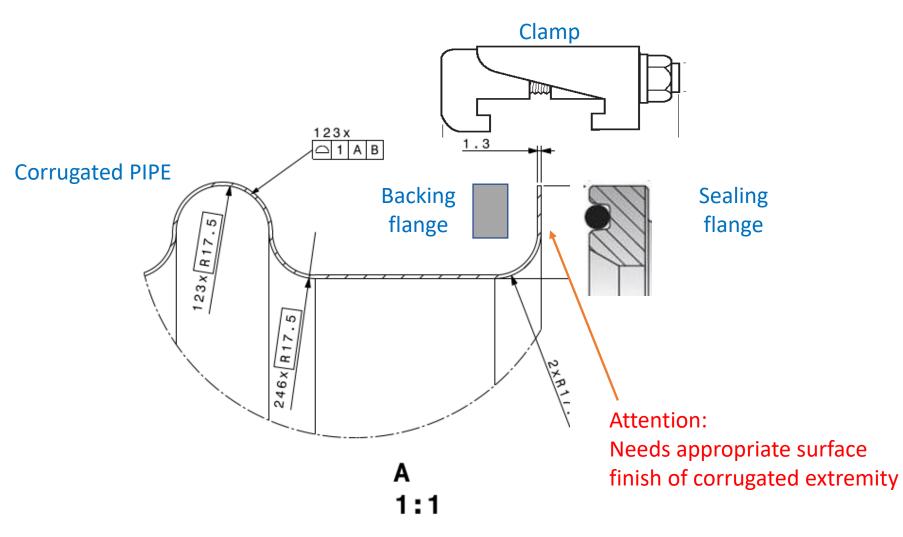
End Sealing – no flanges



Triplet o-rings to prevent helium permeation

End plug sealing on internal tube surface

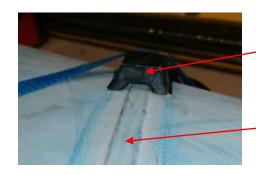
Sealing – no flanges


Smoothing of the longitudinal weld seam

End Sealing – no flanges

Inflatable plug solution

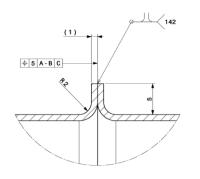
End Sealing – no flanges

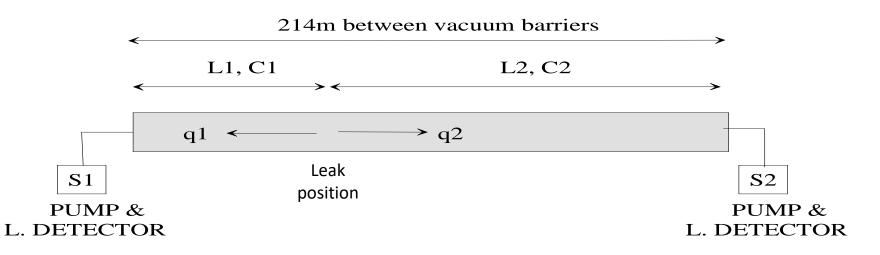

Helium delivery during 'under vacuum' testing ?

He delivery options:

- ⇒ Jet (not ideal for global test on large volumes)
- ⇒ Total immersion (ext pocket, ext secondary chamber)
 - ⇒ Large helium cost
 - \Rightarrow Rise in helium background in air
 - \Rightarrow Complex tooling to recovery helium
- \Rightarrow Local channel at weld to deliver external helium:
 - ⇒ At longitudinal weld (spiral or straight)
 - \Rightarrow At circumferential weld

- ⇒ External vacuum clamshell, internal helium
 - ⇒ At Pumping Module circumferential welds
 - ⇒ Helium (jet) delivery thro pumping port




Temporary channel at the weld bead

Spiral weld

Leak localization in Pipe Strings

Method was used for leak localization in LHC internal helium circuits

'Under vacuum' leak test in molecular flow conditions:

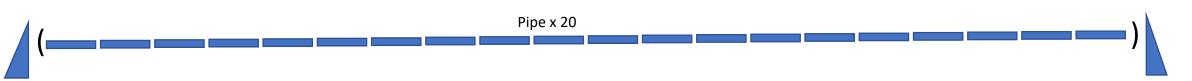
- 2 identical turbo pumps at each extremity, plus leak detectors
- Helium as tracer gas.
- Measurements are made with system in equilibrium conditions.

Linear conductance of vacuum system, so C \propto 1/L

```
For S >> C1 or C2: q1/q2 \propto C1/C2 \propto L2/L1
```

Ratio of He signal arriving at each detector is inversely proportional to its distance from the leak

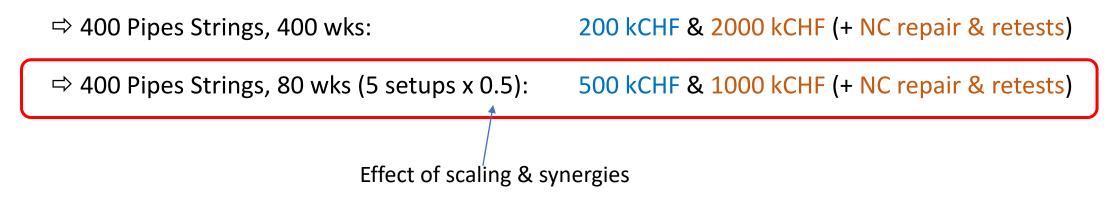
Leak Testing Costs - Pipes

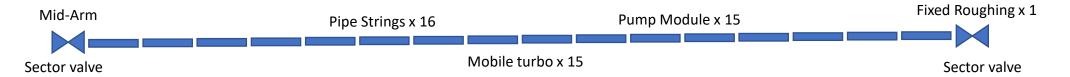


- Pipes (15m components)
 - Equipment costs for 2 leak test benches
 - 2 benches 60k, 2 pumping systems 100k, 2 leak detectors 40k = 200 kCHF
 - Dedicated facility of 150 m² @ 2 kCHF/m² = 300 kCHF (not including land purchase, in/out storage areas, handling, transport logistics, etc)
 - Manpower
 - 2 vacuum technicians producing 2 leak tests/day = 0.5 kCHF/test
 - 2 vacuum technicians localizing 1 leak, repair and retest = 1 kCHF/NC repair & retest

⇒ 8000 Pipes in 4000 days (2 benches): 500 kCHF & 4000 kCHF (+ NC repair & retest)

⇒ 8000 Pipes in 400 days (20 benches x 0.5): 2500 kCHF & 2000 kCHF (+ NC repair & retest)


Leak Testing Costs: Pipe Strings


- Pipes Strings (312 m)
 - Equipment costs for 1 leak test setup:
 - 2 mobile end caps (20k) , 2 mobile fixed points (20k) = 40 kCHF
 - 1 mobile roughing (60k), 2 mobile 700 l/s turbos* (60k), 2 leak detectors (40k) = 160 kCHF

Manpower

- 2 technicians producing 1 leak test/week = 5 kCHF/test
- 4 technicians localizing 1 leak, repair & retest = 10 kCHF/NC repair & retest

Leak Testing Costs – 5 km Vacuum Sectors

- Pipe Strings (312 m)
 - Equipment costs for 1 leak test setup
 - 1 fixed roughing unit (0 CHF)
 - 15 mobile 700 l/s turbos* (450 kCHF), 5 leak detectors (100 kCHF)
 - Manpower
 - 2 technicians producing 1 leak test/month = 20 kCHF/test
 - 4 technicians localizing 1 leak, repair & retest = 40 kCHF/NC repair & retest

⇒ 24 Vacuum Sectors in 24 months: 550 kCHF & 480 kCHF (+ NC repair & retests)

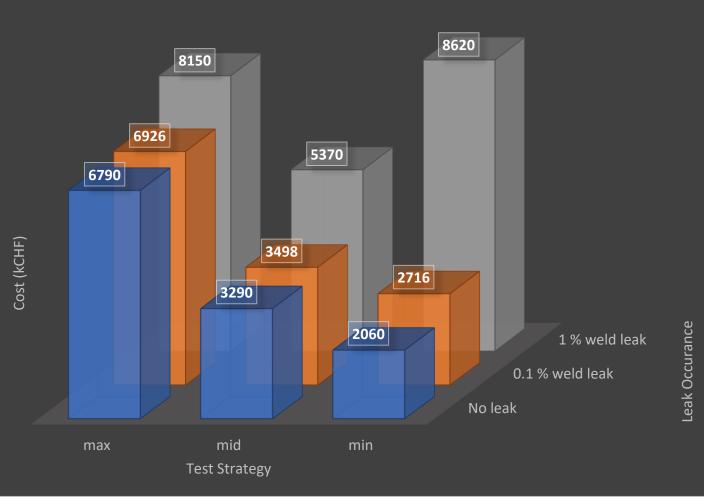
Leak Test Cost v Strategy v Leak Occurrence

			Fixed	Cost	Test	Strategy				Variable	e Costs	3
To test	Leak test type	Qty			Max	Mid	Min	Cost	1 %	io leak	10 %	‰ leak
		weld	Equipment	Manpowe	Pipe,String,Sector	String,Sector	Sector	1 leak	Qty	Cost	Qty	Cost
			(kCHF)	(kCHF)	(kCHF)	(kCHF)	(kCHF)	(kCHF)		(kCHF)		(kCHF)
8000 Pipes	Ex-situ Pipe weld	8000	2500	2000	4500			1	8	8	80	80
400 Strings	In-situ Pipe weld	8000	0	1000		1000		10	8	80	80	800
400 Strings	In-situ Pipe-Pipe weld	8000	500	1000	1500	1500		10	8	80	80	800
24 Sectors	In-situ String-String & CF	1200	550	240	790	790		40	1.2	48	12	480
24 Sectors	In-situ Pipe weld	8000	550	480			1030	40	8	320	80	3200
24 Sectors	In-situ Pipe-Pipe weld & CE	8400	550	480			1030	40	8.4	336	84	3360
	Total fixed costs (no leaks)				6790	3290	2060					
	Variable cost 1‰ leak				136	208	656					
	Fixed + Variable 1 ‰ leak				6926	3498	2716					
	Variable cost 10 ‰ leak				1360	2080	6560					
	Fixed + Variable 10 ‰ leak				8150	5370	8620					

Leak Test Cost v Strategy v Leak Occurrence

Max Strategy:

- Low risk
- Early warning of leak issues
- Dominated by component testing costs


Min Strategy:

- High risk (high confidence)
- Dependent on low leak occurance
- Potential minimum cost

Mid Strategy

- Medium risk
- Higher leak occurance can be tolerated wrt cost.
- Can review strategy dependent on field results.

120 KM ET ARMS: LEAK TEST COSTS

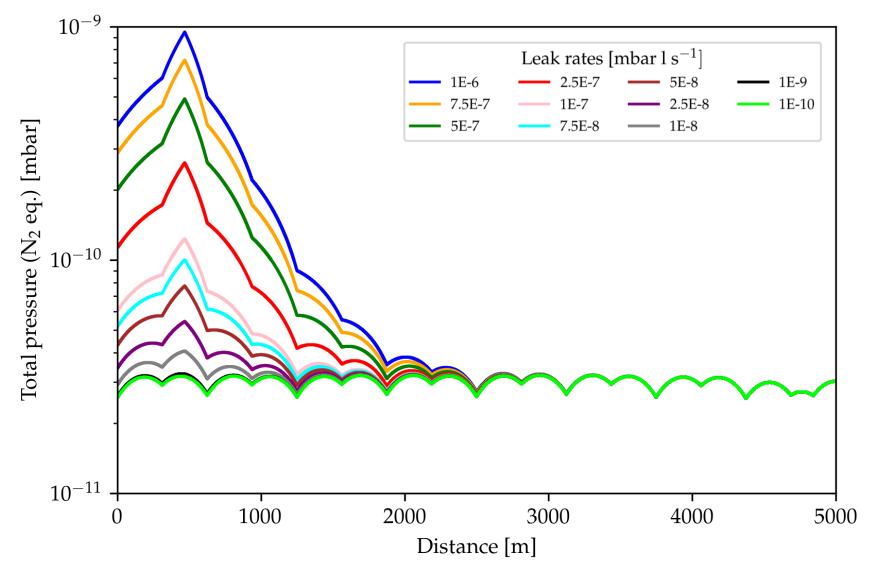
ET Leak Test Strategy – brainstorming !

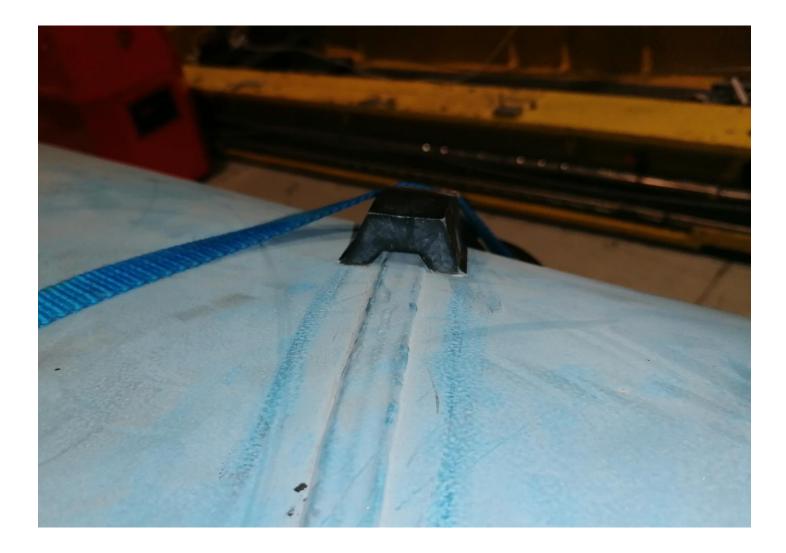
⇒ assume leaks in low ‰ range by stringent control on material & welding quality
⇒ adopt 'Mid' strategy, but with some targeted checking of Pipes as components

- Step 1 Components, ex-situ
 - Leak test first 100 Pipes (eliminate systematics)
 - Leak test every 20th Pipe (avoid production deviations, cleanliness check, etc)
 - Leak test every Pump Module
- Step 2a 312 m Pipe Strings, in-situ
 - Pump & leak test longitudinal & circumferential Pipe welds
- Step 2b 5000 m Vacuum Sector, in-situ
 - Clamshell test Pipe to Pumping Module welds
 - Pump & leak test fully equipped Sector prior to bakeout

100 tests ~ 400 tests ~ 400 tests

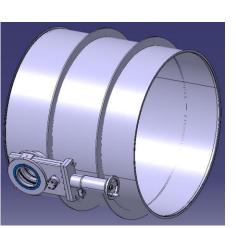
~ 400 tests


24 tests


- Good engineering is better than good leak detection.
- We can build upon the leak testing experience (good & bad) from existing GWD and LHC type accelerators.
- Standard leak testing equipment and methods can be applied, but care must be taken with large volumes.
- Different leak testing strategies can be considered each has its merits and drawbacks with respect to duration, cost, risk.....and we need to remain flexible based on return of experience.
- Testing strategy will strongly depend on the Pipe manufacturing & installation techniques, together with our confidence level wrt to leak occurance
- Solutions exist to close vacuum vessels without flanges.
- Cost (gu)estimates should be considered as a starting point for discussions. Need to check double counting of vacuum equipment costs eg mobile pumping groups already included elsewhere.
- There are no showstoppers, so "Let's get to work......" on more brainstorming.

Thanks for your attention !

Air leak: impact on total pressure



Duration(days)	312 m String - leak test activities			
1	installation temporary end caps, fixed points	s, mobile	pumping	systems
1	roughing (Saturday)			
1	turbo (Sunday)			
1	leak test (including system calibration)			
1	leak test			
1	margin, problem solving,			
1	vent, removal fixed points, transport to next	test zone	9	
7				
Duration (days)	5 km Vacuum Sector - leak test activities			
4	Clamshell test of each Pump Mod weld			
	Clamshell test of each Pump Mod weld Roughing (8 edays), moile pumping groups			
6				
6 3	Roughing (8 edays), moile pumping groups			
6 3 5	Roughing (8 edays), moile pumping groups Turbo pumping			
6 3 5 1	Roughing (8 edays), moile pumping groups Turbo pumping Leak test (including system calibration)	zone		

Leak Testing Cost Estimate – Pumping Modules

- Pumping Modules (1m components)
 - Equipment costs for leak test bench
 - 1 bench 40k, 1 pumping system 40k, 1 leak detector 20k = 100 kCHF
 - Manpower
 - 1 vacuum technician producing 1 leak test/day = 0.5 kCHF/test

⇒ 400 Pumping Modules in 400 days: 100 kCHF & 200 kCHF (+ 1% NC)

