

ePump (error PDF Update Method Package)

Carl Schmidt
Michigan State University

- PRD98 (2018) 9, 094005 CS, J. Pumplin, C.-P. Yuan
- PRD99 (2019) 5, 054004 C. Willis, R. Brock, D. Hayden, T.-J.Hou, CS, C.-P. Yuan
- PRD100 (2019) 11, 114024 T.-J.Hou, Z. Yu, S. Dulat, CS, C.-P. Yuan
- Others...

Why ePump?

Global Analysis:

What if we want to see the effects of new experiments Exp1', Exp2',...?

- Full global analysis code takes a long time to run.
- Requires detailed info of all other included experiments.

ePump provides two tools: UpdatePDFs, OptimizePDFs

ePump: UpdatePDFs

- Only requires new experiments Exp1', Exp2' (or pseudo-data).
 - Old experimental info is contained in Error PDFs
- Only requires theory predictions calculated with current best-fit/error PDFs
 - With these input, it runs fast, ~few seconds on MacBook Pro

Hessian Updating

- PDF parametrization $f(x,Q;\mathbf{z})$: (parameters \mathbf{z}) best-fit: $f^0 = f(x,Q;\mathbf{0})$, error PDFs: $f^{\pm i} = f(x,Q;\pm \mathbf{e}^i)$
- Updated Chi-square function:

$$DC^{2}(\mathbf{z}) = DC_{\text{old}}^{2}(\mathbf{z}) + (X_{a}^{E} - X_{a}(\mathbf{z}))C_{ab}^{-1}(X_{b}^{E} - X_{b}(\mathbf{z}))$$

• Hessian approximation :

$$DC_{old}^{2}(\mathbf{z}) = T^{2}\mathbf{z}^{2}$$
 ($T = \text{tolerance parameter}$)

$$X_{\alpha}(\mathbf{z}) = X_{\alpha}(\mathbf{0}) + \Delta X_{\alpha} \cdot \mathbf{z}$$
 with $DX_{\alpha}^{i} = \frac{1}{2} \left(X_{\alpha} \left(+ \mathbf{e}^{i} \right) - X_{\alpha} \left(- \mathbf{e}^{i} \right) \right)$

• Minimize to find new best fit:

$$\mathbf{z}_{\text{new}}^{0} = (\mathbf{1} + \mathbf{M})^{-1} \mathbf{A} \qquad \text{with} \qquad A^{i} = \frac{1}{T^{2}} \left(X_{\partial}^{E} - X_{\partial} (\mathbf{0}) \right) C_{\partial b}^{-1} D X_{b}^{i}$$

$$M^{ij} = \frac{1}{T^{2}} D X_{\partial}^{i} C_{\partial b}^{-1} D X_{b}^{j}$$

Updated PDF set

- New best-fit PDF: $f_{\text{new}}^0 = f^0 + \Delta f \cdot \mathbf{z}$
- New error PDFs: $f^{\pm(r)} = f_{\text{new}}^0 \pm \frac{1}{\sqrt{1+\lambda^{(r)}}} \Delta f \cdot \mathbf{U}^{(r)}$ where $f^{(r)}$ and $f^{(r)}$ are the eigenvalues and eigenvectors of matrix \mathbf{M}

- Extensions :
 - Best choices for Δf within the linear approximation
 - Dynamical tolerances: $\pm \mathbf{e}^i \triangleright \pm (T^{\pm i}/T)\mathbf{e}^i$
 - · Inclusion of diagonal quadratic terms in expansion of $X_{a}(\mathbf{z})$
 - Direct update of other observables :

$$Y_{\text{new}}^{0} = Y^{0} + \Delta Y \cdot \mathbf{z}$$
, $|\Delta Y| = \Delta Y \cdot (\mathbf{1} + \mathbf{M})^{-1} \cdot \Delta Y$

How to use ePump

(Auxiliary Theory Files may also be included to update predictions for observables not included in fit.)

Enhancements of ePump (in progress)

- Simultaneously update PDFs + α_s
 - · Use CT-provided ($\alpha_s^0 \pm \delta \alpha_s$) PDF sets (0.118 ± .002) as $(N+1)^{\text{th}}$ error set pair
 - (with theory predictions calculated using $\alpha_s = 0.118 \pm .002$)
 - \triangleright New best-fit and error PDFs corresponding to updated α_s
 - \triangleright Some theoretical work left to sort this out in progress
- Simultaneously update PDFs + SMEFT parameters
 - "SM Effective Field Theory" parameters
 - Implemented by Keping Xie and Yao Fu

ePump website

https://epump.hepforge.org/

- Carl Schmidt (MSU)
- C.-P. Yuan (MSU)
- *Keping Xie (U.Pitt)
- *Yao Fu (USTC)

Backups

ePump: OptimizePDFs

- Exp analysis may require great many runs with Error PDFs (~56)
 - But may be insensitive to certain flavors or combinations

- OptimizePDFs
 - creates an optimized set of error PDFs for the relevant observables
 - gives a criterion for choosing a reduced set (~6-10) which contains most of the relevant dependence for the observables.