ePump in Top Pole Mass / PDF Snowmass Study

Jason Gombas-Salazar

Michigan State University - MSU

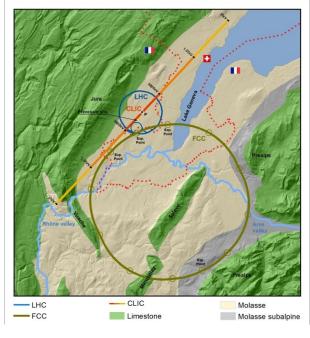
Overview

- Short introduction to top mass measurements
 - How it can measured
 - How might it be measured in the future
 - PDF significance to top mass measurements
- Technical details
 - Convert output root files to text ePump input
 - Scripts and technical details
- Overview of our results/conclusions to be presented by Jarrett and Sara

Top measurements at hadron colliders

- Beam energy known, but energy of colliding parton is unknown
- Also don't know particle ID of colliding partons
- Must fit data and fold in the probability distributions of PDFs

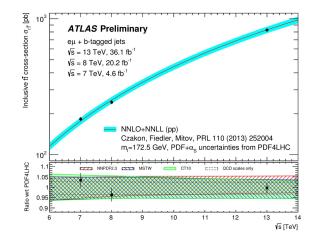
- Two Types of measurements
 - **Top "pole" mass** well defined scheme, not sensitive to parton shower, but sensitive to PDFs and needs higher-order calculations
 - Direct measurement of top mass insensitive to PDFs, but very sensitive to shower
 model


Future Colliders

- Currently LHC
 - 13.6 TeV
 - Goal is to collect 300 fb⁻¹ in ongoing Run 3
- HL-LHC: High Luminosity Large Hadron Collider
 - 14 TeV
 - Goal is to collect 3,000 fb⁻¹
- FCC: Future Circular Collider
 - 100 km tunnel, first tuned to ee collider, then 100 TeV hadron collider

Top pole mass measurements rely on theory calculations

Jason Gombas-Salazar



PDF significance to top mass measurements

- Largest uncertainty in theory calculations is from parton distribution functions (PDFs)
 - About 5% uncertainty on the total cross-section
 - \circ ~ Gluon PDF at large x and large scale μ

SILL

• Goal: study the impact of PDF uncertainties on top mass extraction

Technical Details

Jason Gombas-Salazar

6

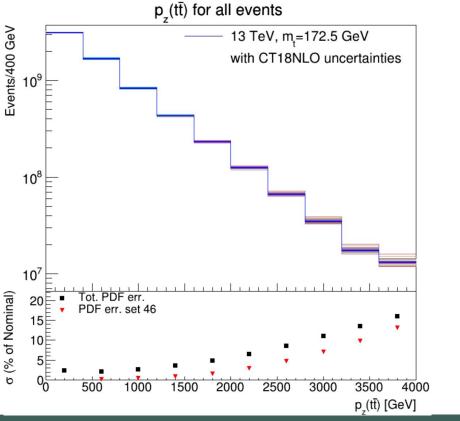
Madgraph

- Di-top production is a very simple process that has been studied extensively
- Add [QCD] after the generate statement to specify you want NLO corrections
- You end up with:
 - Included diagrams, several cards that you can change "run_card.dat", "param_card.dat", a python program that can be executed
 See more details on this later in Keping's Presentation

Madgraph Weights

- These can be viewed in events.lhe file
- Identify what the different weights are
 - First weights here are the scale variations
 - Followed by nominal PDF then error PDFs


```
initrwat>
<weightgroup name='scale variation
                                                 0 -1' combine='envelope'>
  <weight id='1001'> tag=
                                       0 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 </weight>
  <weight id='1002'> tag=
                                       0 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 </weight>
  <weight id='1003'> tag=
                                       0 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 </weight>
  <weight id='1004'> tag=
                                       0 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 </weight>
  <weight id='1005'> tag=
                                       0 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 </weight>
  <weight id='1006'> tag=
                                       0 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 </weight>
                                       0 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 </weight>
  <weight id='1007'> tag=
  <weight id='1008'> tag=
                                       0 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 </weight>
  <weight id='1009'> tag=
                                       0 dvn= -1 muR=0.50000E+00 muF=0.50000E+00 </weight>
</weightgroup>
<weightgroup name='scale variation
                                                 6 -1' combine='envelope'>
  <weight id='1010'> tag=
                                       6 dvn= -1 muR=0.10000E+01 muF=0.10000E+01 </weight>
  <weight id='1011'> tag=
                                       6 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 </weight>
  <weight id='1012'> tag=
                                       6 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 </weight>
  <weight id='1013'> tag=
                                       6 dyn= -1 muR=0.10000E+01 muF=0.20000E+01 </weight>
  <weight id='1014'> tag=
                                       6 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 </weight>
  <weight id='1015'> tag=
                                       6 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 </weight>
  <weight id='1016'> tag=
                                       6 dyn= -1 muR=0.10000E+01 muF=0.50000E+00 </weight>
  <weight id='1017'> tag=
                                       6 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 </weight>
  <weight id='1018'> tag=
                                       6 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 </weight>
</weightgroup>
<weightgroup name='scale_variation
                                                 8 -1' combine='envelope'>
  <weight id='1019'> tag=
                                       8 dyn= -1 muR=0.10000E+01 muF=0.10000E+01 </weight>
  <weight id='1020'> tag=
                                       8 dyn= -1 muR=0.20000E+01 muF=0.10000E+01 </weight>
  <weight id='1021'> tag=
                                       8 dyn= -1 muR=0.50000E+00 muF=0.10000E+01 </weight>
  <weight id='1022'> tag=
                                       8 dvn= -1 muR=0.10000E+01 muF=0.20000E+01 </weight>
  <weight id='1023'> tag=
                                       8 dyn= -1 muR=0.20000E+01 muF=0.20000E+01 </weight>
  <weight id='1024'> tag=
                                       8 dyn= -1 muR=0.50000E+00 muF=0.20000E+01 </weight>
  <weight id='1025'> tag=
                                       8 dvn= -1 muR=0.10000E+01 muF=0.50000E+00 </weight>
  <weight id='1026'> tag=
                                       8 dyn= -1 muR=0.20000E+01 muF=0.50000E+00 </weight>
  <weight id='1027'> tag=
                                       8 dyn= -1 muR=0.50000E+00 muF=0.50000E+00 </weight>
</weightgroup>
<weightgroup name='PDF_variation CT18NLO' combine='unknown'>
  <weight id='1028'> PDF=
                           14400 CT18NLO </weight>
  <weight id='1029'> PDF=
                           14401 CT18NLO </weight>
  <weight id='1030'> PDF=
                           14402 CT18NLO </weight>
  <weight id='1031'> PDF=
                           14403 CT18NLO </weight>
  <weight id='1032'> PDF=
                           14404 CT18NLO </weight>
  <weight id='1033'> PDF=
                           14405 CT18NLO </weight>
  <weight id='1034'> PDF=
                            14406 CT18NLO </weight>
  <weight id='1035'> PDF=
                            14407 CT18NLO </weight>
  <weight id='1036'> PDF=
                           14408 CT18NLO </weight>
  <weight id='1037'> PDF=
                           14409 CT18NLO </weight>
  <weight id='1038'> PDF=
                           14410 CT18NLO </weight>
                           14411 CT18NLO </weight>
  <weight id='1039'> PDF=
```



What this looks like

- We use ExRootAnalysis to convert the .lhe file to a .root file
 - Then we use C++ ROOT to analyze the root file
- In root, for every event, you get access to:
 - All particles including initial partons, their 4 vectors and their ID
 - An array of weights, each weight is a double
- Makes it easy to fill histograms in event loop, you just need something like:
 - hist->Fill(top_mass, weight[27]);
- Next, we convert these histograms into ePump text files

Converting root histograms to ePump input


```
TH2D* histograms[59];
for(int i=0; i<59; i++){
    histograms[i] = (TH2D*) in_file->Get(TString::Format("h%d",i));
```

```
ofstream outfile;
ofstream newFile(outfilename);
outfile.open (outfilename);
outfile << "Theory Column" << endl;
outfile << " 1" << endl;
Int_t nBinX = histograms[0]->GetNbinsX();
Int_t nBinY = histograms[0]->GetNbinsY();
```

```
outfile << "Data : Obs." << std::setfill('0') << std::setw(2) << i << ".dta" << endl;
for(int binX=1; binX<=nBinX; binX++){
    for(int binY=1; binY<=nBinY; binY++){</pre>
```

```
outfile << histograms[i]->GetBinContent(binX, binY) << endl;</pre>
```

outfile.close();

What the epump input files look like

data file

<pre># of corr_err,</pre>	Data Co	lumn,	StatErr	Column,	UncSys Column,	corr_err Column
0	1		2		3	4
pt StatErr und	orSys	e01				
3.13803e+08	0	3.13803	e+06	0		
1.68123e+08	0	1.68123	e+06	0		
8.18673e+07	0	818673	0			
3.48311e+07	0	348311	0			
1.18596e+07	0	118596	0			
3.47401e+06	0	34740.1	0			
869687 0	869	6.87	0			
239182 0	239	1.82	0			
67050.1 0	670	.501	0			
22338.8 0	223	.388	0			

theory file

Theory Column
1
Data : Obs.00.dta
3.13803e+08
1.68123e+08
8.18673e+07
3.48311e+07
1.18596e+07
3.47401e+06
869687
239182
67050.1
22338.8
Data : Obs.01.dta
3.14061e+08
1.68437e+08
8.21087e+07
3.49603e+07
1.19119e+07
3.49197e+06
874846
240699
67532.7
22518.4
Data : Obs.02.dta
3.13568e+08
1.67833e+08

Conclusions

- Top mass measurements are limited by PDF uncertainties
- To make significant steps to reduce top mass, we can constrain the PDFs we use
- Once these PDF uncertainties are constrained, top mass uncertainty is significantly reduced (see Sara and Jarrett talks)
- It is expected that top mass measurements will be improved from the proposed ILC and the proposed FCC-ee because an energy scan is possible. But in the meantime, we can make progress with data that we will have much sooner

https://github.com/jpgombas/snowmass_ttbar_study/

