How to run ePump

Yao Fu

Preparation for running ePump

> Input file

xxx.in

To specify how many data files we have, the weight of each data sets, the number of eigenvector, tolerance setting, etc...

Data file

xxx.data

Theory file

xxx.theory

This file puts all the information of data set, which include the data point, statistical uncertainty, uncorrelated systematic uncertainty, correlated systematic uncertainty, etc... This file puts the theoretical prediction corresponding to our data set, which includes all the prediction for each PDF eigenvector.

The PDF grid files are also needed. (Either CTEQ or LHAPDF format is OK.)

Data table

> Data Type 1 (using the A_{FB} spectrum as an example)

Once we have data with statistical uncertainty, we have to convert our data into a certain format.

root [8]	<pre>for(int i=1;i<=A</pre>	.FB_CF->GetNbinsX();i++){cout< <fixed<< th=""><th><setprecis< th=""><th>ion(5)<<setw< th=""><th>(8)<<afb_cf-:< th=""><th><pre>>GetBinContent(</pre></th><th>(i)<<" +- "<<</th><th>AFB_CF->Get</th><th><pre>BinError(i)<<endl;}< pre=""></endl;}<></pre></th></afb_cf-:<></th></setw<></th></setprecis<></th></fixed<<>	<setprecis< th=""><th>ion(5)<<setw< th=""><th>(8)<<afb_cf-:< th=""><th><pre>>GetBinContent(</pre></th><th>(i)<<" +- "<<</th><th>AFB_CF->Get</th><th><pre>BinError(i)<<endl;}< pre=""></endl;}<></pre></th></afb_cf-:<></th></setw<></th></setprecis<>	ion(5)< <setw< th=""><th>(8)<<afb_cf-:< th=""><th><pre>>GetBinContent(</pre></th><th>(i)<<" +- "<<</th><th>AFB_CF->Get</th><th><pre>BinError(i)<<endl;}< pre=""></endl;}<></pre></th></afb_cf-:<></th></setw<>	(8)< <afb_cf-:< th=""><th><pre>>GetBinContent(</pre></th><th>(i)<<" +- "<<</th><th>AFB_CF->Get</th><th><pre>BinError(i)<<endl;}< pre=""></endl;}<></pre></th></afb_cf-:<>	<pre>>GetBinContent(</pre>	(i)<<" +- "<<	AFB_CF->Get	<pre>BinError(i)<<endl;}< pre=""></endl;}<></pre>
-0.13677	+- 0.00014	Line starts with " * " is.							
-0.00138	+- 0.00007		* 2 Norm	Error # cor i	r sys Eci	m # grid	s # KF # col		
0.06824	+- 0.00006	comment line. We can	* 0.0	_0	13000	.0 8	88231	1. A.	
0.26173	+- 0.00024	nut anything whatever	# of cor	r_err , [Data Column,	StatErr Co	lumn, UncSy	s Column,	corr_err Column
0.3/121	+- 0.00032	put anything whatever	2		3	4		6	7
0.44523	+- 0.00044	we want to write. No	left rig	nt PataPoint	t StatErr To	tSys UncSys C	orr1 Corr2		
0.49261	+- 0.00074		40 66	0.13677 0	.000137037	0.000137037 0	0 0		
0.54654	+- 0.00122	limit for the number of	66 80	-0.222589 (0.000172035	0.000172035	0 0 0		
0.55140	+- 0.00251		80 91	-0.00137505	6.56798e-0	5 6.56798e-05	0 0 0		
0.60488	+-0.00419	lines.	91 102	0.0682376	5.80559e-05	5.80559e-05	000		
0.04105	+- 0.00011		102 116	0.261725	0.000243483	0.000243483	000		
			116 145	0.371207	0.000320109	0.000320109	000		
From	left to right:		145 200	0.445225	0.000436122	0.000436122	000		
The		unalated anatomatic annon	200 275	0.492607	0.000737345	0.000737345	000		
I ne n	umber of col	rrelated systematic error	275 381	0.548535	0.0012181	0.0012181 0	0 0		
Data	column		381 525	0.531484	0.00231314	0.00231314 0	00	L	
Data	corumn		525 725	0.604882	0.00418944	0.00418944 0	00		
Statis	tical error co	olumn (absolute value)	725 100	0.641893	0.00810986	0.00810986	0 0 0		

Uncorrelated systematic column (absolute value)

Correlated systematic column starts with (percentage value)

Note that there is additional line which is for explaining what each column means.

(In this example, it means we have 2 sources of correlated systematic error, they start from the column 7. The data point is in the third column, the statistical error is in the fourth column, the uncorrelated systematic error is in the sixth column. Here, the fifth column fills the "Total uncertainty", but ePump doesn't read this line. The first and second column fill the binning information, ePump also doesn't read those lines. They are all additional information that helps people know the information of this data set.)

Correlation coefficient, given by experiment group.

Data table

Comment lines

> Data Type 3

Inverse covariance matrix.

Input the inverse covariance matrix. Note that the covariance matrix should include both statistical uncertainty, uncorrelated systematic uncertainty and correlated systematic uncertainties.

For the statistical uncertainty and uncorrelated systematic uncertainty, the correlation coefficient is unit matrix. There is only square of uncertainty in the diagonal term. Off-diagonal terms are zero. Then we should add all the covariance matrix together, and calculate the inverse covariance matrix.

$$\operatorname{cov}_{ij} = \delta_{ij} \Delta_i^{\operatorname{stat}} \Delta_j^{\operatorname{stat}} + \operatorname{Corr}_{ij} \Delta_i^{\operatorname{sys}} \Delta_j^{\operatorname{sys}}$$

2022/10/7

Theory table

> Theory template (using the A_{FB} spectrum as an example)

We also should have the theory prediction for every data set. The theory prediction should include the PDF central set and all the PDF error sets.

/msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.00/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.01/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.02/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.03/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.04/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.05/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.06/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.07/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.08/MC results.root /msu/data/t3work5/yfu/MainCode/run/ResBosHighMassZ/i2Tn3.09/MC results.root

For example, CT18NNLO has one central set + 58 error sets.

Theory prediction for each PDF set.

This number tells ePump which column is the needed information. Here there is only one column. In fact, ePump only need one column to read. We can also write some other information to other columns, like the binning information. Then we should just tell ePump which column should be read.

Splitting line for separating each 🖌 prediction of different error PDF

The theory prediction must be matched with the Data file. They should have the same bin number. There is no error input for the ePump. The number of theory prediction should also match to the number of EV set, which will be introduced in how to write the input card file.

Theory Column Data : i2Tn3.00.dta -0.13677-0.222589-0.001375050.0682376 0.261725 0.371207 0.445225 0.492607 0.548535 0.531484 0.604882 0.641893 Data : i2Tn3.01.dta -0.13//81-0.22463-0.001366340.0689802 0.264281 0.374426 0.448354 0.494891 0.550563 0.533074 0.606429

2022/10/7

Input card

<pre>+++ N(EV pairs) 29 +++ ObservableFile test/Xsec_2D_CC test/Xsec_2D_CF test/AFB_Mass_ZY_CC test/AFB_Mass_ZY_CF test/PositiveLeptonEta test/NegativeLeptonPt test/NegativeLeptonPtEta test/NegativeLeptonPtEta test/WPlusMT test/WPlusMT test/WLeptonEtaAsymmetry test/WHighMassMT test/ZHighMass_CC test/ZHighMass_CF +++ PDFname PDFs/i2Tn3.58'i2Tn3 # .in for ePunp_v20171221 and at </pre>	N(Data Sets) 16 N(Observables) 144 52 144 52 20 20 40 40 40 40 100 100 40 40 20 25 25 25 25 25 PDFout outPDFs/i2Tn3 fter	PDFtype(C/L/N) C Data?(Y/N) Y Y Y Y Y Y Y Y Y Y Y Y Y	Dyn_Tol?(Y/N) Y Error type 1 1 1 1 1 1 1 1 1 1 1 1 1	Tol_squared 100.0 Weight 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0	PS: Weight of each data set. If it is set to be 0.0, it has the same function as setting the "Data?" to "N", but ePump will output the values after PDF updating for this data set. If we want to turn off some data set, setting weight to zero is better.
---	---	--	---	--	--

Name of date/theory file. For example, there should be two files called test/Xsec_2D_CC.data and test/Xsec_2D_CC.theory

This number of data points for a certain file. It should match to the real number of data points of your .data file, otherwise the results will be wrong and no any warning information output.

IsData.

If it is set to N, it will not read the .data file. But meanwhile, ePump will also not output the values after PDF updating

Input card

Number of eigenvector. For example, CT18NNLO has 0+58 PDF set, NEV is 29

Number of data sets. It should match to how many data sets written below Dynamical tolerance: If set it to N, it will read the Tol_squared, which is the delta chi squared. If set it to Y, it will read the .tol file.

ſ	+++ N(EV pairs) 29		N(Data Sets) 16	PDFtype(C, C	/L/N)	Dyn_Tol?(Y/N) Y	Tol_squared 100.0	
	+++ UpservapleFile		N(Upservaples)	υατα?(Υ/Ι	V)	Error_type	Weight	PS:
	<pre>test/Xsec_2D_CC</pre>		144	Y 🔒		1	0.0	
	<pre>test/Xsec_2D_CF</pre>		52	Y		1	0.0	
	<pre>test/AFB_Mass_ZY_CC</pre>		144	Y		1	0.0	
	<pre>test/AFB_Mass_ZY_CF</pre>		52	Y		1	0.0	
	test/PositiveLeptonEta		20	Y		1	0.0	
	test/NegativeLeptonEta		20	Y		1	0.0	
	<pre>test/PositiveLeptonPt</pre>		40	Y		1	0.0	
	<pre>test/NegativeLeptonPt</pre>		40	Y		1	0.0	
	<pre>test/PositiveLeptonPtEta</pre>		100	Y		1	1.0	
	<pre>test/NegativeLeptonPtEta</pre>		100	Y		1	1.0	
	test/WPlusMT		40	Y		1	0.0	
	test/WMinusMT		40	Y		1	0.0	
	<pre>test/WLeptonEtaAsymmetry</pre>		20	Y		1	0.0	
	test/WHighMassMT		25	Y		1	0.0	
	test/7HighMass_CC		25	Y		1	0.0	
I	<pre>test/ZHighMass_CF</pre>		25	Y	L	1	0.0	
İ	PDFs/i2Tn3.58/i2Tn3		PDFout outPDFs/i2Tn3	Р	DF t	ype input/ou	ıtput.	
C: CTEQ forma								
	# .in for ePump_v20171221	and after		L: LHAPDF format,				
	. –			Ν	: no	PDF files ou	itput	

The path to the input PDF files and output directory. Here we should create the "outPDFs" by ourselves, ePump will not help us create.

Note that there should not be an "enter" between data file lines and PDF file lines, otherwise the program will interrupt.

2022/10/7

Running

> File structure

yfu@pandeia Training]\$ ls									
witPDFs PDFs test test.in UpdatePDFs									
[yfu@pandeia Training]\$ ls test									
NegativeLeptonPtEta.data PositiveLeptonPtEta.data WHighMassMT.data WLeptonEtaAsymmetry.data ZHighMass_CC.c	data ZHighMass_CF.data								
NegativeLeptonPtEta.theory PositiveLeptonPtEta.theory WHighMassMT.theory WLeptonEtaAsymmetry.theory ZHighMass_CC.t	theory ZHighMass_CF.theory								
[yfu@pandeia Training]\$ ls PDFs/i2Tn3.58/									
i2Tn3.00.pds i2Tn3.06.pds i2Tn3.12.pds i2Tn3.18.pds i2Tn3.24.pds i2Tn3.30.pds i2Tn3.36.pds i2Tn3.42.pds i2Tn3.	.48.pds i2Tn3.54.pds								
i2Tn3.01.pds i2Tn3.07.pds i2Tn3.13.pds i2Tn3.19.pds i2Tn3.25.pds i2Tn3.31.pds i2Tn3.37.pds i2Tn3.43.pds i2Tn3.	.49.pds i2Tn3.55.pds								
i2Tn3.02.pds i2Tn3.08.pds i2Tn3.14.pds i2Tn3.20.pds i2Tn3.26.pds i2Tn3.32.pds i2Tn3.38.pds i2Tn3.44.pds i2Tn3.	.50.pds i2Tn3.56.pds								
i2Tn3.03.pds i2Tn3.09.pds i2Tn3.15.pds i2Tn3.21.pds i2Tn3.27.pds i2Tn3.33.pds i2Tn3.39.pds i2Tn3.45.pds i2Tn3.	.51.pds i2Tn3.57.pds								
i2Tn3.04.pds i2Tn3.10.pds i2Tn3.16.pds i2Tn3.22.pds i2Tn3.28.pds i2Tn3.34.pds i2Tn3.40.pds i2Tn3.46.pds i2Tn3.	.52.pds i2Tn3.58.pds								
i2Tn3.05.pds i2Tn3.11.pds i2Tn3.17.pds i2Tn3.23.pds i2Tn3.29.pds i2Tn3.35.pds i2Tn3.41.pds i2Tn3.47.pds i2Tn3.	.53.pds i2Tn3.tol								

+++ N(EV pairs)	N(Data Sets)	PDFtype(C/L/N)	Dyn_Tol?(Y/N)	Tol_squared	
29	6	C	Ŷ	100.0	
+++ ObservableFile	N(Observables)	Data?(Y/N)	Error_type	Weight	PS:
test/PositiveLeptonPtEta	100	Y	1	1.0	
test/NegativeLeptonPtEta	100	Y	1	1.0	
test/WLeptonEtaAsymmetry	20	Y	1	0.0	
test/WHighMassMT	25	Y	1	0.0	
test/ZHighMass_CC	25	Y	1	0.0	
test/ZHighMass CF	25	Y	1	0.0	
+++ PDFname	PDFout				
PDFs/i2Tn3.58/i2Tn3	outPDFs/i2Tn3				

Or

.in for ePump_v20171221 and after

./UpdatePDFs test [global weight]

./UpdatePDFs test

Example: Take neutral-current high-mass Drell-Yan, use data from below 1 TeV to update the uncertainty at high mass

Pseudodata:Drell-Yan kinematics below 1TeVTarget observable:High mass Drell-Yan

+++ N(EV pairs) 29	N(Data Sets) 11	PDFtype(C/L/N) C	Dyn_Tol?(Y/N) Y	Tol_squared 100.0	
+++ ObservableFile	N(Observables)	Data?(Y/N)	Error_type	Weight	PS
<pre>test/Xsec_2D_CC</pre>	144	Y	1	1.0	
<pre>test/Xsec_2D_CF</pre>	52	Y	1	1.0	
test/AFB_Mass_ZY_CC	144	Y	1	1.0	
test/AFB_Mass_ZY_CF	52	Y	1	1.0	
test/PositiveLeptonEta	20	Y	1	0.0	
<pre>test/NegativeLeptonEta</pre>	20	Y	1	0.0	
test/WLeptonEtaAsymmetry	20	Y	1	0.0	
test/ZHighMass_CC	25	Y	1	0.0	
test/ZHighMass_CF	25	Y	1	0.0	
<pre>test/ZHighMass_utype</pre>	25	Y	1	0.0	
<pre>test/ZHighMass_dtype</pre>	25	Y	1	0.0	
+++ PDFname	PDFout				
PDFs/i2Tn3.58/i2Tn3 c	outPDFs/i2Tn3				

.in for ePump_v20171221 and after

Pseudodata used for updating PDF: Neutral current 2D Xsec below 1TeV AFB vs Mass, ZY below 1TeV

Observable: Neutral current high-mass Drell-Yan, frow 1TeV to 5TeV

How to read output file

test.out

For Observables X[a] in Data Set: test/ZHighMass_CF

Before update After update

	а	X[a]	DXsym[a]		DXa	sym[a]
Old	1	5.7871E+02	2.9156E+01		-3.4919E+01	+2.4594E+01
New	1	5.7871E+02	7.5069E+00		-9.8213E+00	+6.5443E+00
Old	2	4.1307E+02	2.1042E+01		-2.4529E+01	+1.8415E+01
New	2	4.1307E+02	5.5090E+00		-7.1928E+00	+4.9757E+00
Old	3	2.9330E+02	1.5416E+01		-1.7851E+01	+1.3638E+01
New	3	2.9330E+02	4.0937E+00		-5.3376E+00	+3.7384E+00
	Theo					

$$\Delta X = \frac{1}{2} \left(\sum_{i=1}^{N_p} \left[X(\{z_i^+\}) - X(\{z_i^-\}) \right]^2 \right)^{1/2}$$

$$\delta^{+}X = \sqrt{\sum_{i=1}^{N_{a}} \left[\max\left(X_{i}^{(+)} - X_{0}, X_{i}^{(-)} - X_{0}, 0\right) \right]^{2}},$$

$$\delta^{-}X = \sqrt{\sum_{i=1}^{N_{a}} \left[\max\left(X_{0} - X_{i}^{(+)}, X_{0} - X_{i}^{(-)}, 0\right) \right]^{2}},$$

Correlation cosine

test.out

Original (Old) matrix of Correlation Cosines between X[a] (test/Xsec_2D_CC) and Y[b] (test/ZHighMass_CF)

	Y[01]	Y[02]	Y[03]	Y[04]	Y[05]	Y[06]	Y[07]	Y[08]	Y[09]	Y[10]	Y[11]	Y[12]	Y[13]	Y[14]	Y[15]
Y[16]	Y[17]	Y[18]	Y[19]	Y[20]	Y[21]	Y[22]	Y[23]	Y[24]	Y[25]]					
X[01]	0.44799	0.40644	0.37760	0.35740	0.33341	0.31208	0.29510	0.27248	0.25994	0.24030	0.22482	0.21510	0.21775	0.19525	0.19200
0.17979	0.17722	0.1760	0.16691	L 0.1594	3 0.1509	3 0.1371	3 0.1317	3 0.1272	1 0.102	88					
X[02]	0.45121	0.40989	0.38120	0.36105	0.33702	0.31565	0.29861	0.27559	0.26290	0.24271	0.22697	0.21704	0.21967	0.19689	0.19360
0.18137	0.17889	0.17779	9 0.16882	0.1614	3 0.1532	2 0.1392	7 0.1339	2 0.1291	6 0.104	63					
X[03]	0.46504	0.42306	0.39373	0.37295	0.34814	0.32592	0.30824	0.28395	0.27059	0.24902	0.23258	0.22208	0.22431	0.20134	0.19785
0.18588	0.18363	0.1826	6 0.17428	3 0.1671 ₄	4 0.1595	6 0.1454	3 0.1402	2 0.1350	1 0.109	99					
X[04]	0.48887	0.44547	0.41475	0.39267	0.36644	0.34259	0.32365	0.29734	0.28281	0.25911	0.24154	0.23010	0.23144	0.20847	0.20468
0.19316	0.19124	0.19042	2 0.18303	3 0.1763 [,]	4 0.1697	5 0.1555	2 0.1505	6 0.1448	1 0.119	16					
X[05]	0.50954	0.46601	0.43481	0.41210	0.38504	0.36008	0.34026	0.31205	0.29648	0.27046	0.25163	0.23908	0.23951	0.21611	0.21177
0.20065	0.19894	0.1982	5 0.19201	L 0.1859	1 0.1806	5 0.1665	2 0.1620	2 0.1558	1 0.129	98					
X[06]	0.52646	0.48345	0.45225	0.42922	0.40167	0.37586	0.35535	0.32540	0.30886	0.28054	0.26043	0.24666	0.24605	0.22216	0.21715
0.20648	0.20490	0.2043	8 0.19953	0.1942	3 0.1906	2 0.1770	3 0.1732	3 0.1668	9 0.141	38					

$Corr(A_{FB}, high mass DY)$

$$\cos\phi = \frac{X_i'Y_i'}{\Delta X\Delta Y} = \frac{(X_i^+ - X_i^-)(Y_i^+ - Y_i^-)}{4\Delta X\Delta Y}$$

Root format output

test.root

KEY:	TH1D	ZHighMass_CC_old;1	ZHighMass_CC_old
KEY:	TH1D	ZHighMass_CC_new;1	ZHighMass_CC_new
KEY:	TH1D	ZHighMass_CC_oldPDFErro	r;1 ZHighMass_CC_oldPDFError
KEY:	TH1D	ZHighMass_CC_newPDFErro	r;1 ZHighMass_CC_newPDFError
KEY:	TH1D	ZHighMass_CF_old;1	ZHighMass_CF_old
KEY:	TH1D	ZHighMass_CF_new;1	ZHighMass_CF_new
KEY:	TH1D	ZHighMass_CF_oldPDFErro	r;1 ZHighMass_CF_oldPDFError
KEY:	TH1D	ZHighMass_CF_newPDFErro	r;1 ZHighMass_CF_newPDFError

Theory prediction and PDF error before and after update

KEY: TH	H2D	Correlation_old_1_1;1	Correlation_old_1_1
KEY: TH	H2D	Correlation_new_1_1;1	Correlation_new_1_1
KEY: TH	H2D	Correlation_old_1_2;1	Correlation_old_1_2
KEY: TH	H2D	Correlation_new_1_2;1	Correlation_new_1_2
KEY: TH	H2D	Correlation_old_1_3;1	Correlation_old_1_3
KEY: TH	H2D	Correlation_new_1_3;1	Correlation_new_1_3
KEY: TH	H2D	Correlation_old_1_4;1	Correlation_old_1_4
KEY: TH	H2D	Correlation new 1 4;1	Correlation new 1 4

Correlation cosine

How to draw PDF plots

PDFs after update are saving in the directory "outPDFs". We can use CPP package which is developed by Tie-Jiun Hou to draw the PDF plots.

[yfu@pandeia CPP-v2019.1021.2001.+0800]\$ ls bin CT18NNLO doc genLatex.sh Makefile_run.sh setup.sh src updated-by-Xsec-2D-AFB-2D

Renamed by "outPDFs"

./bin/cpp pdf 20s68all 1.3 100 ches90 CT18NNLO ches90 updated-by-Xsec-2D-AFB-2D

20s68all: Compare two PDFs

1.3 100: Two Q values

ches90: c: CTEQ format PDFs h: Hessian set e: Error s: Symmetry 90: C.L.

More information are written in doc/0pdf

PDF plots

PDFs-20a_S68CL_1.3-100.0GeV_CT18NNLO_updated-by-Xsec-2D-AFB-2D_plots

ePump-optimization

Before study which experimental observable is sensitive to the high mass DY, we can use the high mass DY theory template to perform ePump-optimization, to see which flavor contributes most important information on the high mass DY.

```
[yfu@pandeia Rotation]$ ls
OptimizePDFs outPDFs PDFs test test.in
[yfu@pandeia Rotation]$ ls test
ZHighMass_CF.theory
[yfu@pandeia Rotation]$
```

Only .theory file is needed.

./OptimizePDFs test

Fractional contribution DataSet Obs EV01 EV13 EV14	of Optimized EV i (colum	ı) to variance	of observab	ole a (row)						
DataSet Obs EV01 EV13 EV14										
EV13 EV14	EV02 EV03	EV04	EV05	EV06	EV07	EV08	EV09	EV10	EV11	EV12
EV/00 EV/07	EV15 EV16	EV17	EV18	EV19	EV20	EV21	EV22	EV23	EV24	EV25
EV26 EV27	EV28 EV29									
1 1 0.7178234	4 0.16123257 0.0986818 [°]	7 0.02063947	0.00127702	0.00023380	0.00000184	0.00005924	0.00004235	0.00000174	0.0000038	0.000000
2 0.00000142 0.00000266	0.00000142 0.00000048	0.0000010	0.00000017	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.0000000
0.0000000 0.0000000	0.0000000 0.0000000									
1 2 0.7688034	3 0.15628819 0.0682458	0.00647763	0.00014921	0.00000618	0.00000563	0.00000842	0.00000256	0.0000034	0.00000000	0.000000
8 0.00000384 0.00000096	0 00000503 0 00000151	0 0000006	0 0000052	0 00000001	0 00000000	0 0000000	0 0000001	0 0000000	0.0000005	0 0000000
0.0000000 0.0000000	0.00000502 0.00000151	0.0000000	0.00000055	0.0000021	0.0000020	0.00000009	0.0000001	0.00000003	0.00000005	0.00000000

How many PDF uncertainty that eigenvectors after ePump-optimization contribute for each bin.

otals	21.13867651	3.00474840	0.73344090

Final PDF uncertainty fraction

e.g.: EV01: 21.13/25 (# of bins)

ePump-optimization

First eigenvector contributes on each flavor combination.

./bin/cpp pdf 21s90all 1.3 100 ches90 CT18NNLO c rotated-by-ZHighMass_CF_Eigen1

[yfu@pandeia CPP-v2019.1021.2001.+0800]\$ ls rotated-by-ZHighMass_CF_Eigen1/ i2Tn3.01.pds i2Tn3.02.pds

We should find observables which are also sensitive to ubar in large x region to constrain the PDF uncertainty of high mass DY.

2022/10/7

Yao Fu

Correlation between two different observables

An application of ePump-optimization N(Data Sets) +++ N(EV pairs) PDFtype(C/L) **Perform ePump-optimization** 29 using two different observables +++ ObservableFile N(Observables) test/WLeptonEtaAsymmetry 20 at the same time. test/ZHighMass CF 25 PDFin PDFout +++ outPDFs/i2Tn3 PDFs/i2Tn3.58/i2Tn3 Fractional contribution to Fractional contribution to the first observable the second observable Fraction Eraction + EV01 + EV01 - EV02 - EV03 - EV03 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 1000 1500 2000 2500 3000 3500 4000 4500 5000

After ePump-optimization, the first eigenvector contributes most PDF uncertainty on the high mass DY, but contributes less PDF uncertainty on the W asymmetry. However, the second eigenvector contributes most PDF uncertainty on the W asymmetry, but not for high mass DY. Therefore, these two observables are independent on PDF. 2022/10/7 Yao Fu
Appendix

How to generate data and theory files

```
FileName = "AFB_CF_40_1000";
file = new FileForEPUMP(FileName);
file->InputData(DataName, "AFB_CF");
file->InputTheory(TheoryTemplates, "AFB_CF");
file->writedata();
file->writetheory();
delete file;
```

FileForEPUMP::InputData(const char* rootName, const char* histName) FileForEPUMP::InputTheory(vector<TString> rootNames, const char* histName)

Or

FileForEPUMP::InputData(TH1D *h1) FileForEPUMP::InputTheory(vector<TH1D *> histos)

2D and 3D plots are also implemented.

ePumpHelper (A c++ interface code to ePump)

ePumpHelper* EU = new ePumpHelper(argv[1]); EU->Update(); Same function as the default ePump.

```
ePumpHelper* EU = new ePumpHelper(argv[1]);
EU->Update():
EU->LinkFile(file);
TH1D* OldPDFError;
EU->ConstructOldPDFErrorHist("test/WHighMassMT", "", OldPDFError, "Relative");
TH1D* OldPDFErrorWPlus;
EU->ConstructOldPDFErrorHist("test/WPlusHighMassMT", "", OldPDFErrorWPlus, "Relative");
TH1D* OldPDFErrorWMinus;
EU->ConstructOldPDFErrorHist("test/WMinusHighMassMT", "", OldPDFErrorWMinus, "Relative");
EU->ResetUpdate();
EU->SetDataWeight("test/PositiveLeptonEta", 1.0);
EU->SetDataWeight("test/NegativeLeptonEta", 1.0);
EU->Update();
TH1D* NewPDFError WEta;
EU->ConstructNewPDFErrorHist("test/WHighMassMT", " updated by WEta", NewPDFError WEta, "Relative");
TH1D* NewPDFErrorWPlus WEta;
EU->ConstructNewPDFErrorHist("test/WPlusHighMassMT", " updated by WEta", NewPDFErrorWPlus WEta, "Relative");
TH1D* NewPDFErrorWMinus WEta;
EU->ConstructNewPDFErrorHist("test/WMinusHighMassMT", " updated by WEta", NewPDFErrorWMinus WEta, "Relative");
EU->ResetUpdate();
EU->SetDataWeight("test/PositiveLeptonPt", 1.0);
EU->SetDataWeight("test/NegativeLeptonPt", 1.0);
EU->Update();
```

One can reset the status of ePump, and change the input setting inside the code, then run update again, by "EU->ResetUpdate(); EU->SetDataWeight(); EU->Update();"

2022/10/7

ePumpHelper (A c++ interface code to ePump)

```
inline double GetTheoryTemplate(TString DataName, int i, int iPDF);
inline double GetOldTheory(TString DataName, int i);
inline double GetOldPDFError(TString DataName, int i);
inline double GetOldPDFError(TString DataName, int i);
inline double GetOldRelativePDFError(TString DataName, int i);
inline double GetOldRelativePDFError(TString DataName, int i);
inline double GetOldPDFCorrelation(TString DataName, int i);
inline double GetOldPDFCorrelation(TString DataName1, TString DataName2, int i, int j);
inline double GetOldChi2(TString DataName1, TString DataName2, int i, int j);
inline double GetOldChi2(TString DataName);
inline double GetNewChi2(TString DataName);
inline vector<double> GetNewTheoryWeightFunction(TString DataName, int i);
inline vector<double> GetNewPDFErrorWeightFunction(TString DataName, int i);
virtual void ConstructDataHist(TString DataName, TH1D* &Data);
virtual void ConstructTheoryHist(TString DataName, vector<TH1D *> &Theory);
```

```
virtual void ConstructOldPDFErrorHist(TString DataName, TString subName, TH1D* &Hist, TString type = "");
virtual void ConstructNewPDFErrorHist(TString DataName, TString subName, TH1D* &Hist, TString type = "");
```

All the information can be obtained by ePumpHelper between two updating.

How to compile codes

Path of code: /msu/data/t3work5/yfu/ePumpTraining Setup environment: source /msu/data/t3work5/yfu/ePumpTraining/setup.sh

Compile code:

ePump:	CPP:	gnuplot:
make –j make OptimizePDFs	make	export PATH=/home/yfu/gnuplot/bin:\${PATH}
ePumpHelper:		
mkdir build cd build cmake make –j install	export PATH=/path to ePur export LD_LIBRARY_PATH=	npHelper/build/bin:\${PATH} /path to ePumpHelper/build/lib:\${LD_LIBRARY_PATH}

Back up