PhD School on QCD in Extreme Conditions

Lattice Field Theory for Extreme QCD

Maria Paola Lombardo

INFN Firenze lombardo@fi.infn.it

Lattice Field Theory for Extreme QCD - 1

Basics

From real to imaginary time - field theory thermodynamics

From continuum to the lattice and back

Importance sampling and basic observables

Symmetry and pattern of breaking at high T

Yang Mills

Massless QCD - light quarks

Scaling window

Interplay of chiral symmetry and confinement?

QCD - why Lattice Field Theory

QED vs QCD

- Photons do not carry charge
- Free electrons and free photons exist
- Interactions are strong at short distance - Coulomb force

A theory with only photons Is free

$$F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu}$$

- Gluons are charged
- Free quarks and gluons do not exist: confinement?
- Interactions are faible at short distance: asymptotic freedom

A theory with gluons only is interacting and Interesting

$$F^{(a)}_{\mu
u} = \partial_\mu A^a_
u - \partial_
u A^a_\mu - g_s f_{abc} A^b_\mu A^c_
u$$

QED vs QCD vs Yang-Mills

- Photons do not carry charge
- Free electrons and free photons exist
- Interactions are strong at short distance - Coulomb force

A theory with only photons Is free

$$F_{\mu
u} = \partial_{\mu} A_{
u} - \partial_{
u} A_{\mu}$$

- Gluons are charged
- Free quarks and gluons do not exist: confinement?
- Interactions are faible at short distance: asymptotic freedom

A theory with gluons only (Yang-Mills) is interacting and Interesting

$$F^{(a)}_{\mu
u} = \partial_{\mu}A^a_{
u} - \partial_{
u}A^a_{\mu} - g_s f_{abc}A^b_{\mu}A^c_{
u}$$

From QED to Yang-Mills theories

Electrodynamics:

$$\mathcal{L}_{\text{QED}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\gamma^{\mu} \nabla_{\mu} - m) \psi$$

Infinite mass

$$\mathcal{L}_{ ext{QED}} = -rac{1}{4}F_{\mu
u}F^{\mu
u} + ar{\psi}(i\gamma^{\mu}
abla_{\mu} - m)\psi \hspace{0.5cm} F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu} \hspace{0.5cm} ext{Free photons}$$

$$F_{\mu
u} = \partial_{\mu}A_{
u} - \partial_{
u}A_{\mu}$$
 Fre

Yang-Mills

$$\mathcal{L}_{YM} = -\frac{1}{4} F_{\mu\nu}^{(a)} F^{\mu\nu}$$

Gluons

Self-interacting gluons

QCD: why Lattice Field Theory

Confinement: quarks and gluons are not observed as asymptotic states

Breaking of chiral symmetry: due to the coupling becoming large at large distance

Topological properties: non-existent at any order in perturbation theory

..why and where

Extreme QCD

Confinement: quarks and gluons are not observed as asymptotic states

Deconfinement: quark and gluon dynamics

Breaking of chiral symmetry: due to the coupling becoming large at large distance

Coupling does not grow enough to break symmetry

Topological properties: non-existent at any order in perturbation theory

Topology becomes 'simpler'

Calculational schemes from real to imaginary time

Correlators, Correlation lengths, Masses

General calculation scheme: | Gran Canonical formalism

Rotate to imaginary time
$$x_0 \equiv t \rightarrow -ix_4 \equiv -i au$$

GCPF -->
$$Z=\int \mathcal{D}A_{\mu}~\mathcal{D}\psi~\mathcal{D}\overline{\psi}~e^{-S}$$
 <- note: Euclidean space time

$$S = \int d^4x \left(\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \overline{\psi} M \psi \right) .$$

A RFT in d space dimensions becomes a statistical field theory in d+1 dimensions

Integrate out fermions

$$Z = \int \mathcal{D}A_{\mu} \det M \ e^{\int d^4x \ (-\frac{1}{4}F_{\mu\nu}F^{\mu\nu})}.$$

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{O} e^{-S}$$

$$S = S_{gauge} + S_{quarks} = \int d^{4}x \left(\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right) - \sum_{i} \log(\text{Det}M_{i})$$

Minkowski -> Euclidean

Green functions --> Correlation functions

In many cases correlation functions decay exponentially at large distance:

$$\lim_{t\to\infty} \langle O(t)O(0) \rangle \propto e^{-t/t_0}$$
 t_0 correlation length

Back to Minkwoski

$$\int dt e^{ip_0 t} \frac{e^{-t/t_0}}{2t_0} = \frac{1}{p_0^2 + \frac{1}{t_0^2}}$$

$$\rightarrow p_0 \rightarrow iE = \frac{1}{1/t_0^2 - E^2}$$

Mass = inverse correlation length

Minkowski -> Euclidean

Green functions --> Correlation functions

$$\lim_{t\to\infty} \langle O(t)O(0)\rangle \propto e^{-t} M$$

M = lowest excitation in the channel which couples to O

From real time to real frequency space:

In imaginary time G(t)
$$G(t) = \int \delta(M-\omega)e^{-\omega t} \propto e^{-Mt}$$

In real frequency space:
$$\delta(M-\omega)$$

Spectral functions and two point functions: a challenge for LFT

(more later)

$$S(\omega)$$

$$G(t) = \int \delta(M - \omega)e^{-\omega t} \propto e^{-Mt}$$

$$G(t) = \int S(\omega)e^{-\omega t}$$

Objects of interest: Spectral functions $i\tau$ t

Computed on the lattice: <u>Euclidean (imaginary) Time Correlators</u>

Euclidean correlator in imaginary (Matsubara) frequency space

Field Theory in Euclidean space — summing up so far

Complete equivalence between Minkowski FT in d space dimension with statistical field theory in d+1 dimension.

The Grand Canonical Partition Function defines all the observables of the theory.

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} A_{\mu} \mathcal{O} e^{-S}$$

Exponential decays of Euclidean two point functions —> mass of the lowest excitation in that channel More general functional forms may appear, which require a dedicated analysis

Extreme conditions:

Temperature, density, termodynamics, dimensional reduction

Euclidean Field Theory —> Classical Statistical System

$$<\phi_a|e^{-iHt}|\phi_a> = \int d\pi \int_{\phi(x,0)=\phi_a(x)}^{\phi(x,t)=\phi_a(x)} d\phi e^{i\int_0^t dt \int d^3x (\pi(\vec{x},t)\frac{\partial\phi(\vec{x},t)}{\partial t} - H(\pi,\phi))}$$

$$\mathcal{Z} = Tre^{-\beta(H-\mu\hat{N})} = \int d\phi_a < \phi_a | e^{-\beta(H-\mu\hat{N})} | \phi_a > 0$$

$$\beta \equiv \frac{1}{T} \to it$$

Temperature

Temperature and Density

Gran Canonical Formalism: introduce chemical potential for conserved charge

$$\mu J_0, \quad J_0 = \bar{\psi} \gamma_0 \psi$$

$$S_{QCD} = F_{\mu\nu} F_{\mu\nu} + \bar{\psi} (\not D + m + \mu \gamma_0) \psi = S_G + \bar{\psi} M \psi$$

$$\mathcal{Z}(\mu, T) = \int_0^{1/T} dt \int e^{S(\bar{\psi}, \psi, U)} d\bar{\psi} d\psi dU$$

$$\mathcal{Z}(T, \mu) = \int dU det M e^{-S_G} = \int dU e^{-\frac{(S_g - \log(\det M))}{S_{eff}}}$$

Boundary conditions for the fields

$$\mathcal{Z} = \int d\phi d\psi e^{-S(\phi,\psi)}$$

$$S(\phi, \psi) = \int_0^{1/T} dt \int d^d x \mathcal{L}(\phi, \psi)$$

Bosons: periodic

$$G_B(\vec{x}, \vec{y}; \tau, 0) = Tr\{\hat{\rho}T_{\tau}[\hat{\phi}(\vec{x}, \tau)\hat{\phi}(\vec{y}, 0)]\}/\mathcal{Z}$$

where T_{τ} is the imaginary time ordering operator:

$$T_{\tau}[\hat{\phi}(\tau_1)\hat{\phi}(\tau_2)] = \hat{\phi}(\tau_1)\hat{\phi}(\tau_2)\theta(\tau_1 - \tau_2) + \hat{\phi}(\tau_2)\hat{\phi}(\tau_1)\theta(\tau_2 - \tau_1)$$

Use now the commuting properties of the imaginary time ordering evolution and H:

$$[T_{\tau}, e^{-\beta H}] = 0$$

togheter with the Heisenberg time evolution

$$e^{\beta H}\phi(\vec{y},0)e^{-\beta H} = \phi(\vec{y},\beta)$$

to get:

$$G_B(\vec{x}, \vec{y}; \tau, 0) = G_B(\vec{x}, \vec{y}; \tau, \beta)$$

Fermions

$$T_{\tau}[\hat{\psi}(\tau_1)\hat{\psi}(\tau_2)] = \hat{\psi}(\tau_1)\hat{\psi}(\tau_2)\theta(\tau_1 - \tau_2) - \hat{\psi}(\tau_2)\hat{\psi}(\tau_1)\theta(\tau_2 - \tau_1)$$

$$\hat{\psi}(\vec{x},0) = -\hat{\psi}(\vec{x},\beta)$$
 Antiperiodic

Fermions

$$T_{\tau}[\hat{\psi}(\tau_1)\hat{\psi}(\tau_2)] = \hat{\psi}(\tau_1)\hat{\psi}(\tau_2)\theta(\tau_1 - \tau_2) - \hat{\psi}(\tau_2)\hat{\psi}(\tau_1)\theta(\tau_2 - \tau_1)$$

$$\hat{\psi}(\vec{x},0) = -\hat{\psi}(\vec{x},\beta)$$
 Antiperiodic

Bosons

$$T_{\tau}[\hat{\phi}(\tau_1)\hat{\phi}(\tau_2)] = \hat{\phi}(\tau_1)\hat{\phi}(\tau_2)\theta(\tau_1 - \tau_2) + \hat{\phi}(\tau_2)\hat{\phi}(\tau_1)\theta(\tau_2 - \tau_1)$$

$$G_B(\vec{x}, \vec{y}; \tau, 0) = G_B(\vec{x}, \vec{y}; \tau, \beta)$$
 Periodic

Thermodynamics

$$P = T \frac{\partial ln \mathcal{Z}}{\partial V}$$

$$N = T \frac{\partial ln \mathcal{Z}}{\partial \mu}$$

$$S = \frac{\partial T ln \mathcal{Z}}{\partial T}$$

$$E = -PV + TS + \mu N$$

Dimensional Reduction

Figure 2: Sketchy view of the dimensional reduction from d+1 to d dimensions(from the leftmost to the middle picture) and subsequent coarse graining (from middle to rightmost)

Cases for Dimensional Reduction

- 1) T >>> any mass —> High T Electroweak transition
- 2) Diverging correlation length —> second order transition, basis for universality High T QCD

Mode expansion and Decoupling

$$\phi(x,t) = \sum_{\omega_n = 2n\pi T} e^{i\omega_n t} \phi_n(x)$$
 Bosons

$$\psi(x,t) = \sum_{\omega_n = (2n+1)\pi T} e^{i\omega_n t} \psi_n(x)$$
 Fermions

In the expression for the Action

$$S(\phi, \psi) = \int_0^{1/T} dt \int d^d x \mathcal{L}(\phi, \psi)$$

the integral over time can then be traded with a sum over modes, and we reach the conclusion that a d+1 statistical field theory at T>0 is equivalent to a d-dimensional theory with an infinite number of fields.

When dimensional reduction is possible, only one boson field survives

Finite temperature at a glance

- The partition function \mathcal{Z} has the interpretation of the partition function of a statistical field theory in d+1 dimension, where the temperature has to be identified with the reciprocal of the (imaginary) time.
- The fields' boundary conditions follows from the Bose and Fermi s

$$\phi(t=0, \vec{x}) = \phi(t=1/T, \vec{x})$$

$$\psi(t=0, \vec{x}) = -\psi(t=1/T, \vec{x})$$

i.e. fermionic and bosonic fields obey antiperiodic and periodic boundary conditions in time.

- "Dimensional reduction", when 'true' means that the system become effectively 3-dimensional. In this case only the Fourier component of each Bose field with vanishing Matsubara frequency will contribute to the dynamics, while Fermions would decouple.
- The scenario above is very plausible and physically well founded, but it is by no means a theorem. Ab initio calculations can confirm or disprove it.

Computational schemes at a glance

On the lattice - general issues

Computational Strategy:

1) Rotation to imaginary time + discretisation

Computational Strategy:

1) Rotation to imaginary time + discretisation

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} A_{\mu} \mathcal{O} e^{-S}$$

2) Monte Carlo Simulation

Performing the integration

$$\langle 0 | \mathcal{O} | 0 \rangle = rac{\sum_{lpha} \mathcal{O}_{lpha} e^{-S_{lpha}}}{\sum_{lpha} e^{-S_{lpha}}}. \qquad \longrightarrow \qquad rac{\sum_{i=1}^{N} \mathcal{O}_{i}}{N}$$

- -Discretization: from continuum space to a grid
- —Why? Two standard motivations:
 - 1. Physical system intrinsically discrete (i.e. spin models)
 - 2. Make it amenable to a numerical study -> QCD
- Discretization is in principle trivial:

$$\int_a^b f(x)\,dx pprox rac{b-a}{n}\left(rac{f(a)}{2} + \sum_{k=1}^{n-1}\left(f\left(a+krac{b-a}{n}
ight)
ight) + rac{f(b)}{2}
ight).$$

- .Strategies for improvement?
- .How to check the 'continuum limit?'
- .Suppose a, b $\rightarrow \infty$ How to check **convergence to infinite volume**?

— Slightly more complicated: increase the dimensionality, make the function less smooth... Computational costs??

е

Matter (scalar) fields: on sites

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{1}{2} m^2 \phi^2 + \lambda \phi^4.$$

$$S = \sum_{n} a^{4} \left(\frac{1}{2} \sum_{\mu=1}^{4} \left[\frac{\phi(n+1_{\mu}) - \phi(n-1_{\mu})}{2a} \right]^{2} + \frac{1}{2} m^{2} \phi^{2}(n) + \lambda \phi^{4}(n) \right)$$

Gauge fields

$$\phi_s(y) \to P(\exp ig \int_s dx_\mu A_\mu) \phi(x) \equiv U(y, x) \phi(x)$$

$$U_{\mu}(n) = \exp(igaT^aA_{\mu}^a(n))$$
 SU(3) Matrix

Parallel transport: Lattice Gauge Theory: gauge invariance 'by fiat'

$$\operatorname{Tr} \dots U_{\mu}(x)U_{\mu}(x+\hat{\mu})\dots \to \operatorname{Tr} \dots U_{\mu}(x)V^{\dagger}(x+\hat{\mu})V(x+\hat{\mu})U_{\mu}(x+\hat{\mu})\dots$$

Gauge invariant

Build the Action 'by guessing'...

$$S = \frac{2}{g^2} \sum_{x} \sum_{\mu > \nu} \text{Re Tr } (1 - U_{P\mu\nu}(x)).$$
? Does it work?

$$U_{P\mu\nu}(x) = U_{\mu}(x)U_{\nu}(x+\hat{\mu}a)U_{\mu}^{\dagger}(x+\hat{\nu}a)U_{\nu}^{\dagger}(x)$$

Check continuum limit a-> 0

$$A_{\mu}(x+\hat{\nu}a) = A_{\mu}(x) + a\partial_{\nu}A_{\mu}(x) + \dots$$

$$U_P(x) = 1 + ia^2 F_{\mu\nu} + \dots$$
 $\beta = 2N/g^2$

Continuum limit OK

Continuum limit

Coming back to correlation functions:

$$\lim_{t\to\infty} \langle O(t)O(0)\rangle \propto e^{-t}$$
 M

M = dimensionless quantity, expressed in lattice units = $1/\xi$

$$M = M_{phys} * a = 1/\xi$$

$$a \to 0, \xi \to \infty$$

 $a o 0, \xi o \infty$ | Continuum limit: singularity!

'g' in the Lattice Lagrangian is the coupling at the scale 'a'

$$a\Lambda_L = \left(\frac{1}{b_0 g^2}\right)^{b_1/2b_0^2} e^{-1/2b_0 g^2}$$

Physical scale — dimensional transmutation

$$b_0 = \left(\frac{11}{3}N_c - \frac{2}{3}N_f\right)/16\pi^2$$
 and $b_1 = \left(\frac{34}{3}N_c^2 - \left(\frac{10}{3}N_c + \frac{N_c^2 - 1}{N_c}\right)N_f\right)/(16\pi^2)^2$.

QCD Asymptotic freedom allows a rigorous continuum limit

In perturbation theory, a(g) is known.

Yang-Mills, continuum and lattice

$$S_{\rm cont} = \int d^4x \frac{1}{4g^2} \operatorname{Tr} F_{\mu\nu} F^{\mu\nu}$$

$$S_{\mathrm{latt}} = \beta \sum_{p} \left(1 - \frac{1}{3} \mathrm{Re} \left\{ \mathrm{Tr} \, U_p \right\} \right); \quad \beta = \frac{6}{g^2}.$$
 Not unique — improvement

a: 0.1 fm? 0.003fm? 1cm???

g only parameter. —> where is the spacing?

Planning a simulation

Parameters: N_{σ}, N_{τ}, g

Assume we have the lattice results for some masses

M1Lat M2Lat M3Lat

How do we get results in physical units?

Issues

- Scale setting: one physical value needed as input!
- —Scaling: how strong are the discretisation effects?
- —Asymptotic scaling: are we sensitive to the g=0 singularity?

Scaling: repeat for different couplings and check consistencies of results - or, which is the same, check that dimensionless ratios do not depend on g

Asymptotic scaling: repeat for different couplings, and check consistency with the two-loop universal scaling — implies scaling, but much harder to get

$$a\Lambda_L = \left(\frac{1}{b_0 g^2}\right)^{b_1/2b_0^2} e^{-1/2b_0 g^2}$$

Improvement: in general, a program aimed at controlling lattice artifacts, so to reach faster and with more confidence scaling (hence continuum limit)

The functional integral

Sampling the phase space

Task:

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D}A_{\mu} \mathcal{O} e^{-S}$$

from Mike Creutz:

J (*** - / *

A direct evaluation

of such an integral has pitfalls. At first sight, the basic size of the calculation is overwhelming. Considering a 10^4 lattice, small by today standards, there are 40,000 links. For each is an SU(3) matrix, parametrized by 8 numbers. Thus we have a $10^4 \times 4 \times 8 = 320,000$ dimensional integral. One might try to replace this with a discrete sum over values of the integrand. If we make the extreme approximation of using only two points per dimension, this gives a sum with

$$2^{320,000} = 3.8 \times 10^{96,329} \tag{6}$$

terms! Of course, computers are getting pretty fast, but one should remember that the age of universe is only $\sim 10^{27}$ nanoseconds.

Monte Carlo methods:

Create a sample of configurations distributed according to

$$e^{-S}$$

The functional integral may then be traded with an average over configurations

$$\langle \mathcal{O} \rangle = \frac{1}{Z} \int \mathcal{D} A_{\mu} \, \mathcal{O} \, e^{-S} \qquad \longrightarrow \frac{\sum_{i=1}^{I} \mathcal{O}_{i}}{N}$$

Monte Carlo time 'evolution'

Different methods use different strategies for choosing the new link

Crucial point: positive Action!

1. Metropolis

$$\Delta S = S(\hat{U}_{ii}) - S(U_{ii})$$
 (all other variables kept fixed).

If
$$\Delta S \leq 0$$
 the move is accepted

Otherwise: pick random number r 0 < r < 1 and accept if

$$r \leq e^{-\Delta S}$$

Maximise distance between configurations, at the price of high rejection rate

2. Heath Bath

Choose new U with the appropriate weight:

$$\exp\{-\bar{S}(U_{ji}')\}$$

Accept step always satisfied by construction

It may be expensive

3. Modified Metropolis

Same as Metropolis, but make several hits with the same link:
"n upgrading per step"

It 'interpolates' between the two previous cases - optimal n to be determined

A typical Monte Carlo simulation:

Thinking in abstract terms - i.e. let us consider the discretised theory as a statistical system in d+1 dimension — these are basic measurable quantities:

3) Topological charge

Difficult to draw 'butterly operator'

 $F ilde{F}$ In the continuum (more later)

- 4) Two point functions of any of the above
- 5) Two point functions of composite fermion operators

Wilson loop

String tension - Interquark potential

Fig. 1. The interquark potential measured for two values
$$\beta = 5.15$$
 and $\beta = 5.35$ and mapped onto each other by setting the scale from the fitted string tension.

$$V(\mathbf{R}) = -\lim_{T \to \infty} \frac{1}{T} \ln W(\mathbf{R}, T)$$

$$V_I(R) = c_0 - \frac{e}{R} + \sigma R$$
 Cornell form

String tension $\sqrt{\sigma} = 420 \, \text{MeV}$, Physical value

Two point functions of Polyakov loop: alternative extraction of the potential

$$e^{-V(R,T)/T} \propto \langle P(\vec{0})P^{\dagger}(\vec{R}) \rangle \longrightarrow \propto e^{-\sigma R}$$

Т

Parametro d'ordine per $Z(N_c)$.

-> Confinement as a symmetry

For two colours: Z(2): Ising model!!

-> Universality

'Build' Polyakov loop system: it is a cube of spins!!

-> dimensional reduction at Tc

Checking the universality class of Yang Mills

Order parameter : L Analogous to magnetisation In 3D

$$\begin{cases}
A\left(\frac{T_c^0 - T}{T_c^0}\right)^{\beta} &, T < T_c^0 \\
0 &, T \ge T_c^0
\end{cases}$$

Note: high and low temperatures interchanged

Some references:

Basics, from QCD to lattice:

Thomas Schaefer https://arxiv.org/pdf/1608.05459.pdf

Lattice pedagogical reviews:

Christine Davies, https://arxiv.org/pdf/hep-ph/0205181.pdf Tom de Grand https://arxiv.org/pdf/1907.02988.pdf Martin Luescher https://arxiv.org/pdf/hep-lat/9802029.pdf Michael Creutz https://arxiv.org/pdf/hep-lat/0406007.pdf