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Lattice Field Theory for Extreme QCD - 1

Basics
From real to imaginary time - field theory thermodynamics
From continuum to the lattice and back

Importance sampling and basic observables

Symmetry and pattern of breaking at high T
Yang Mills
Massless QCD - light quarks

Scaling window

Interplay of chiral symmetry and confinement ?



QCD - why Lattice Field Theory



QED vs QCD

* Photons do not carry charge  Gluons are charged

* Free electrons and free photons * Free quarks and gluons do not
exist exist: confinement?

* Interactions are strong at short * Interactions are faible at short

distance - Coulomb force distance: asymptotic freedom

A theory with only photons A theory with gluons only
Is free is interacting and Interesting

Eu/ — au AI/ — 8I/A/,L FIS,CL) — 8# Al — 6VAZ —\gs fabcA/bj, A;’,




QED vs QCD vs Yang-Mills

* Photons do not carry charge  Gluons are charged

* Free electrons and free photons * Free quarks and gluons do not
exist exist: confinement?

* Interactions are strong at short * Interactions are faible at short

distance - Coulomb force distance: asymptotic freedom

A theory with only photons A theory with gluons only (Yang-Mills)
Is free is interacting and Interesting

Eu/ — aqu/ — aI/A/L F;Szc;) — ap,Ag — aI/AZ, —\Ys fabcAi)J,Azc;




From QED to Yang-Mills theories

Electrodynamics:

I - |
LqEp = _ZF‘[“/F/IU + Y(iy*V,, — m)y

Infinite mass

| -, , —
‘CQED — _EF'I“/F#I/ + d}y(l,\/.ﬁtv — -n'l)’(:i) FIJ‘V e 8“141/ - BVAII» Free photons

Yang-Mills Gluons

(@) (a) .
Lopg= _iFWFW | F\Y = 0,A2 — 0,A% —|g, fuc AL AC

Self-interacting gluons



QCD : why Lattice Field Theory

Confinement: quarks and gluons are not observed as asymptotic states

Breaking of chiral symmetry: due to the coupling becoming large at large distance

Topological properties: non-existent at any order in perturbation theory



..why and where
Extreme QCD
Confinement: quarks and gluons are not observed as asymptotic states
Deconfinement : quark and gluon dynamics
Breaking of chiral symmetry: due to the coupling becoming large at large distance
Coupling does not grow enough to break symmetry
Topological properties: non-existent at any order in perturbation theory

Topology becomes ‘simpler’



Calculational schemes
from real to imaginary time

Correlators, Correlation lengths, Masses



General calculation scheme: |Gran Canonical formalism

Rotate to imaginary time  Zg =1 — —tZy = —IT

GCPF —> 7 = /DAM Dy D e ® <— note: Euclidean space time

S = / d*x (%FM,,F“” — M) .

ARFT in d space dimensions becomes a statistical field theory in d+1 dimensions

Integrate out fermions

Z = / DA, detM el v (CRFuwF™)

(O) = % / DA, O e S . S = Sgauge + Squarks = [d*z (FFF*™) — Y, log(DetM;)



Minkowski —> Euclidean

Green functions —> Correlation functions

In many cases correlation functions decay exponentially at large distance:

limy 0o < O(H)O(0) >oc e~ H/to

to

correlation length

Back to Minkwoski

1

. —t/tp 1
dtePote —— —
f 2t0 p(2)—|—tL2
0
—7 p0—iE =

1/ts—E?

Mass = inverse correlation length




Minkowski —> Euclidean

Green functions —> Correlation functions

limy 0o < O(H)O(0) >oc et M

M = lowest excitation in the channel which couples to O




From real time to real frequency space:

In imaginary time G(t) G(t) — fé(M — w>€—uﬂf x e~ Mt

In real frequency space: 5(M — w)



Spectral functions and two point functions : a challenge for LFT

(more later)

S(w) S(w) High T

Low T




Objects of interest: Spectral functions iT

Computed on the lattice: Euclidean (imaginary) Time Correlators

- Functions of

__real, continuous  Spectral functions ‘\

~Trequency Integral inverse
ettt et transform

 Euclidean Time Correlators

Analytic continuation

Fourier transform

founertene

Euclidean correlator in imaginary (Matsubara) frequency space



Field Theory in Euclidean space — summing up so far

Complete equivalence between Minkowski FT in d space dimension with statistical field theory in d+1 dimension

The Grand Canonical Partition Function defines all the observables of the theory

1 .
() — Z/DA,,, O =5

Exponential decays of Euclidean two point functions —> mass of the lowest excitation in that channel

More general functional forms may appear, which require a dedicated analysis



Extreme conditions:

Temperature, density, termodynamics, dimensional reduction



Euclidean Field Theory —> Classical Statistical System

< Gale™ |y >= / dr / e dope’ Jo | olm(@n 22502 —H (m.6)
Qb(.’L‘,O):qba(iU)

Z = Tre PH-1N) — /d(/)a < ol P, >

— 9t

1
=7

Temperature



Temperature and Density

Gran Canonical Formalism: introduce chemical potential for conserved charge

f1Jdo, Jo = @Wﬂﬁ
Sqgep = Fuv b + V(D +m+ o) = Se + My

1T _ )
Z(u,T) = /0 dt / SOV Qi dipdU

Z(T, p) = / dUdet Me=S0 = / AU e{(Sa—log(deth))

Seff




Boundary conditions for the fields
Z= / dgdipe=S@)

Sy = [ dt [atet(o,v)

Bosons : periodic
Gp(2.§:7,0) = Tr{pT,[o(Z,7)9(7,0)]}/ Z

where 77 is the imaginary time ordering operator:
T [p(m1)9(72)] = (1) d(72)0(r1 — 72)+0(72)$(71)0(72 — T1)
Use now the commuting properties of the imaginary time ordering evolution and H:
[T,,e P =0

togheter with the Heisenberg time evolution

to get:



Fermions

Tr[lz(ﬁ)?z(’rz)] — 1&(71)@2(72)9(71 - Tz)—?ﬁ(Tz)iﬁ(ﬁ)H(Tz - T1)

Y(Z,0) = —(Z, B) Antiperiodic



Fermions

Tr[lz(ﬁ)?z(’rz)] — 1&(71)@2(72)9(71 - Tz)—?ﬁ(Tz)iﬁ(ﬁ)H(Tz - T1)

Y(Z,0) = —(Z, B) Antiperiodic

Bosons

TT[QB(Tl)gg(TZ)] = ¢3(71)€5(72)9(71 - Tz)ﬂg(Tz)CZB(Tl)@(Tz — T1)

Gp(Z,y;7,0) = Gp(Z,¥; 7, B) Periodic



Thermodynamics

olnZ

P =T
oV
N — T@an
Op
OTInZ
o = oT
E = —PV+TS+uN




Dimensional Reduction

Imaginary time
and

Inverse
Temperature

d-dimensional space

+ coarse graining

AT T TITTIITT]

| e Ly 1

Figure 2: Sketchy view of the dimensional reduction from d+1 to d dimensions(from the leftmost to the
middle picture) and subsequent coarse graining (from middle to rightmost)



Cases for Dimensional Reduction

1) T >>> any mass —> High T Electroweak transition

2) Diverging correlation length —> second order transition, basis for universality
High T QCD



Mode expansion and Decoupling

plx,t) = > e“o,(x) Bosons

wn=2nnT

Yz t)= D e (a) Fermions

wn=2n+1)7T

In the expression for the Action

Sy = [ dt [ dac(s.0)

the integral over time can then be traded with a sum over modes, and we reach the conclusion
that a d+1 statistical field theory at 7" > 0 is equivalent to a d-dimensional theory with an
infinite number of fields.

When dimensional reduction is possible, only one boson field survives



Finite temperature at a glance

e The partition function Z has the intepretation of the partition function of a statistical
field theory in d+1 dimension, where the temperature has to be identified with the
reciprocal of the (imaginary) time.

e The fields’ boundary conditions follows from the Bose and Fermi ¢

¢(t - O’f) = ¢(t - 1/Tv j’)
w(t - va) - —?ﬂ(t - 1/T1 f)

i.e. fermionic and bosonic fields obey antiperiodic and periodic boundary conditions
in time.

e “Dimensional reduction”, when ‘true’ means that the system become effectvely 3-
dimensional. In this case only the Fourier component of each Bose field with vanishing
Matsubara frequency will contribute to the dynamics, while Fermions would decouple.

e The scenario above is very plausible and physically well founded, but it is by no means
a theorem. Ab initio calculations can confirm or disprove it.



Computational schemes at a glance

4-d Theory

Try to reduce the model to 3-d
either via perturbation theory or

Universality -> asmart guess

3-d Theory

Apply standard Field Theory Methods
asin4dim.

Apply Standard Field Theory Methods

Lattice discretization combined with Monte Carlo Simulation
Perturbation Theory
Lattice discretization combined with Strong Coupling Expansion

Other non-perturbative methods (e.g. 1/N expansion)




On the lattice - general issues



Computational Strategy: Lattice Gauge Theory

1) Rotation to
imaginary time +
discretisation

gj

scretize fields:
Gauge fields
/

/
U

\Matter fields
V> Vg




Lattice Gauge Theory

Computational Strategy:
1) Rotation to imaginary Digeretize fields:
time + discretisation Gauge fields
1 \ U/ ‘\I\/I tter field
— -5 Matter field:
(O) = Z/’DA,J, Oe b,

2) Monte Carlo Simulation

Performing the integration \

2.0 9o

e_LS‘O

(0]©]0) =




—Discretization: from continuum space to a grid

4
2
0
—Why? Two standard motivations: . B 5 .
1. Physical system intrinsically discrete (i.e. spin models) .
2. Make it amenable to a numerical study —> QCD LSRN IR IEEE O 0 i
4
— Discretization is in principle trivial: (2) |
b b—a (fl@) & b-a\) , 1)
f(z)dz ~ — < +Y (fla+k - +—> -2 -1 0 2
/a : = ( ( )> i lllustration of the trapezoidal rule. =
— Already in this simple example: : . .
.Strategies for improvement? d
.How to check the ‘continuum limit?’ | 1
.Suppose a, b— OO -1 0 2
How to check convergence to infinite volume? e lllustration of Simpson's rule. &

— Slightly more complicated: increase the dimensionality, make the function less smooth..
Computational costs??



Matter (scalar) fields: on sites

L= %(6;@)2 - %m2¢2 + \op?.

2

S — Za4 (; Z [¢(n + 1#)2_a¢(n - 1#) 4+ 1m2¢2(n) 4+ )\q54(n))




Gauge fields
U.(n) = exp(igaT*Aj,(n))

os(y) — P(exp z'g/da:#AM)gb(a:) = U(y, z)p(x) SU(3) Matrix

S

Parallel transport: Lattice Gauge Theory : gauge invariance ‘by fiat’

Discretize fields:
Gauge fields

//
U
Viatter fields
\ ety

Tr...U2)Uy(x+f)...— Tr.. .U (z)Vi(z+ @) V(e + @)Uz + i) . ...

Gauge invariant




Build the Action ‘by guessing’..

2
S = ? Z Z Re Tr (1 — Upp()). ? Does it work?

T pu>v

Upu(x) = Up(2)U, (z + fia)Ul(z + Da)UJ(z)
Check continuum limit a-> 0

A (x+va) =A, () +a0,Au(x) + ...

Up(z) =1 +ia*F,, + ... B =2N/g"

Continuum limit OK



Continuum limit

Coming back to correlation functions:

limy 0o < O(t)O(0) >oc et M

M = dimensionless quantity, expressed in lattice units = 1/5=

M=Mphys*a =1/€

a — O, 5 — OO Continuum limit: singularity !




‘g’ in the Lattice Lagrangian is the coupling at the scale ‘a’

1 /28 1/2byg*
al; = 5 e~ 1/2bog
[ bog

Physical scale — dimensional transmutation

b() = (I—SJVC — %i\'rf) /167’!’2 Eil'ld b1 = (;—:‘\7(12 — (1—?‘\} -+ ﬁ;(;l) i\'rf) /(16’/1'2)2

QCD Asymptotic freedom allows a rigorous continuum limit

In perturbation theory, a(g) is known.



Yang-Mills, continuum and lattice

1
SCOnt- — /d4:I?— Tr FH,/F#V
4g?

Not unique — improvement

x 1 x 1 U : SU(3) matrix Det =1
.~ »e o Ur{-13 = U*
Uu(z) U_y(z+1)= Ulfl = Uj:(zzr)
Y >

a: 0.1 fm? 0.003fm? 1cm???

g only parameter. —> where is the spacing?



After discretising -

Back to the continuum



Planning a simulation

Parameters: Na, NT, 0]

Lattice Gauge Theory
Assume we have the lattice results for
some masses

B M

Digcretize fields: M2Lat
Gauge fields M3Lat
/
U
“Matter fields . . .
Vg, Vg How do we get results in physical units?




Issues
— Scale setting : one physical value needed as input!
—Scaling : how strong are the discretisation effects?

—Asymptotic scaling : are we sensitive to the g=0 singularity?




Scaling : repeat for different couplings and check consistencies of results -
or, which is the same, check that dimensionless ratios do not depend on g

Asymptotic scaling : repeat for different couplings, and check consistency with the two-loop
universal scaling — implies scaling, but much harder to get

1 by /2b7 )
al; = ( ) e 1/2bog

b092

Improvement: in general, a program aimed at controlling lattice artifacts,
so to reach faster and with more confidence scaling (hence continuum limit)




The functional integral

Sampling the phase space



Task:



from Mike Creutz:

IR

A direct evaluation

of such an integral has pitfalls. At first sight, the basic size of the calculation
is overwhelming. Considering a 10* lattice, small by today standards, there are
40,000 links. For each is an SU(3) matrix, parametrized by 8 numbers. Thus
we have a 10* x 4 x 8 = 320, 000 dimensional integral. One might try to replace
this with a discrete sum over values of the integrand. If we make the extreme
approximation of using only two points per dimension, this gives a sum with

9320,000 _ 3 g v 1()96,329 (6)
terms! Of co ' fast, but one should remember




Monte Carlo methods:

Create a sample of configurations distributed according to

—S
&
The functional integral may then be traded with an average over configurations

Zfzj;vzl O;
N

(O) = %/DA#Oe‘S —




Monte Carlo time ‘evolution’

> New 7

Different methods use different strategies for choosing the new link

Crucial point: positive Action!



1. Metropolis
AS = S(U;) - S(U;) (all other variables kept fixed) .

If AS<0 the move is accepted

Otherwise: pick random number r 0 < r < 1 and accept if

rse_As ‘

Maximise distance between configurations, at the price of high rejection rate



2. Heath Bath

Choose new U with the appropriate weight:
exp{—S(U;")}

Accept step always satisfied by construction

It may be expensive



3. Modified Metropolis

Same as Metropolis, but make several hits
with the same link :
“n upgrading per step”

It ‘interpolates’ between the two previous cases - optimal n to be determined



A typical Monte Carlo simulation:

| month

supercomputer

analyse

measurements
4 months
Observables
MC sie

> Gr‘d . rusl ’ mnz’. mnl”

of scheduling

analyws optimation

of schedufing



Basic observables



Thinking in abstract terms - i.e. let us consider the discretised theory as a statistical
system in d+1 dimension — these are basic measurable quantities:

4 RxT

1) Wilson loops

2) Polyakov loop ¥
é-_:i‘-;* :";iﬁ-

3) Topological charge Difficult to draw ‘butterly operator’ %’U Koy F'F In the continuum
15 ok (more later)
k3, ’%

4) Two point functions of any of the above

5) Two point functions of composite fermion operators



Wilson loop

String tension - Interquark potential

+2.

+1,

Fig. 1. The interquark potential measured for two values 8 = 5.15
and B = 5.35 and mapped onto each other by setting the scale

V(R) = — Tl—i+r20

L ) T L ' 1 Ll L Ll I v L) ¥ L) [ ¥ L} L§ T ’ L L L L}

Confinement

Asympj0tic freedom B=5 . 35

A B=5.15

s L ' L e L A l L i 'l 1 l 'l i 1 L I i L 1

L

—

0.5 1.0 1.5 2.0
1/2
R oV

from the fitted string tension.

2.5

T

1 InW(R,T)

ViI(R) =¢co — F

String tension

S LoR

Cornell form

JT =420 MeV, Physical value



Two point functions of Polyakov loop: alternative extraction of the potential

e VEDIT o POPHR) > . x e o8

R—
P(t) 4
L
it
T
Parametro d’ordine per Z(N.). —> Confinement as a symmetry
For two colours: Z(2): Ising model!! —> Universality
‘Build’ Polyakov loop system: it is a cube of spins!! —> dimensional reduction at Tc




Checking the universality class of Yang Mills

Order parameter : L Analogous to magnetisation In 3D

A (ch’,"f)’g L T < TP
0 , T >T)

M 4

Note: high and low temperatures interchanged




Some references:

Basics, from QCD to lattice:

Thomas Schaefer https://arxiv.org/pdf/1608.05459.pdf

Lattice pedagogical reviews:

Christine Davies, https://arxiv.org/pdf/hep—ph/0205181.pdf
Tom de Grand https://arxiv.org/pdf/1907.02988. pdf

Martin Luescher https://arxiv.org/pdf/hep—1at/9802029.pdf
Michael Creutz https://arxiv.org/pdf/hep—-1at/0406007.pdf



