

(Un)Knowns about QCD

 phases and prospects about
dense QCD matter

Kenji Fukushima

The University of Tokyo

- PhD School on QCD in Extreme Conditions -

Useful References

* 50 Years of Quantum Chroodynamics, Chap. 7
2212.11107 [hep-ph]
* Nuclear Matter at High Density and Equation of State

Chap. 5
Not yet readable on arXiv... sorry...

* Little-Bang and Femto-Nova in Nucleus-Nucleus Collisions 2009.03006 [hep-ph]

High Temp., High Density, Strong B, Large Spin, ...

Talk Plans

Knowns for QCD Matter at High T and Low Baryon Density

Theoretical Knowns and Many Unknowns at Low T and High Baryon Density

Some Implications from Anomalies

- Day 1 -

Knowns for QCD Matter at High T and Low Baryon Density

Quarks and Gluons

Quarks \quad spin-1/2 (fermions) 6 flavors 3 colors

(transform in the $\mathrm{SU}(3)$ fundamental rep.) quark red / green / blue

Gluons
spin-1 (bosons) 8 colors (in the adjoint rep.) $=3 \times 3-1$ (singlet)

Origin of the Mass

Quark Model

Phenomenological Mass Formula

$$
\begin{aligned}
& M_{\text {hadron }}=\sum_{i} m_{i}+\Delta M \\
& \Delta M=\sum \frac{4 \pi \alpha_{s}}{9} \frac{\boldsymbol{\sigma}_{i} \cdot \boldsymbol{\sigma}_{j}}{m_{i} m_{j}}|\psi(0)|^{2}
\end{aligned}
$$

${ }^{\text {"Constituent Quark }}{ }^{\prime} \quad m_{u, d} \approx 360 \mathrm{MeV}$

Origin of the Mass

Magnetic Moment of Spin-1/2 Particles

Spin effect is more suppressed by larger mass

Origin of the Mass

Quark Model

$$
\begin{aligned}
\mu_{p} & =\frac{4}{3} \mu_{u}-\frac{1}{3} \mu_{d} \\
\mu_{n} & =\frac{4}{3} \mu_{d}-\frac{1}{3} \mu_{u}
\end{aligned}
$$

Wave-function \rightarrow

"Constituent Quark"

$$
\mu_{u}=\frac{q_{u}}{2 m_{q}}=-2 \mu_{d} \rightarrow \underline{m_{q} \approx 340 \mathrm{MeV}}
$$

Origin of the Mass

But, up- and down-quarks are almost massless!?

$$
\begin{array}{c|c|c}
\hline \text { Flavor } & \text { Charge } & \text { Mass } \\
\hline \text { u-quark } & (2 / 3) e & \sim 3 \mathrm{MeV} \\
\text { d-quark } & -(1 / 3) e & \sim 5 \mathrm{MeV} \\
\text { s-quark } & -(1 / 3) e & \sim \mathbf{1 0 0 M e V} \\
\text { c-quark } & (2 / 3) e & \sim \mathbf{1 . 3 G E V} \\
\text { b-quark } & -(1 / 3) e & \sim \mathbf{4 . 2 G e V} \\
\text { t-quark } & (2 / 3) e & \sim \mathbf{1 7 0 G E V}
\end{array}
$$

Origin of the Mass

QCD Energy Scale $\alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \ln \left(Q^{2} / \Lambda_{\mathrm{QCD}}^{2}\right)}$

Hadron size is fixed by the screening and the mass should be comparable to the QCD scale.

Chiral Symmetry

 Massless QCD has global symmetry:
$\mathrm{SU}\left(N_{f}\right)_{\mathrm{L}} \times \mathrm{SU}\left(N_{f}\right)_{\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{A}} \rightarrow \mathrm{SU}\left(N_{f}\right)_{\mathrm{V}}$
Massless (Chiral) Dirac Fermion

Chiral Symmetry

 Massless QCD has global symmetry: $\operatorname{SU}\left(X_{f}\right)_{\mathrm{L}} \times \operatorname{SU}\left(N_{f}\right)_{\mathrm{R}} \times \operatorname{U}()_{\mathrm{A}} \rightarrow \operatorname{SU}\left(N_{f}\right)_{\mathrm{V}}$ Anomalously BrokenMass term: $m \bar{q} q$ induces \boldsymbol{m} if

Chiral Condensate

July 23, 2023 @ XQCD School in Coimbra

Spontaneous Breaking

Zero-point Oscillation Energy [Peskin-Schroeder]

$$
\begin{equation*}
=\int \frac{d^{3} p}{(2 \pi)^{3}} \omega_{\mathbf{p}}\left(a_{\mathbf{p}}^{\dagger} a_{\mathbf{p}}+\frac{1}{2}\left[a_{\mathbf{p}}, a_{\mathbf{p}}^{\dagger}\right]\right) . \tag{2.31}
\end{equation*}
$$

The second term is proportional to $\delta(0)$, an infinite c-number. It is simply the sum over all modes of the zero-point energies $\omega_{\mathrm{p}} / 2$, so its presence is completely expected, if somewhat disturbing. Fortunately, this infinite energy shift cannot be detected experimentally, since experiments measure only energy differences from the ground state of H. We will therefore ignore this infinite constant term in all of our calculations. It is possible that this energy shift of the ground state could create a problem at a deeper level in the theory; we will discuss this matter in the Epilogue.

$$
\text { Not true for QCD! } \omega_{\boldsymbol{p}}=\sqrt{\boldsymbol{p}^{2}+\sqrt{m^{2}}}
$$

Spontaneous Breaking

$N_{f}=2$
$\sigma \sim\langle\bar{\psi} \psi\rangle \neq 0$
$M \sim \lambda\langle\bar{\psi} \psi\rangle$

Mass dim. -2

Spontaneous Breaking

Zero-Point Oscillation Energy

$$
\left.\left.\left.\begin{array}{l}
-2 \int^{\Lambda} \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{p^{2}+M^{2}} \\
\simeq-\frac{\Lambda^{4}}{8 \pi^{2}}[2+\underbrace{\text { Look at the curvature }}_{\text {negative }} \\
\text { at the symmetric point. }
\end{array}\right)\right] \quad \mathcal{O}\left(\xi^{4}\right)\right] \quad \xi=M / \Lambda
$$

Interaction Effect

$$
\frac{M^{2}}{2 \lambda_{\Lambda}}=\frac{\Lambda^{4}}{2 \hat{\lambda}_{\Lambda}} \xi_{\text {positive }}
$$

Dynamical mass
generated for $\hat{\lambda}_{\Lambda}>2 \pi^{2}$
Nambu—Jona-Lasinio 1961

Phases in Extreme Conditions

Origin of the Mass = QCD Vacuum

RHIC: From dreams to beams in two decades

Gordon Baym
Department of Physics, University of Illinois at Urbana-Champaign
Urbana, IL 61801, U.S.A.
This talk traces the history of RHIC over the last two decades, reviewing the scientific motivations underlying its design, and the challenges and opportunities the machine presents.

1. THE VERY EARLY DAYS

The opening of RHIC culminates a long history of fascination of nuclear and high energy physicists with discovering new physics by colliding heavy nuclei at high energy. As far back as the late 1960's the possibility of accelerating uranium ions in the CERN ISR for this purpose was contemplated [1]. The subject received "subtle stimulation" by the workshop on "Bev/nucleon collisions of heavy ions" at Bear Mountain, New York, organized by Arthur Kerman, Leon Lederman, Mal Ruderman, Joe Weneser and T.D. Lee in the fall of 1974 [1]. In retrospect, the Bear Mountain meeting was a turning point in bringing heavy ion physics to the forefront as a research tool. The driving question at the meeting was, as Lee emphasized, whether the vacuum is a medium whose properties one could change; "we should investigate," he pointed out, "... phenomena by distributing high energy or high nucleon density over a relatively large volume." If in this way one could restore broken symmetries of the vacuum, then it might be possible to create abnormal dense states of nuclear matter, as Lee and Gian-Carlo Wick speculated [2].

Vacuum
~Medium?
~ Changeable?

Quark mass changeable?
 - Yes!

Phases in Extreme Conditions

Phases in Extreme Conditions

$$
\sim 350 \mathrm{MeV} \quad \text { High } T \quad \sim \text { a few MeV }
$$

Masses "melt" around the temperature $\sim 200 \mathrm{MeV}$ Almost massless fermions appear there!

Hot and Dense QCD Matter = Chiral Matter

QCD is a highly nontrivial theory with topological phenomena.
Quantum anomaly has been a central subject over half a century.

Phases in Extreme Conditions

 Heavy-Ion Collisions Two nuclei approach...
... and collide...
... and a quark gluon plasma (QGP) is made.

Probing the QCD Phase Diagram

Some inhomogeneous phase is suggested!?

Probing the QCD Phase Diagram

The very first phase diagram of QCD matter!

Probing the QCD Phase Diagram

Probing the QCD Phase Diagram

PHASE DIAGRAM OF NUCLEAR MATTER.

Physics of (De)Confinement

A very simple "bag model" picture

Confined Phase

$$
p_{\text {hadron }}(T)=\frac{3 \pi^{2}}{90} T^{4}+B
$$

Deconfined Phase

$$
p_{\mathrm{pert}}(T)=\frac{(16+21) \pi^{2}}{90} T^{4}
$$

$B^{1 / 4} \sim \Lambda_{\mathrm{QCD}}$ confining pressure in the $\mathbf{Q C D}$ vacuum

Physics of (De)Confinement

Wuppertal-Budapest (2010)

July 23, 2023 @ XQCD School in Coimbra

Physics of (De)Confinement

 Confinement of Quarks (Wilson 1974)

Physics of (De)Confinement

 Confinement of Quarks (Wilson 1974)

Physics of (De)Confinement

Physics of (De)Confinement

 Screening Effect in the Confined Phase$$
\begin{aligned}
& f_{q \bar{q}}(r) \rightarrow 2(\text { hadron mass }) \quad(r \rightarrow \infty) \\
& \left.f_{q} \rightarrow(\text { hadron mass }) \quad \text { (in "conf." phase }\right)
\end{aligned}
$$

Linear potential is "screened" at large distances

No way to define confinement at finite T

Physics of (De)Confinement

Polyakov loop increases very smoothly:

There is no clear-cut T_{c} for deconfinement.

Physics of Chiral Restoration

$\mathrm{SU}\left(N_{f}\right)_{\mathrm{L}} \times \mathrm{SU}\left(N_{f}\right)_{\mathrm{R}} \times \mathrm{U}\left(\mathrm{H}_{\mathrm{A}} \rightarrow \mathrm{SU}\left(N_{f}\right)_{\mathrm{V}}\right.$

 Shall be explained on Day 3.

For $N_{f}=2$
2nd-order "expected" from the universality
$\mathrm{SU}(2) \times \mathrm{SU}(2) \rightarrow \mathrm{SU}(2)$
$\mathrm{SO}(4) \rightarrow \mathrm{SO}(3)$ Massless $\pi^{0}, \pi^{+}, \pi^{-}$
Degenerate $\sigma, \pi^{0}, \pi^{+}, \pi^{-}$
Massive σ

Physics of Chiral Restoration

$$
\Gamma=\int d^{d} x\left[(\partial \boldsymbol{\phi})^{2}+c_{2}|\boldsymbol{\phi}|^{2}+c_{4}|\boldsymbol{\phi}|^{4}+\cdots\right]
$$

Physics of Chiral Restoration

$\operatorname{SU}\left(N_{f}\right)_{\mathrm{L}} \times \operatorname{SU}\left(N_{f}\right)_{\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{A}} \rightarrow \operatorname{SU}\left(N_{f}\right)_{\mathrm{V}}$

Shall be explained on Day 3.

$\mathbf{U (1) A}$ Breaking Interaction

$$
\begin{aligned}
\operatorname{det}\left[\bar{\psi}_{i}\left(1+\gamma_{5}\right) \psi_{j}\right] & \left.\rightarrow \operatorname{det}\left[R_{j m} \bar{\psi}_{n}\left(1+\gamma_{5}\right) \psi_{m}\right] L_{n i}^{\dagger}\right] \\
& =\operatorname{det}[R] \operatorname{det}\left[L^{\dagger}\right] \operatorname{det}\left[\bar{\psi}_{i}\left(1+\gamma_{5}\right) \psi_{j}\right]
\end{aligned}
$$

$$
\langle\bar{u} u\rangle\langle\bar{d} d\rangle\langle\bar{s} s\rangle \sim\langle\bar{q} q\rangle^{3} \quad \begin{aligned}
& \text { 1st-order transition } \\
& \text { is strongly favored. }
\end{aligned}
$$

Physics of Chiral Restoration

Physics of Chiral Restoration

Pisarski-Wilczek (1984)

If $\mathrm{U}(1)_{\mathrm{A}}$ is restored then symmetry is not $\mathrm{O}(4)$ but $\mathrm{O}(4) \times \mathrm{O}(1)$ and the leading order ε expansion cannot find a fixed point... 1st-order phase transition?

Recent lattice-QCD suggests the 1 st-order region is tiny or even entirely vanishing!?

See; Philipsen (2022)

Relation Between Two Transitions

Gluon Sector

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a} \quad\left(A_{\mu} \rightarrow A_{B}+\mathcal{A}\right)
$$

$A_{\mathrm{B} 4}=\frac{2 \pi}{g \beta} \operatorname{diag}\left(q_{1}, q_{2}, \ldots, q_{N_{\mathrm{c}}}\right)=\frac{2 \pi}{g \beta} \sum_{i=1}^{N_{\mathrm{c}}} q_{i} \delta_{i} \quad\left(\sum_{i} q_{i}=0\right)$
$D_{\mathrm{B} 4} \mathcal{A}_{\mu}=\partial_{4} \mathcal{A}_{\mu}-i g\left[A_{\mathrm{B} 4}, \mathcal{A}_{\mu}\right]=\partial_{4}^{(i, j)} \mathcal{A}_{\mu}^{(i, j)} t_{(i, j)}$
$\partial_{4}^{(i, j)}=\partial_{4}-2 \pi i \delta_{\mu 4} q_{i j} \quad q_{i j}=q_{i}-q_{j}$
A_{4} appears like an imaginary chemical potential

Relation Between Two Transitions

Gluon Sector $\quad A_{4} \sim$ Colored imaginary chemical potential

$$
V_{\text {glue }}[q]=2 V \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{i>j}\left[\ln \left(1-e^{-\beta|\boldsymbol{p}|+2 \pi i q_{i j}}\right)+\ln \left(1-e^{-\beta|\boldsymbol{p}|-2 \pi i q_{i j}}\right)\right]
$$

This momentum integration is analytically done:

$$
V_{\substack{\text { glue } \\ \text { sue2 Wiss Pesemiala }}}^{\text {Weiss }}[q]=\frac{4 \pi^{2} V}{3 \beta^{3}} \sum_{i>j}\left(q_{i j}\right)_{\bmod 1}^{2}\left[\left(q_{i j}\right)_{\bmod 1}-1\right]^{2}
$$

Relation Between Two Transitions

Gluon Sector

SU(2) Weiss Potential
One loop potential has spontaneous symmeetry breaking and the perturbative vacuum is found in the "broken" phase.

Potential curvature is the Debye mass.

Relation Between Two Transitions

Quark Sector

$$
\begin{aligned}
V_{\text {quark }}[q] & =-2 N_{\mathrm{f}} T V \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{i=1}^{N_{\mathrm{c}}}\left[\ln \left(1+e^{-\beta(|\boldsymbol{p}|-\mu)+2 \pi q_{i}}\right)+\ln \left(1+e^{-\beta(|\boldsymbol{p}|+\mu)-2 \pi i q_{i}}\right)\right] \\
& =-N_{\mathrm{f}} V \frac{4 \pi^{2}}{3 \beta^{4}} \sum_{i=1}^{N_{\mathrm{c}}}\left(q_{i}+\frac{1}{2}-i \frac{\beta \mu}{2 \pi}\right)_{\operatorname{mod1}}^{2}\left[\left(q_{i}+\frac{1}{2}-i \frac{\beta \mu}{2 \pi}\right)_{\bmod 1}-1\right]^{2} .
\end{aligned}
$$

Complex at finite $\mu \rightarrow$ Sign Problem
No way to fix the optimal Polyakov loop...!?
SU(2) Full Weiss Potential ($N_{\mathrm{f}}=1$)

Relation Between Two Transitions

Equivalent but more useful expression

$$
\begin{aligned}
V_{\text {quark }}[q]= & -2 N_{\mathrm{f}} T V \int \frac{d^{3} p}{(2 \pi)^{3}} \operatorname{tr}\left[\ln \left[1+L e^{-\beta\left(\varepsilon_{p}-\mu\right)}\right]+\ln \left[1+L^{\dagger} e^{-\beta\left(\varepsilon_{p}+\mu\right)}\right]\right] \\
=-2 N_{\mathrm{f}} T V \int & \frac{d^{3} p}{(2 \pi)^{3}}\left[\ln \left(1+3 \ell e^{-\beta\left(\varepsilon_{p}-\mu\right)}+3 \ell^{*} e^{-2 \beta\left(\varepsilon_{p}-\mu\right)}+e^{-3 \beta\left(\varepsilon_{p}-\mu\right)}\right)\right. \\
& \left.+\ln \left(1+3 \ell^{*} e^{-\beta\left(\varepsilon_{p}+\mu\right)}+3 \ell e^{-2 \beta\left(\varepsilon_{p}+\mu\right)}+e^{-3 \beta\left(\varepsilon_{p}+\mu\right)}\right)\right]
\end{aligned}
$$

This gives a natural coupling betw'n $\langle\bar{q} q\rangle$ and Φ.

$$
1+e^{i 2 \pi / 3}+e^{-i 2 \pi / 3}=0
$$

Polyakov loop = medium screening

Relation Between Two Transitions

Very simple but robust idea to make them locked

Relation Between Two Transitions

Intuitive arguments (Casher)

If quarks are confined by the spherical potential, how can quarks flip their chirality?

Confinement \rightarrow Chiral Symmetry Breaking

Relation Between Two Transitions

Is this also possible? Yes, e.g. adjoint quarks

Relation Between Two Transitions

What if there are adjoint quarks?

With periodic boundary condition (in a box)
Gluon+Adjoint Quark

$$
\left(\frac{1}{2}-N_{f}\right) \frac{8 \pi^{2} V}{3 L^{3}} \sum_{i>j}\left(q_{i j}\right)_{\bmod 1}^{2}\left[\left(q_{i j}\right)_{\bmod 1}-1\right]^{2}
$$

0Upside down!

Confinement occurs almost trivially and perturbatively. Small box \rightarrow Large box?

Phenomenology

Experimentally determined with a clear physics picture

Deconfinement = Hagedorn?

This tells us a lot of insights on deconfinement physics

Phenomenology

How to determine T and μ "experimentally"

July 23, 2023 @ XQCD School in Coimbra

Phenomenology

(Mapping) $\sqrt{s_{N N}} \Leftrightarrow T, \mu_{B}$

July 23, 2023 @ XQCD School in Coimbra

Phenomenology

Phase Diagram = Two Hagedorn Transition Lines

$$
\begin{aligned}
& \text { Mesonic Hagedorn Transition } \\
& \begin{array}{l}
Z=N \int d m \rho(m) e^{-m / T} \\
\rho(m)=e^{m / T_{H}} \\
T_{c}=T_{H}
\end{array}
\end{aligned}
$$

Baryonic Hagedorn Transition

$Z=N \int d m \rho_{B}(m) e^{-\left(m-\mu_{B}\right) / T}$
$\rho_{B}(m)=e^{m_{B} / T_{B}}$
$T_{c}=\left(1-\mu_{B} / m_{B}\right) T_{B}$

Phenomenology

"Experimentally Determined" Phase Diagram

For full information see; 2009.03006 [hep-ph]

