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Useful References
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* 50 Years of Quantum Chroodynamics, Chap.7 
2212.11107 [hep-ph]
* Nuclear Matter at High Density and Equation of State 
Chap.5 
Not yet readable on arXiv… sorry…
* Little-Bang and Femto-Nova in Nucleus-Nucleus Collisions 
2009.03006 [hep-ph]

High Temp., High Density, 
Strong B, Large Spin, …
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Talk Plans
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Some Implications from Anomalies

Knowns for QCD Matter at High T  
and Low Baryon Density

Theoretical Knowns and Many Unknowns 
 at Low T and High Baryon Density
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Knowns for QCD Matter at High T 
and Low Baryon Density

—  Day 1  —
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Quarks and Gluons
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Quarks spin-1/2 (fermions) 6 flavors 3 colors
(transform in the SU(3) fundamental rep.)

red / green / blue

rr  rg  rb  gr  gg  gb  br  bg  bb  - (rr+gg+bb)

Gluons spin-1 (bosons) 8 colors (in the adjoint rep.)
=3×3-1 (singlet)
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Origin of the Mass
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Quark Model
Phenomenological Mass Formula

“Constituent Quark”

Mhadron =
X

i

mi +�M

�M =
X 4⇡↵s

9

�i · �j

mimj
| (0)|2

mu,d ⇡ 360 MeV



July 23, 2023 @ XQCD School in Coimbra

Origin of the Mass
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µ =
q~
2m

Magnetic Moment of Spin-1/2 Particles

Spin effect is more suppressed by larger mass
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Origin of the Mass
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Quark Model
µp =

4

3
µu � 1

3
µd

µn =
4

3
µd �

1

3
µu

Wave-function →

“Constituent Quark”

µu =
qu
2mq

= �2µd ! mq ⇡ 340 MeV
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Origin of the Mass
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But, up- and down-quarks are almost massless!?

Flavor Charge Mass
u-quark (2/3)e ~ 3MeV
d-quark -(1/3)e ~ 5MeV
s-quark -(1/3)e ~ 100MeV
c-quark (2/3)e ~ 1.3GeV
b-quark -(1/3)e ~ 4.2GeV
t-quark (2/3)e ~ 170GeV
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Origin of the Mass
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QCD Energy Scale ↵s(Q
2) =

1

�0 ln(Q2/⇤2
QCD)

Q

+
-+

-
+ -

+
-

+
- +

-

+-
+

-

Coupling getting weaker at 
short distances (anti-screening)

Hadron size is fixed 
by the screening and 
the mass should be 
comparable to the 
QCD scale.

ΛQCD ∼ 200 MeV



July 23, 2023 @ XQCD School in Coimbra

Chiral Symmetry
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SU(Nf )L ⇥ SU(Nf )R ⇥U(1)A ! SU(Nf )V

Massless QCD has global symmetry:

Massless (Chiral) Dirac Fermion

Right-handed 
Weyl Fermion

Left-handed 
Weyl Fermion

Spin
Momentum
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Chiral Symmetry
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Anomalously Broken

Chiral Condensate

hq̄qi

SU(Nf )L ⇥ SU(Nf )R ⇥U(1)A ! SU(Nf )V

Massless QCD has global symmetry:

Mass term: 

induces m if

mq̄q

is not zero.
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Spontaneous Breaking
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Zero-point Oscillation Energy [Peskin-Schroeder]

Not true for QCD! !p =
p
p2 +m2

Dynamical Quantity
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Spontaneous Breaking
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� ⇠ h ̄ i 6= 0

⇡i ⇠ h ̄i�5⌧i i = 0

Nf = 2

<latexit sha1_base64="uYm1DcCnz3ycdlaTO+XVWlkvV5U="></latexit>

M ⇠ �h ̄ i

Mass dim. 3
Mass dim. -2
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Spontaneous Breaking
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� 2

Z ⇤ d3p

(2⇡)3
p
p2 +M2

' �
⇤4

8⇡2

⇥
2 + ⇠2 +O(⇠4)

⇤
⇠ = M/⇤

Zero-Point Oscillation Energy

Interaction Effect

M2

2�⇤
=

⇤4

2�̂⇤

⇠2

negative

positive

Dynamical mass 
 generated for �̂⇤ > 2⇡2

Nambu—Jona-Lasinio 1961

Look at the curvature 
at the symmetric point.
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Phases in Extreme Conditions
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Origin of the Mass = QCD Vacuum

Vacuum

~ Medium?

~ Changeable??


Quark mass 
 changeable?

  — Yes!
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Phases in Extreme Conditions
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Low T High T ~ 200MeV

~ 1/T

Quarks are no longer confined 
“Deconfinement”
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Phases in Extreme Conditions
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~ 350MeV ~ a few MeVHigh T

Masses “melt” around the temperature ~ 200MeV
Almost massless fermions appear there!

Hot and Dense QCD Matter = Chiral Matter
QCD is a highly nontrivial theory with topological phenomena.
Quantum anomaly has been a central subject over half a century.
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Little 
Bang

Two nuclei approach…

… and collide…

… and a quark 
gluon plasma 
(QGP) is made.

Heavy-Ion Collisions
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Probing the QCD Phase Diagram
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Some inhomogeneous phase is suggested!?
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Probing the QCD Phase Diagram
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Cabibbo-Parisi (1975)
Hagedorn limiting temperature

The very first phase diagram of QCD matter!
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Probing the QCD Phase Diagram
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Baym (1982)

Two phase transitions 
are considered to be 
distinct… different 
underlying physics.
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Probing the QCD Phase Diagram
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Lattice-QCD implies 
two transitions are 
locked together!?

No lattice data at 
finite density — 
locking there is a 
theoretical conjecture.

Baym (1986)
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A very simple “bag model” picture
Confined Phase

Deconfined Phase

phadron(T ) =
3⇡2

90
T 4 +B

ppert(T ) =
(16 + 21)⇡2

90
T 4

B1/4 ⇠ ⇤QCD confining pressure in the QCD vacuum

p(T)
Tc =


90

(37� 3)⇡2
B

�1/4
⇠ 160 MeV



July 23, 2023 @ XQCD School in Coimbra

Physics of (De)Confinement

25
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Wuppertal-Budapest (2010)

⇠ phadron

⇠ ppert
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Confinement of Quarks (Wilson 1974)

t

x

C
hW (C)i

=

⌧
trP exp


ig

I

C
dxµA⌫

��

AC = (Area)
(Confinement)

, hW (C)i ⇠ exp[�#AC ]

Area Law
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Physics of (De)Confinement
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t

C

x

LC  
 = (Perimeter)

Pair production of 
      dynamical quarks

hW (C)i ⇠ exp[�#LC ]

Perimeter Law

Confinement of Quarks (Wilson 1974)
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Physics of (De)Confinement
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Z = tr e�Ĥ/T

it , ⌧

Aµ(⌧ + �) = Aµ(⌧)

 (⌧ + �) = � (⌧)

r
W (C) = trL(0) trL†(r)

Polyakov

   Loop

hW (C)i = htrL(0)trL†(r)i
= exp[�fqq̄(r)/T ]

! |htrLi|2 (r ! 1)

= exp[�2fq/T ]
<latexit sha1_base64="vGbI0PW8c2oyehzUAZE2X9UvvEM="></latexit>

� =
1

3
htrLi ⇠ e�fq/T

A4A4

τ
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Physics of (De)Confinement
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Screening Effect in the Confined Phase
fqq̄(r) ! 2(hadron mass) (r ! 1)

fq ! (hadron mass) (in “conf.” phase)

No way to define confinement at finite T

Linear potential is 
  “screened” at large distances
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Physics of (De)Confinement
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Polyakov loop increases very smoothly:

There is no clear-cut Tc for deconfinement.

T [MeV]

Renormalized
 Polyakov Loop

!s /T 2

100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0

O
rd

er
 P

ar
am

et
er

s

Lattice from Wuppertal-Budapest (2010)Lattice from BNL-Bielefeld (2010)
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Physics of Chiral Restoration
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For Nf = 2

SU(Nf )L ⇥ SU(Nf )R ⇥U(1)A ! SU(Nf )V

2nd-order “expected” 
from the universality

Shall be explained 
on Day 3.

<latexit sha1_base64="YmbHWdigcCyC5lpsadmYSVfk0q8="></latexit>

SU(2)⇥ SU(2) ! SU(2)
<latexit sha1_base64="YPpmrklWjG+vagHEBsh7iVnP308="></latexit>

SO(4) ! SO(3)

Degenerate , , , σ π0 π+ π−

Massless , , π0 π+ π−

Massive σ
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c2

c4
Critical Line

Symmetric
  Phase

Broken
Phase

Fixed
 Point

^

^

<latexit sha1_base64="I2zICsPxLMEC56JzcTzGvYmGviI="></latexit>

� =

Z
ddx

h
(@�)2 + c2|�|2 + c4|�|4 + · · ·

i

Idea of “Universality”
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Physics of Chiral Restoration
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U(1)A Breaking Interaction

SU(Nf )L ⇥ SU(Nf )R ⇥U(1)A ! SU(Nf )V

Shall be explained 
on Day 3.

<latexit sha1_base64="TVlaikb5XIBJMuVWTDfwwnZSJ/I="></latexit>

det[ ̄i(1 + �5) j ] ! det[Rjm ̄n(1 + �5) m]L†
ni]

= det[R] det[L†] det[ ̄i(1 + �5) j ]
<latexit sha1_base64="k9E6vR/NMY8CWZS894SN29Iwo1g="></latexit>

hūuihd̄dihs̄si ⇠ hq̄qi3 1st-order transition 
is strongly favored.
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Physics of Chiral Restoration
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Quenched 
Limit

Close to 
  the O(4) 2nd?

Located in the 
crossover region

Crossover 
 confirmed by 
   finite-V analysis

Aoki et al. (2006)
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Physics of Chiral Restoration
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If U(1)A is restored then 
symmetry is not  but 

 and the leading 
order  expansion cannot 
find a fixed point… 
1st-order phase transition?

O(4)
O(4) × O(1)

ε

Pisarski-Wilczek (1984)

Recent lattice-QCD suggests 
the 1st-order region is tiny 
or even entirely vanishing!? 
                    See; Philipsen (2022)
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Gluon Sector
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Figure 1: SU(2) (left) and SU(3) (right) e↵ective potentials as a function of the Polyakov loop � around
the critical value of J .

the covariant background gauge for the gauge fixing and the ladder basis for the representation. In
the background field method, the gauge fields are split into the quantum fluctuations Aµ and the
background fields ABµ, and the covariant background field gauge is chosen as

DBµAµ = 0 . (36)

Then, from the residual symmetry of the e↵ective action �0[Ā, AB] defined on top of the background
Aa

Bµ
, one can prove that �0[Ā, AB] = �[Ā = Ā + AB], where �[Ā] is the standard e↵ective action that

we want to know. From this we see that �[AB] = �0[Ā = 0, AB]. This implies that we can obtain the
e↵ective action by integrating the quantum fluctuations out around the background fields. Because
we are interested in the e↵ective potential for the Polyakov loop, we should take only the temporal
component of the background fields and rename it in the same way as in Eq. (32), i.e.

AB4 =
2⇡

g�
diag(q1, q2, . . . , qNc) =

2⇡

g�

NcX

i=1

qi�i
⇣X

i

qi = 0
⌘
, (37)

where, for convenience, we define matrices as

(�i)
ab =

(
1 (a = b = i)

0 (otherwise)
. (38)

For the evaluation of the covariant derivative DB4, the ladder basis is quite convenient for systematic
higher-order calculations [36]. The elements of the Cartan subalgebra in the ladder basis are defined as

(t(n,n))
ab =

�abp
2n(n+ 1)

⇥

8
><

>:

1 (a  n)

�n (a = n+ 1)

0 (n+ 2  a  Nc)

(39)

and o↵-diagonal ladder elements for i 6= j are

(t(i,j))
ab =

1p
2
�ai�bj . (40)

and then it is easy to show the following commutation relations,

[�i, t(j,k)] = (�ij � �ik)t(j,k) , [t(i,j), t(k,l)] =
1

2
�il�jk(�i � �j) . (41)
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Figure 2: SU(2) Weiss potential as a function of q (left) and � (right).

Using these commutation relations we can express the covariant derivative as

DB4Aµ = @4Aµ � ig[AB4,Aµ] = @(i,j)
4 A(i,j)

µ
t(i,j) , (42)

where @(i,j)
4 = @4� 2⇡i�µ4qij with qij = qi� qj. We note that AB4 or qij appears like a colored imaginary

chemical potential. Then, the one-loop integration with respect to Aµ and the ghost fields leads to the
following e↵ective potential,

Vglue[q] =
1

2
tr ln

⇥
(@(i,j)

4 )2 +r2
⇤
· tr(�µ⌫)� tr ln

⇥
(@(i,j)

4 )2 +r2
⇤
= tr ln

⇥
(@(i,j)

4 )2 +r2
⇤
. (43)

Here the first term multiplied by four polarizations tr(�µ⌫) results from Aµ fluctuations and the second
term from the ghost fluctuations that eliminate two unphysical polarizations out from the gluon fluctu-
ations. From the observation that qij is an imaginary chemical potential, the above trace in momentum
space becomes the grand canonical partition function with an imaginary chemical potential, that is,

Vglue[q] = 2V

Z
d3p

(2⇡)3

X

i>j

h
ln
�
1� e��|p|+2⇡iqij

�
+ ln

�
1� e��|p|�2⇡iqij

�i
. (44)

We can carry out this momentum integration explicitly, which yields,

V Weiss
glue [q] =

4⇡2V

3�3

X

i>j

(qij)
2
mod1

⇥
(qij)mod1 � 1

⇤2
. (45)

This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.
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LYM = �1

4
F a
µ⌫F

a
µ⌫ (Aµ ! AB +A)

 appears like an imaginary chemical potentialA4
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Gluon Sector
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Using these commutation relations we can express the covariant derivative as
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Here the first term multiplied by four polarizations tr(�µ⌫) results from Aµ fluctuations and the second
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This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.
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Figure 2: SU(2) Weiss potential as a function of q (left) and � (right).
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ations. From the observation that qij is an imaginary chemical potential, the above trace in momentum
space becomes the grand canonical partition function with an imaginary chemical potential, that is,

Vglue[q] = 2V

Z
d3p

(2⇡)3

X

i>j

h
ln
�
1� e��|p|+2⇡iqij

�
+ ln

�
1� e��|p|�2⇡iqij

�i
. (44)

We can carry out this momentum integration explicitly, which yields,

V Weiss
glue [q] =

4⇡2V

3�3

X

i>j

(qij)
2
mod1

⇥
(qij)mod1 � 1

⇤2
. (45)

This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.

12

-2 -1  0  1  2
q

SU(2) Weiss Potential

-1 -0.5  0  0.5  1
Φ

SU(2) Weiss Potential

Figure 2: SU(2) Weiss potential as a function of q (left) and � (right).
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Here the first term multiplied by four polarizations tr(�µ⌫) results from Aµ fluctuations and the second
term from the ghost fluctuations that eliminate two unphysical polarizations out from the gluon fluctu-
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This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.
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Figure 3: SU(3) Weiss potential as a function of q1 and q2 (left) and Re� and Im� (right).

One might think that the perturbation theory may be reformulated around q = 1 equivalently to that
around q = 0, but as we see later, the quark one-loop potential favors q = 0 and the perturbative
vacuum must be identified as q = 0 if we assume continuity between the pure gluonic theory and the
massive limit of QCD. It is straightforward to change the variable from q to �, and the SU(2) Weiss
potential as a function of � is plotted in the right of Fig. 2. We can see that the potential minima are
located at � = ±1, but these points of � = ±1 look singular unlike the left of Fig. 2. Such singular
character originates from the Jacobian from q to �, namely, dq/d� = �1/[⇡ sin(⇡q)], which diverges at
� = ±1. As we will discuss later, this observation of the potential shape is important when we want to
consider the e↵ect of the Polyakov loop fluctuations.

Next, the generalization to the SU(3) case is easy to understand. Now, for the graphical purpose,
we choose q1 and q2 as independent variables and set q3 = �q1 � q2 to draw the SU(3) Weiss potential
in the left of Fig. 3. We see that one of the minima is certainly located at the perturbative vacuum
q1 = q2 = 0 and there are degenerate minima as the center transformed points. It is not clear which
minimum has what value of the Polyakov loop, and so let us change the variables from q1 and q2 to Re�
and Im� as shown in the right of Fig. 3. In this case, three points, � = 1, e2⇡i/3, e4⇡i/3, are degenerate
connected by center transformation, among which � = 1 is favored by quark loop contributions.

In this way we have confirmed that the perturbative vacuum at A4 = 0 should be certainly identified
as an ordered state with spontaneous center symmetry breaking. The potential curvature around the
potential minimum characterizes how strongly symmetry is broken; in other words, the Debye screening
mass stabilizes the perturbative vacuum. From the explicit expression (45) we can infer the potential
curvature or the Debye screening mass mE, i.e.
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3
g2T 2 , (46)

where we used
P

i>j
(qij)2 = Nc

P
i
q2
i
. We can continue such an analysis to read higher-order interaction

terms. The cubic term has an infrared singular origin from infinite sum over ring diagrams (at zero
Matsubara frequency), and we next go to quartic order; suppose that the one-loop e↵ective action has
quartic terms such as �E(trA2

4)
2 + �̄EtrA4

4, we can infer �E and �̄E from the Weiss potential (45) as

�E =
g4

4⇡2
, �̄E =

Ncg4

12⇡2
. (47)

These are exactly the coe�cients that appear in the so-called electrostatic QCD (EQCD).
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Figure 2: SU(2) Weiss potential as a function of q (left) and � (right).

Using these commutation relations we can express the covariant derivative as

DB4Aµ = @4Aµ � ig[AB4,Aµ] = @(i,j)
4 A(i,j)

µ
t(i,j) , (42)

where @(i,j)
4 = @4� 2⇡i�µ4qij with qij = qi� qj. We note that AB4 or qij appears like a colored imaginary

chemical potential. Then, the one-loop integration with respect to Aµ and the ghost fields leads to the
following e↵ective potential,
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Here the first term multiplied by four polarizations tr(�µ⌫) results from Aµ fluctuations and the second
term from the ghost fluctuations that eliminate two unphysical polarizations out from the gluon fluctu-
ations. From the observation that qij is an imaginary chemical potential, the above trace in momentum
space becomes the grand canonical partition function with an imaginary chemical potential, that is,

Vglue[q] = 2V

Z
d3p

(2⇡)3
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h
ln
�
1� e��|p|+2⇡iqij
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We can carry out this momentum integration explicitly, which yields,

V Weiss
glue [q] =

4⇡2V

3�3

X

i>j

(qij)
2
mod1

⇥
(qij)mod1 � 1
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. (45)

This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.
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Figure 10: SU(2) full Weiss potential with the gluonic contribution (shown by the dashed lines) together
with the quark contribution (shown by the dotted lines) for Nf = 1 (left) and Nf = 2 (right) at µ = 0.

4 Coupling to Quarks

Quarks explicitly break center symmetry since the center twisted gauge transformation changes the
boundary condition for fermions; after the transformation it is no longer the anti-periodic boundary
condition but multiplied by a center element; the transformed field, V (x) (x), with the boundary
condition (18) satisfies,

V (x4 = �) (x4 = �) = �zk · V (x4 = 0) (x4 = 0) , (122)

so that  (x) is sensitive to the center. This also means that quark excitations are significantly a↵ected
by the realization of center symmetry in a gluonic medium.

In this section, we will first see how inclusion of quarks would change the perturbative Polyakov
loop potential, and next we will turn our view point over to discuss how the Polyakov loop background
can in e↵ect capture color screening e↵ects on quarks. This latter observation underlies the Polyakov
loop augmented building of chiral e↵ective models. The idea can be easily generalized to not only color
fundamental quarks but also color adjoint gluons.

4.1 Polyakov Loop Potential from Quarks

Even without concrete calculations, it is straightforward to rewrite Eq. (44) to infer the quark one-loop
contribution to the Polyakov loop potential [38]. In Eq. (44) gluons belong to the adjoint representation,
and this is why qij appears there. For quarks qij should be replaced with qi in the fundamental
representation. For Nf massless quarks including a finite chemical potential µ, the potential contribution
immediately reads from a mapping as

Vquark[q] = �2NfTV

Z
d3p

(2⇡)3

NcX

i=1

h
ln
�
1 + e��(|p|�µ)+2⇡iqi

�
+ ln

�
1 + e��(|p|+µ)�2⇡iqi

�i

= �NfV
4⇡2

3�4

NcX

i=1

✓
qi +

1

2
� i

�µ

2⇡

◆2

mod1

✓
qi +

1

2
� i

�µ

2⇡

◆

mod1

� 1

�2
. (123)

This additional contribution to the Weiss potential manifestly breaks translational symmetry and thus
center symmetry.
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Figure 10: SU(2) full Weiss potential with the gluonic contribution (shown by the dashed lines) together
with the quark contribution (shown by the dotted lines) for Nf = 1 (left) and Nf = 2 (right) at µ = 0.
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condition but multiplied by a center element; the transformed field, V (x) (x), with the boundary
condition (18) satisfies,

V (x4 = �) (x4 = �) = �zk · V (x4 = 0) (x4 = 0) , (122)

so that  (x) is sensitive to the center. This also means that quark excitations are significantly a↵ected
by the realization of center symmetry in a gluonic medium.

In this section, we will first see how inclusion of quarks would change the perturbative Polyakov
loop potential, and next we will turn our view point over to discuss how the Polyakov loop background
can in e↵ect capture color screening e↵ects on quarks. This latter observation underlies the Polyakov
loop augmented building of chiral e↵ective models. The idea can be easily generalized to not only color
fundamental quarks but also color adjoint gluons.

4.1 Polyakov Loop Potential from Quarks

Even without concrete calculations, it is straightforward to rewrite Eq. (44) to infer the quark one-loop
contribution to the Polyakov loop potential [38]. In Eq. (44) gluons belong to the adjoint representation,
and this is why qij appears there. For quarks qij should be replaced with qi in the fundamental
representation. For Nf massless quarks including a finite chemical potential µ, the potential contribution
immediately reads from a mapping as
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This additional contribution to the Weiss potential manifestly breaks translational symmetry and thus
center symmetry.
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To visualize the center symmetry breaking more transparently, we make a plot for the SU(2) full
(i.e. gluonic + quark) Weiss potential for Nf = 1 and Nf = 2 in Fig. 10 in the µ = 0 case. As is
clearly noticed in Fig. 10 the perturbative vacuum q = 0 is still the absolute minimum of the e↵ective
potential, while the center transformed point q = 1 is no longer the potential minimum due to the
center symmetry breaking. Interestingly, for Nf = 1 as in the left panel of Fig. 10, there still remains a
meta-stable state corresponding to a local minimum at q = 1. With Nf = 2 flavors the local minimum
disappears and only the perturbative vacuum is energetically allowed.

From the potential curvature around q = 0 we can deduce the Debye mass correction from quarks
(including µ). The perturbative vacuum becomes more stabilized by an increase in the Debye mass by

�m2
E
= Nf

✓
g2T 2

6
+

g2µ2

2⇡2

◆
, (124)

which correctly reproduces the one-loop expression for the Debye screening mass at finite T and µ.
Now, one may be naturally tempted proceed to the global structures of the full Weiss potential at µ 6= 0
away from the perturbative vacuum. However, Eq. (123) is complex for non-zero µ, and then we can
no longer interpret it as a thermodynamic potential. In other words, for complex Vquark[q], the most
favored q is not uniquely determined energetically from thermodynamic principles.

The origin of theoretical di�culties from complex Vquark[q] would be more understandable if we
express Eq. (123) in a di↵erent and equivalent way. To write explicit expressions down, let us consider
the QCD (Nc = 3) case specifically below (note that the Polyakov loop is always real in the Nc = 2 case
and the sign problem looks qualitatively di↵erent then). In this case with Nc = 3, it is easy to take the
sum over i = 1, . . . Nc explicitly before the momentum integration in Eq. (123), arriving at

Vquark[q] = �2NfTV

Z
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ln
⇥
1 + Le��("p�µ)

⇤
+ ln

⇥
1 + L†e��("p+µ)

⇤i

= �2NfTV

Z
d3p

(2⇡)3

h
ln
�
1 + 3` e��("p�µ) + 3`⇤e�2�("p�µ) + e�3�("p�µ)

�

+ ln
�
1 + 3`⇤e��("p+µ) + 3` e�2�("p+µ) + e�3�("p+µ)

�i
,

where a finite mass is introduced through "p ⌘
p
p2 +m2. We can then precisely spot what makes

Vquark[q] complex. In general ` is a complex number, but as long as µ = 0, the first and the second lines
of Eq. (125) are complex conjugate to each other and the sum of them takes a real number. A finite
µ would destroy this balance and the complex nature of Vquark[q] is attributed to complex `. Such an
observation of complex Vquark[q] is a very concrete realization of the sign problem, which we will closely
discuss later in Sec. 4.3.

4.2 Polyakov Loop in Chiral Models

It is worth noting that the general form of Vquark[q] in Eq. (125) is a result from the one-loop quark
integration, and nevertheless, it is a full expression as long as gauge fluctuations are ignored. Therefore,
the validity region of Eq. (125) is not necessarily restricted to the perturbative regime only but can be
extended to more general regimes where the quasi-particle picture makes sense.

This opens a wider range of applications of Eq. (125) beyond the perturbative Weiss potential. Here,
we will see a successful example of utilizing Eq. (125) in quark models to consider the Polyakov loop
e↵ects on chiral symmetry.

4.2.1 PNJL model

The e↵ective potential (125) is supposed to be minimized to determine the expectation value of q,
and at the same time, we can make another interpretation of Eq. (125); for a given q, this expression
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hq̄qi and the Polyakov loop expectation value �. If � arises at temperatures larger than Tc(� ' 1),
hq̄qi decreases simultaneously (left). It is also possible in the model that hq̄qi starts decreasing at
temperatures greater than the onset of � (right).

or its expectation value � is small at low temperature, and as long as � ' 0 the critical temperature is
3
p
3 times large, so that T is much less than the critical temperature. Therefore, the chiral condensate,

hq̄qi, is hardly a↵ected by the temperature and the chiral restoration is hindered by small � in this way.
At high temperature, center symmetry is broken in the deconfined phase and � ' 1 is approached.
Then, the critical temperature becomes the standard one without the Polyakov loop modification, and
for Tc(� ' 1) < T , quark excitations destroy the chiral condensate and chiral symmetry is restored. In
this picture, therefore, the Polyakov loop expectation value, �, is the control parameter that governs
the behavior of hq̄qi. Thus, rising � triggers the sizable change in hq̄qi as shown in the left panel of
Fig. 12.

Roughly speaking, one may well describe the situation as follows; in the PNJL model, chiral sym-
metry restoration does not occur e↵ectively as long as � ' 0. If T�(m = 0) without the Polyakov loop
e↵ect is smaller than TD(m = 1), the chiral restoration temperature is pushed up by �. This is a
quite robust argument to explain T�(m) ' TD(m) without parameter tuning. Indeed, field-theoretical
and phenomenological arguments suggest that the confined phase must break chiral symmetry. If such
a relation between confinement and chiral symmetry persists to finite temperature, hq̄qi cannot go to
zero as long as � is vanishingly small, as is exactly the case in the PNJL model.

It is worth mentioning that there is no reason why chiral restoration should happen in the deconfined
phase. So, if T�(m = 0) without the Polyakov loop e↵ect were greater than TD(m = 1), there might
have been a new phase where quarks are deconfined but chiral symmetry is still spontaneously broken
as shown in the right panel of Fig. 12. This is not a fictitious imagination, but one can shift the chiral
restoration temperature by imposing external magnetic fields that primarily couple to quarks rather
than gluons. The lattice-QCD simulation under strong magnetic fields [85, 86], however, have revealed
that two crossovers occur not like in the right but like in the left of Fig. 12. This important observation
tells us that deconfinement and chiral restoration are locked together more tightly than realized in the
mean-field PNJL model, presumably through the back-reaction of the quark polarization in the Polyakov
loop potential. Actually, the back-reaction is always non-negligible for phenomenological applications
of the PNJL model.

To make use of the PNJL model to study quantitative estimates in the physical energy unit, we
should fix the NJL model parameters;

mu , md , ms , gS , gD , ⇤ (138)

to reproduce the hadronic properties in the QCD vacuum, namely, m⇡, m�, mK , m⌘, f⇡ and an empirical
value of the constituent quark mass. The standard choice of parameters can be found in Refs. [80, 87].
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Figure 12: Schematic picture for simultaneous changes of two order parameters, i.e. the chiral condensate
hq̄qi and the Polyakov loop expectation value �. If � arises at temperatures larger than Tc(� ' 1),
hq̄qi decreases simultaneously (left). It is also possible in the model that hq̄qi starts decreasing at
temperatures greater than the onset of � (right).

or its expectation value � is small at low temperature, and as long as � ' 0 the critical temperature is
3
p
3 times large, so that T is much less than the critical temperature. Therefore, the chiral condensate,

hq̄qi, is hardly a↵ected by the temperature and the chiral restoration is hindered by small � in this way.
At high temperature, center symmetry is broken in the deconfined phase and � ' 1 is approached.
Then, the critical temperature becomes the standard one without the Polyakov loop modification, and
for Tc(� ' 1) < T , quark excitations destroy the chiral condensate and chiral symmetry is restored. In
this picture, therefore, the Polyakov loop expectation value, �, is the control parameter that governs
the behavior of hq̄qi. Thus, rising � triggers the sizable change in hq̄qi as shown in the left panel of
Fig. 12.

Roughly speaking, one may well describe the situation as follows; in the PNJL model, chiral sym-
metry restoration does not occur e↵ectively as long as � ' 0. If T�(m = 0) without the Polyakov loop
e↵ect is smaller than TD(m = 1), the chiral restoration temperature is pushed up by �. This is a
quite robust argument to explain T�(m) ' TD(m) without parameter tuning. Indeed, field-theoretical
and phenomenological arguments suggest that the confined phase must break chiral symmetry. If such
a relation between confinement and chiral symmetry persists to finite temperature, hq̄qi cannot go to
zero as long as � is vanishingly small, as is exactly the case in the PNJL model.

It is worth mentioning that there is no reason why chiral restoration should happen in the deconfined
phase. So, if T�(m = 0) without the Polyakov loop e↵ect were greater than TD(m = 1), there might
have been a new phase where quarks are deconfined but chiral symmetry is still spontaneously broken
as shown in the right panel of Fig. 12. This is not a fictitious imagination, but one can shift the chiral
restoration temperature by imposing external magnetic fields that primarily couple to quarks rather
than gluons. The lattice-QCD simulation under strong magnetic fields [85, 86], however, have revealed
that two crossovers occur not like in the right but like in the left of Fig. 12. This important observation
tells us that deconfinement and chiral restoration are locked together more tightly than realized in the
mean-field PNJL model, presumably through the back-reaction of the quark polarization in the Polyakov
loop potential. Actually, the back-reaction is always non-negligible for phenomenological applications
of the PNJL model.

To make use of the PNJL model to study quantitative estimates in the physical energy unit, we
should fix the NJL model parameters;

mu , md , ms , gS , gD , ⇤ (138)

to reproduce the hadronic properties in the QCD vacuum, namely, m⇡, m�, mK , m⌘, f⇡ and an empirical
value of the constituent quark mass. The standard choice of parameters can be found in Refs. [80, 87].
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Is this also possible?  Yes, e.g. adjoint quarks
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What if there are adjoint quarks?
With periodic boundary condition (in a box)

Gluon+Adjoint Quark

-2 -1  0  1  2
q

SU(2) Weiss Potential

-1 -0.5  0  0.5  1
Φ

SU(2) Weiss Potential

Figure 2: SU(2) Weiss potential as a function of q (left) and � (right).

Using these commutation relations we can express the covariant derivative as

DB4Aµ = @4Aµ � ig[AB4,Aµ] = @
(i,j)
4 A

(i,j)
µ t(i,j) , (42)

where @
(i,j)
4 = @4� 2⇡i�µ4qij with qij = qi� qj. We note that AB4 or qij appears like a colored imaginary

chemical potential. Then, the one-loop integration with respect to Aµ and the ghost fields leads to the
following e↵ective potential,

Vglue[q] =
1

2
tr ln

⇥
(@

(i,j)
4 )

2
+r

2⇤
· tr(�µ⌫)� tr ln

⇥
(@

(i,j)
4 )

2
+r

2⇤
= tr ln

⇥
(@

(i,j)
4 )

2
+r

2⇤
. (43)

Here the first term multiplied by four polarizations tr(�µ⌫) results from Aµ fluctuations and the second
term from the ghost fluctuations that eliminate two unphysical polarizations out from the gluon fluctu-
ations. From the observation that qij is an imaginary chemical potential, the above trace in momentum
space becomes the grand canonical partition function with an imaginary chemical potential, that is,

Vglue[q] = 2V

Z d
3
p

(2⇡)3

X

i>j

h
ln
�
1� e

��|p|+2⇡iqij�
+ ln

�
1� e

��|p|�2⇡iqij�i
. (44)

We can carry out this momentum integration explicitly, which yields,

V
Weiss
glue [q] =

4⇡
2
V

3�3

X

i>j

(qij)
2
mod1

⇥
(qij)mod1 � 1

⇤2
. (45)

This is often called the (GPY-)Weiss potential [8, 37, 38]. The modulo operation is defined as (q)mod1 =
q � bqc, where b· · · c denotes the floor function.

The Weiss potential has a periodic nature for qij, that is already obvious in Eq. (44); qij or the
imaginary chemical potential generally appears as an angle variable. This periodic property is attributed
to center symmetry that is a symmetry associated with a discretized displacement in A4 as we discussed
in Eq. (20).

First let us consider the SU(2) case, for which there is only one independent variable; q1 = q/2 and
q2 = �q/2. Then, the SU(2) Weiss potential has a periodic shape as depicted in the left of Fig. 2.
We note that the Polyakov loop in this case is � = cos(⇡q) (just like the case at strong coupling),
and so a minimum at the perturbative vacuum q = 0 corresponds to � = 1, and center symmetry is
spontaneously broken there. The next minimum at q = 1 is a center transformed point with � = �1.
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Confinement occurs almost 
trivially and perturbatively.

Small box → Large box?
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Experimentally determined 
with a clear physics picture

Deconfinement = Hagedorn?

Andronic et al. (2010)

This tells us a lot of insights 
on deconfinement physics
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How to determine T and µ “experimentally”

Andronic 
Braun-Munzinger 
Stachel…

Thermal 
Model Fit 
works gooe!
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(Mapping)
p
sNN , T, µB
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Phase Diagram = Two Hagedorn Transition Lines

Z = N

Z
dm ⇢(m) e�m/T

⇢(m) = em/TH

Tc = TH

Z = N

Z
dm ⇢B(m) e�(m�µB)/T

⇢B(m) = emB/TB

Tc = (1� µB/mB)TB

Mesonic Hagedorn Transition

Baryonic Hagedorn Transition
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“Experimentally Determined” Phase Diagram3

falls down, and correspondingly the degrees of freedom
in thermal excitations decrease [11]. Since the aver-
age inter-particle distance becomes large, the interaction
among hadrons is considered to diminish. In this way
the observed particle yields keep the footprint of hot and
dense hadronic matter when the interaction was turned
o↵ at a temperature Tch, that is presumably close to the
temperature when the matter underwent a crossover at
Tpc. As observed experimentally, relative abundances
of hadrons obey the thermal distribution at common T

and µB, so that the thermal fit can fix T and µB, or a
line of Chemical Freeze-out, T = Tch(µB) [12]. We note
that the charge chemical potential µQ is fixed from the
proton/neutron ratio and the strangeness chemical po-
tential µS is fixed from the strangeness free condition.
With various center-of-mass colliding energies, we can
change accessible µB to sample Tch(µB) from the ther-
mal fit [13, 14], see Fig. 2. Generally speaking, collisions
at smaller

p
sNN have larger baryon stopping, leading to

larger values of µB (and smaller values of T ) [15]. Thus,
the line of Chemical Freeze-out on the µB-T plane should
be regarded as an experimentally determined QCD phase
diagram under the assumption that Tch stays close to Tpc,
which has been verified by the lattice-QCD simulations
for µB . 0.3GeV [8], as also displayed in Fig. 2. This
underlies the idea of the Beam Energy Scan (BES) pro-
gram at RHIC. The thermal description is applicable for
not only particle abundances but also thermodynamic
quantities such as the pressure and the entropy density.

We note that the thermal models often assume the
Grand Canonical Ensemble (GCE) that is equivalent to
the Canonical Ensemble (CE) in the thermodynamic (in-
finite volume) limit but is not so when the system size
becomes small in the heavy-ion collision. We will discuss
which of the GCE and the CE better fits the experimen-
tal data later.

Observables for the QCD Critical Point: It is known
from the theoretical analysis that the QCD crossover has
a general tendency to become closer to a first-order tran-
sition at larger µB (see discussions in a review [16]). It is
thus a natural anticipation that the QCD crossover may
turn to a first order phase transition in a high-density
regime. If this is the case, as suggested by some e↵ec-
tive model studies, there must be a “critical” value of
µB above which a first-order phase transition occurs and
below which only a crossover is found. This separating
point is the QCD Critical Point and critical fluctuations
associated with the second-order phase transition should
be expected at this point. Its exact location is still under
dispute, and the lattice-QCD results [17] disfavors the
existence of the QCD Critical Point for µB/T . 2.

Interestingly, the QCD Critical Point emerges with
nonzero physical quark masses, so that it belongs to not
the O(4) but the Z(2) universality class. Moreover, the
dynamical universality class has been also identified as
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FIG. 2. Chemical Freeze-out temperature Tch(µB) from the
top 5% central Au+Au collisions at RHIC. Open-circles repre-
sent the parameters extracted from hadron yields [13], while
the filled-squares are extracted from net-proton higher mo-
ments (up to third order) [14]. Representing the smooth-
crossover region are the lattice-QCD results shown as green-
band. The empirical thermal fit results to global hadron yield
data are shown as yellow-line [15]. The coverage of the RHIC
BES program, STAR fixed target program (FXT), and future
(FAIR, JPARC-HI, and NICA) experimental facilities are also
indicated at the top of the figure. The liquid-gas transition
region that features a second order critical point is shown by
the red-circle, and a first-order transition line is shown by
the black dashed line, which connects the critical point to the
ground state of nuclear matter.

the model H (dynamics of the liquid-gas critical point
of a fluid) [18] (see a review [19] for detailed classifica-
tion). The dynamical critical exponents are important
inputs for simulations including the critical slowing down
e↵ects [20].
For experimental signatures, we can in principle seek

for enhanced fluctuations coupled to the critical modes.
Since the critical modes appear in a mixed channel of
scalar (i.e., chiral condensate) and vector (i.e., baryon
density) at the QCD Critical Point [21], the baryon num-
ber fluctuations are sensitive to the criticality. Let us
denote the baryon number fluctuation by �N = N �hNi
where N is the number of net baryons at each collision
event and h· · · i stands for the ensemble average taken
over collision events. At the critical point, generally, the
correlation length ⇠ diverges, and it was pointed out in
Ref. [22] that the non-Gaussian fluctuations behave as

h(�N)kic ⇠ ⇠
k(5�⌘)/2�3

. (1)

Here, the subscript c represents a part of the correlation
function corresponding to the connected diagrams (to ex-
tract non-Gaussian fluctuations) and ⌘ is the anomalous
dimension (which is usually ⌘ ⌧ 1). Higher-order fluctu-
ations are more sensitive to the criticality, but they need
more statistics especially to construct connected contri-
butions. Now, the third order (k = 3) and the fourth

For full information 
see; 2009.03006 [hep-ph]


