- Day 2 -

Theoretical Knowns and Many Unknowns at Low T and High Baryon Density

QCD Critical Point

July 23, 2023 @ XQCD School in Coimbra

QCD Critical Point

IF this is the case in QCD:
IF the curvature is large enough:

QCD CP is a hypothesis (needs exp. confirmation)

QCD Critical Point

Another Critical Point

Another Critical Point

No argument about whether quarks are self-bound?
Quark EoS is constrained by neutron stars $>\mathbf{2} M_{\odot}$

Another Critical Point

$$
\frac{d}{d \rho}\left(\left.\frac{\varepsilon}{\rho}\right|_{\text {gas }}-\left.\frac{\varepsilon}{\rho}\right|_{\text {liquid }}\right)=\frac{p_{\text {gas }}-p_{\text {liquid }}}{\rho^{2}}=0
$$

Metastability 1st-order PT

Nuclear Matter

Chiral Quark Models

Another Critical Point

Meta-stable quark matter can have a 1st-order

Vector interaction easily washes out the QCD CP, but the spiral phase is robust.

Another Critical Point

saturation density (1st-order transition)

Phase structures may be very different.

Another Critical Point

Neutron Star

- β equilibrium
 $$
\mu_{s}=0
$$

High baryon density should involve hyperons ($\boldsymbol{\Lambda}, \Sigma$, etc) EoS too soft? / Cooling too fast?

Hyperon Puzzle

* Interactions may suppress hyperons (3-body forces YNN)
* Interactions may make EoS stiff (repulsive forces at high density)

Heavy-Ion Collision

- Zero net strangeness

$$
n_{s}=0 \quad\left(\mu_{s} \sim \frac{1}{3} \mu_{B}\right)
$$

Hyperon strangeness is canceled by strange mesons (\bar{s} in mesons sensitive to μ_{B})

Observables for Criticality

Smooth bulk \boldsymbol{p} (dominant)

+ Fine structure (sub-dominant)

Q : How to extract the difference?

Observables for Criticality

Smooth bulk \boldsymbol{p} (dominant)

+ Fine structure
(sub-dominant)

Q : How to extract the difference?
A : Take the (higher) derivative !

$$
\chi_{B, S}^{(n)} \equiv \frac{\partial^{n}}{\partial\left(\mu_{B, S} / T\right)^{n}} \frac{p}{T^{4}}
$$

enhanced near QCD CP

Observables for Criticality

$$
\begin{array}{r}
\frac{\sigma^{2}}{M} \equiv \frac{\chi_{B}^{(2)}}{\chi_{B}^{(1)}}, \quad S \sigma \equiv \frac{\chi_{B}^{(3)}}{\chi_{B}^{(2)}}, \quad \kappa \sigma^{2} \equiv \frac{\chi_{B}^{(4)}}{\chi_{B}^{(2)}} \\
\text { Skewness }
\end{array}
$$

HRG (non-interacting hadrons) + Boltzmann approx.

$$
S \sigma=\tanh \left(\mu_{\mathrm{B}} / T\right), \quad \kappa \sigma^{2}=1
$$

Karsch-Redlich (2011)

Observables for Criticality

$\kappa \sim$ how sharp

$S \sim$ how distorted

Observables for Criticality

QCD Critical Point discovered???

Inhomogeneity

High Density
 (Large Fermi Sphere)

\downarrow
Pseudo 1 Dimensional

Exotic Phases

Inhomogeneity

Peierls Instability (Gross-Neveu model)

Overhauser Instability (Chiral Gross-Neveu model)

July 23, 2023 @ XQCD School in Coimbra

Inhomogeneity

Dirac Lagrangian in (1+1) D

$$
\begin{aligned}
\mathcal{L} & =\bar{\psi}\left[\left(\partial_{4}+\mu\right) \gamma^{4}+\partial_{3} \gamma^{3}\right] \psi & & \psi=e^{-\mu \gamma^{3} \gamma^{4} x_{3}} \psi^{\prime} \\
& =\bar{\psi}^{\prime}\left(\partial_{4} \gamma^{4}+\partial_{3} \gamma^{3}\right) \psi^{\prime} & & \bar{\psi}=\bar{\psi}^{\prime} e^{-\mu \gamma^{3} \gamma^{4} x_{3}}
\end{aligned}
$$

Finite-density 1D theory = Zero-density 1D theory
IF $\left\langle\bar{\psi}^{\prime} \psi^{\prime}\right\rangle \neq 0$ homogeneously, then....

$$
\begin{aligned}
& \langle\bar{\psi} \psi\rangle=\left\langle\bar{\psi}^{\prime} \psi^{\prime}\right\rangle \cos \left(2 \mu x_{3}\right) \quad \begin{array}{l}
\text { original condensates are } \\
\text { helically inhomogeneous. }
\end{array} \\
& \left\langle\bar{\psi} \gamma^{3} \gamma^{4} \psi\right\rangle=\left\langle\bar{\psi}^{\prime} \psi^{\prime}\right\rangle \sin \left(2 \mu x_{3}\right)
\end{aligned}
$$

Inhomogeneity

Dirac Lagrangian in (1+1) D

This structure is called the Chiral Spirals. There are two puzzles... however...

From where the density comes? Is this stable??

Inhomogeneity

Puzzle \#1

$$
\begin{aligned}
\mathcal{L} & =\bar{\psi}\left[\left(\partial_{4}+\mu\right) \gamma^{4}+\partial_{3} \gamma^{3}\right] \psi \\
& =\bar{\psi}^{\prime}\left(\partial_{4} \gamma^{4}+\partial_{3} \gamma^{3}\right) \psi^{\prime} \longleftarrow \text { No } \mu \text { any more }
\end{aligned}
$$

If μ dependence is completely gone, the density is ALWAYS zero??

$$
\begin{array}{ll}
\psi=e^{-\mu \gamma^{3} \gamma^{4} x_{3}} \psi^{\prime} & \begin{array}{l}
\text { This is a phase translation, } \\
\text { shifting a momentum depending }
\end{array} \\
\bar{\psi}=\bar{\psi}^{\prime} e^{-\mu \gamma^{3} \gamma^{4} x_{3}} & \begin{array}{l}
\text { on the chirality! }
\end{array}
\end{array}
$$

Suppose that the theory has a UV cutoff... then...

Inhomogeneity

Integration Analytically Done

$$
\Omega / V=-\int_{-\Lambda+\mu}^{\Lambda-\mu} \frac{d p}{2 \pi} \frac{|\varepsilon(p)|}{2}-\int_{-\Lambda-\mu}^{\Lambda+\mu} \frac{d p}{2 \pi} \frac{|\varepsilon(p)|}{2}
$$

Right-handed Dispersion Left-handed Dispersion

$$
=\Omega(\mu=0) / V-\frac{\mu^{2}}{2 \pi}
$$

$$
n=-\frac{\partial}{\partial \mu} \frac{\Omega}{V}=\frac{\mu}{\pi} \quad \text { Strangely, density is mass blind? }
$$

Inhomogeneity

Puzzle \#2
What if there is no chiral spiral at all...

$$
\begin{gathered}
\Omega / V=\Omega(\mu=0) / V+\left(-\frac{p_{F} \mu}{2 \pi}+\frac{M^{2}}{2 \pi} \ln \left|\frac{p_{F}+\mu}{M}\right|\right) \theta(\mu-M) \\
\delta \Omega / V=-\int_{0}^{\mu} d \mu n(\mu) \\
n=\frac{p_{F}}{\pi} \theta(\mu-M)
\end{gathered}
$$

The spiral phase and the non-spiral phase, which is favored?

Inhomogeneity

Energy (or Density) Comparison
Density is larger in the spiral phase and the energy is lower.

Chiral Spiral $n=\frac{\mu}{\pi} \quad \mathbf{v s}$. Homogeneous Phase
 Chiral spiral always wins!
 Why is the density mass independent?

$n=\frac{p_{F}}{\pi} \theta(\mu-M)$

Inhomogeneity

Axial Anomaly in (1+1)D Theory

$$
\partial_{\mu} j_{A}^{\mu}=-\frac{e}{2 \pi} F_{01}
$$

In (1+1) \mathbf{D} the electric field E is the topological charge.
Dirac matrices satisfy: $\quad \gamma^{\mu} \gamma^{5}=-\epsilon^{\mu \nu} \gamma_{\nu}$

$$
n=j_{V}^{0}=j_{A}^{1}=-\frac{e}{2 \pi} \int d x F_{01}=\frac{e}{\pi} A^{0}=\frac{\mu}{\pi}
$$

Assuming that the mass is only dynamical.

$U(1)_{A}$ Breaking by Anomaly

Chiral Anomaly in QED

Nielsen-Ninomiya (1983)

Chirality changing rate

$$
\frac{d N_{R, L}}{d z d^{2} x}=\frac{p_{F}^{(R, L)}}{2 \pi} \cdot \frac{q B}{2 \pi}
$$

$$
\frac{d N_{5}}{d t d^{3} x}=\frac{q^{2}}{2 \pi^{2}} \boldsymbol{E} \cdot \boldsymbol{B} \quad \Rightarrow \quad \partial_{\mu} j_{A}^{\mu}=-\frac{q^{2}}{8 \pi^{2}} F_{\mu \nu} \tilde{F}^{\mu \nu}
$$

Inhomogeneity vs. Criticality

July 23, 2023 @ XQCD School in Coimbra

Inhomogeneity vs. Criticality

Possible relation to the QCD Critical Point

Inhomogeneity vs. Criticality

In the massless NJL model:
Nickel (2008)
$\Omega(M) \sim a M^{2}+b M^{4}+c M^{6}$
Inhomogeneous condensates induce $\partial M \neq 0$
$\Omega(M, q) \rightarrow a M^{2}+b M^{4}+c M^{6}+d q^{2} M^{2}+\cdots$
Spatial inhomogeneity occurs for $\boldsymbol{d}<0$ (Lifshitz point)
It happens to result in $b \propto d$!
\longrightarrow Lifshitz point and QCD CP coincide!

Inhomogeneity vs. Criticality

Fluctuation effects

It is known by now that phonon fluctuations wash out the inhomogeneous condensates but a remnant remains $=$ Quasi Long-Range Order

Hidaka-Kamikado-Kanazawa-Noumi (2015)
Chiral condensate vanishes with IR divergence at finite T, but the power-law correlation persists, indicating that higher-order condensates survive...

$$
\langle M(x)\rangle=0 \quad\left\langle M^{2}(x)\right\rangle \neq 0 \quad\left(\mathbb{Z}_{2}\right)_{R} \times\left(\mathbb{Z}_{2}\right)_{L}
$$

This is called "Stern Phase"

Further Higher Density

Stern Phases
$\langle\bar{\psi} \psi\rangle=\left\langle\bar{\psi}_{\mathrm{R}} \psi_{\mathrm{L}}+\bar{\psi}_{\mathrm{L}} \psi_{\mathrm{R}}\right\rangle$
Is this a unique way to break chiral symmetry?
Stern proposed the following:
$\left\langle\bar{\psi} \frac{\lambda^{a}}{2}\left(1-\gamma_{5}\right) \psi \cdot \bar{\psi} \frac{\lambda^{a}}{2}\left(1+\gamma_{5}\right) \psi\right\rangle=\left\langle\bar{\psi}_{\mathrm{R}} \lambda^{a} \psi_{\mathrm{L}} \cdot \bar{\psi}_{\mathrm{L}} \lambda^{a} \psi_{\mathrm{R}}\right\rangle$
However, this possibility was immediately falsified from the QCD inequality by Kogan et al. (pseudo-scalar susceptibility should be the largest)

Further Higher Density

QCD inequality breaks down at finite density

\rightarrow Color Super Conductivity
Fermi Surface $\quad \mu_{q} \sim 500 \mathrm{MeV} \rightarrow \rho \sim 10 \rho_{0}$
Attractive Force $3 \times 3 \rightarrow \overline{3}$

$$
\begin{aligned}
& \sqrt{p_{F}^{2}+m_{s}^{2}}=\mu_{q} \\
& \rightarrow p_{F} \simeq \mu_{q}-\frac{m_{s}^{2}}{2 \mu_{q}}
\end{aligned}
$$

Gap and Fermi surface mismatch are of the same order

Further Higher Density

Color Interaction

$$
\left(t^{a}\right)_{i j}\left(t^{a}\right)_{k l}=-\frac{N_{\mathrm{c}}+1}{4 N_{\mathrm{c}}}\left(\delta_{i j} \delta_{k l}-\delta_{i l} \delta_{k j}\right)+\frac{N_{\mathrm{c}}-1}{4 N_{\mathrm{c}}}\left(\delta_{i j} \delta_{k l}+\delta_{i l} \delta_{k j}\right)
$$

Color Triplet (antisymmetric)
 Attractive

Dominant

Only this channel considered (flavor) (spin) (orbital) should be symmetric

Color Sextet (symmetric)
Repulsive

Always mixed with triplet
No new physics brought in Harmlessly neglected

Further Higher Density

wemern

$3 \otimes 3=\overline{3} \otimes 6$

Quantum numbers and operators

$J^{P} \quad$ Color Flavor Operator
0^{+}
1^{+}
$\overline{\mathbf{3}}$
$\overline{3}$
6

$$
\begin{array}{cc}
\bar{\psi}_{C} \gamma_{5} \psi, & \bar{\psi}_{C} \gamma_{0} \gamma_{5} \psi \\
\bar{\psi}_{C} \gamma_{i} \psi, & \bar{\psi}_{C} \sigma_{0 i} \psi
\end{array}
$$

$\begin{array}{lll}0^{-} & \overline{\mathbf{3}} \\ 1^{-} & \overline{\mathbf{3}}\end{array}$
$\frac{6}{3}$
$\bar{\psi}_{C} \psi, \quad \bar{\psi}_{C} \gamma_{0} \psi$
$\bar{\psi}_{C} \gamma_{i} \gamma_{5} \psi, \quad \bar{\psi}_{C} \sigma_{i j} \psi$

Further Higher Density

Spin-dependent Part Breit Interaction

$$
H_{\text {color-spin }}=\alpha_{s} \sum_{i \neq j} M_{i j} \underbrace{\left(\boldsymbol{\lambda}_{i} \cdot \boldsymbol{\lambda}_{j}\right)}_{\text {color }} \frac{\left(\boldsymbol{s}_{i} \cdot \boldsymbol{s}_{j}\right)}{\text { spin }}
$$

$>$ spin-singlet (antisymmetric) + flavor triplet (antisymmetric)

$$
\left(\boldsymbol{s}_{i} \cdot \boldsymbol{s}_{j}\right)|\mathbf{0}\rangle=-(3 / 4)|\mathbf{0}\rangle
$$

Good Diquark

$>$ spin-triplet (symmetric) + flavor sextet (symmetric)

$$
\left(s_{i} \cdot \boldsymbol{s}_{j}\right)|\mathbf{1}\rangle=+(1 / 4)|\mathbf{1}\rangle
$$

Bad Diquark

Further Higher Density

$$
N: S=1 / 2
$$

$$
\Delta: S=3 / 2
$$

$H_{\text {color-spin }}=-\frac{3}{4} C$
$H_{\text {color-spin }}=+\frac{3}{4} C$
$m_{\text {bad }}-m_{\text {good }} \approx \frac{2}{3}\left(M_{\Delta}-M_{N}\right) \quad$ confirmed in lattice QCD

Further Higher Density

Diquark Condensate (NOT GAUGE INV!)

$$
\Delta_{\alpha i} \propto \varepsilon_{\alpha \beta \gamma} \varepsilon_{i j k}\left\langle\bar{\psi}_{\beta j} i \gamma^{5} C \bar{\psi}_{\gamma k}^{T}\right\rangle
$$

Color-Flavor Locking Ansatz

$\Delta_{u d}$
up-down
up-down

$\Delta_{d s}$
down-strange
down-strange

Further Higher Density

Gauge Invariant Characterization

$$
\begin{aligned}
& \left(\varphi_{\mathrm{L}}\right)_{\alpha i} \sim \epsilon_{\alpha \beta \gamma} \epsilon_{i j k}\left(\psi_{\mathrm{L}}\right)_{\beta j}^{T} C\left(\psi_{\mathrm{L}}\right)_{\gamma k} \\
& \left(\varphi_{\mathrm{R}}\right)_{\alpha i} \sim \epsilon_{\alpha \beta \gamma} \epsilon_{i j k}\left(\psi_{\mathrm{R}}\right)_{\beta j}^{T} C\left(\psi_{\mathrm{R}}\right)_{\gamma k}
\end{aligned}
$$

Stern phase order parameter $\left\langle\varphi_{\mathrm{R}}^{\dagger} \varphi_{\mathrm{L}}\right\rangle+\left\langle\varphi_{\mathrm{L}}^{\dagger} \varphi_{\mathrm{R}}\right\rangle$

$$
\left(\mathbb{Z}_{2}\right)_{R} \times\left(\mathbb{Z}_{2}\right)_{L}
$$

cf. Color superconductor is not topological unlike QED because the Cooper pair is (anti) triplet charged. Color sextet condensates would change the story...

Further Higher Density

$$
\begin{aligned}
& \Delta_{u d}, \Delta_{d s}, \Delta_{s u} \neq 0 \\
& \Delta_{d s}=0, \Delta_{s u}, \Delta_{u d} \neq 0 \\
& \Delta_{s u}=0, \Delta_{d s}, \Delta_{u d} \neq 0 \\
& \Delta_{u d}=0, \Delta_{d s}, \Delta_{s u} \neq 0 \\
& \Delta_{d s}=\Delta_{s u}=0, \Delta_{u d} \neq 0 \\
& \Delta_{s u}=\Delta_{u d}=0, \Delta_{d s} \neq 0 \\
& \Delta_{u d}=\Delta_{d s}=0, \Delta_{s u} \neq 0
\end{aligned}
$$

CFL Phase uSC Phase dSC Phase sSC Phase 2SC Phase 2SCds Phase 2SCsu Phase

Further Higher Density

Further Higher Density

Matching of Symmetry Breaking Patterns

Baryons: 8+1 (low-lying) Quarks: 3color \times 3flavor $=9$
Flavor Triplet

Condensate $q q$
$\langle u d\rangle\langle d s\rangle\langle s u\rangle$ Diquark condensates break chiral symmetry in the same way as the hadronic phase.

Diquarks realize duality between baryons and quarks!
Dense QCD may have more stringent duality than crossover at high T...

Further Higher Density

$\mathbf{U}(1)_{\mathbf{A}}$ breaking interaction $\operatorname{det} \bar{\psi}_{L j} \psi_{R i}+\operatorname{det} \bar{\psi}_{R j} \psi_{L i}$
$\rightarrow \operatorname{det} R_{i m} \bar{\psi}_{L n} \psi_{R m} L_{n j}^{\dagger}+\operatorname{det} L_{i m} \bar{\psi}_{R n} \psi_{L m} R_{n j}^{\dagger}$
For $N_{f}=3$, this is a six point interaction:

't Hooft-Isidori-Maiani-
-Polosa-Riquer (2008)
$\sim\langle\psi \psi\rangle\langle\bar{\psi} \bar{\psi}\rangle\langle\bar{\psi} \psi\rangle$
Anomaly induces
a mixing between mesons and diquarks

Further Higher Density

U(1)A Symmetric

U(1) A Broken

No phase transition because $\sim \Delta \Delta^{*} M$

Hatsuda-Tachibana-
-Yamamoto-Baym (2006)

Further Higher Density

Fradkin-Shenker (1979)

July 23, 2023 @ XQCD School in Coimbra

Further Higher Density

Fujimoto-Fukushima-Weise (2020)

No change in global symmetry No need to have a phase transition

Three is nearly Infinity

Quarks spin-1/2 (fermions) 6 flavors N_{c} colors

(transform in the $\mathrm{SU}\left(N_{c}\right)$ fundamental rep.)

```
quark red / green / blue
```


Gluons spin-1 (bosons) $\quad N_{c}^{2}-1$ colors

Three is nearly Infinity

 Theoretical Preparation: Large-Nc Counting

Three is nearly Infinity

 Theoretical Preparation: Large-Nc Counting
(a)

$$
g^{2} \sim 1 / N_{\mathrm{c}}
$$

(b)

(c)

(d)

Non-planar diagrams and quark loops suppressed!

Three is nearly Infinity

Strongly Interacting Baryons ~ Free Quarks

 Diquarks are suppressed at large $N c$.

July 23, 2023 @ XQCD School in Coimbra

Three is nearly Infinity

This is NOT the end of the story!

If there are infinitely many quarks, mesons do not interact, but baryons do interact very strongly!

Pressure of Quark Matter Kinetic Energy $\sim \mathbf{O}\left(N_{c}\right)$

Pressure of Baryonic Matter Interaction Energy $\sim \mathbf{O}\left(N_{c}\right)$

Quarkyonic

McLerran-Pisarski (2008)

Three is nearly Infinity

Strongly Interacting Baryons ~ Free Quarks

T
$T_{\mathrm{d}} \quad$Deconfined Phase $P \sim O\left(N_{\mathrm{c}}^{2}\right)$
Hadronic Phase $P \sim O\left(N_{\mathrm{c}}^{0}\right)$
:---:
$P \sim O\left(N_{\mathrm{c}}^{1}\right)$
Chiral Spirals
(Inhomogeneous!)

July 23, 2023 @ XQCD School in Coimbra

Continuous Crossovrer

Continuous Crossovrer

Continuous Crossovrer

High- T has been understood by HRG + pQCD

High-Density
A duality region where the hadrons and quarks may coexist (quarkyonic).

July 23, 2023 @ XQCD School in Coimbra

First-order Phase Tansition?

Controversy

Rotate the bucket filled with quarks
 Hadronic Vortex
 Upper part : Hadronic Vortex
 Lower part : Quark Vortex
 Quark Vortex
 How can they be connected?

First-order Phase Tansition?

Controversy

Alford-Baym-Fukushima-Hatsuda-Tachibana (2018)

We proposed a scenario of the vortex continuity, but...

First-order Phase Tansition?

Controversy

"Test" Vortex

Contour C

Cherman-Sen-Yaffe (2018)
Hadronic phase has no color flux and no phase... Distinguishable?

First-order Phase Tansition?

Controversy

There must be a discontinuous interface?

Hirono-Tanizaki argued that a single (global) vortex is energetically not allowed, so the argument is not strict...?

$q^{q} q \quad q^{q} q$

