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3. Glauber model for initial stages

3 Glauber model for initial stages
3.1 Various approaches too IS
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3. Glauber model for initial stages 3.1 Various approaches to IS

Various approaches to initial stages

colour glass condensate, AdS/CFT correspondence, Glauber model, ...
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3. Glauber model for initial stages 3.1 Various approaches to IS

Various approaches to initial stages

GLAUBER MODEL

Roy Glauber
receiving Nobel Prize

Stockholm, Dec. 2005.
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3. Glauber model for initial stages 3.2 Independent collisions

Independent collisions

Glauber model treats a nucleus-nucleus collision as a multiple nucleon-nucleon
collision process.

In the Glauber model, the nucleon distributions in nuclei are random and given by
the nuclear density profiles

whereas the elementary nucleon-nucleon collision is characterized by the total
inelastic cross section σin.

Σin

W. Florkowski (IFT UJ) NDRH July 23, 2023 7 / 39



3. Glauber model for initial stages 3.2 Independent collisions

Independent collisions

Initially, the Glauber model was applied only to elastic collisions. In this case a
nucleon does not change its properties in the individual collisions, so all nucleon
interactions can be well described by the same cross section.

Applying the Glauber model to inelastic collisions, we assume that after a single
inelastic collision an excited nucleon-like object is created that interacts
basically with the same inelastic cross section with other nucleons.

W. Florkowski (IFT UJ) NDRH July 23, 2023 8 / 39



3. Glauber model for initial stages 3.3 From NN to AA

From NN to AA collisions

Thickness function for the nucleus-nucleus collision

TAB (b) =
∫

dzA
∫

d 2sA ρA(sA, zA)
∫

dzB
∫

d 2sB ρB(sB, zB) t(b + sB − sA), (1)

with the corresponding normalization condition∫
d 2b TAB (b) = 1. (2)

The quantity TAB (b)σin is the averaged
probability that a nucleon-nucleon collision
takes place in a nucleus-nucleus collision
characterized by the impact parameter b.
In the limit t(b)→ δ(2)(b) we may write

TAB (b) =

∫
d 2sA TA(sA) TB(sA − b).

(3)
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3. Glauber model for initial stages 3.4 Binary collisions & wounded nucleaons

Binary collisions

In a more symmetric form we have

TAB (b) =

∫
d 2s TA

(
s +

1
2

b
)

TB

(
s− 1

2
b
)
. (4)

The nucleus-nucleus thickness function TAB (b) can be used to calculate the
probability of having n inelastic binary nucleon-nucleon collisions in a nucleus-nucleus
collision at the impact parameter b.

P (n; AB; b) =

(
AB
n

)
[1− TAB (b)σin]AB−n [TAB (b)σin]n . (5)

The result for the average number of the collisions is

n (AB; b) = AB TAB (b) σin. (6)
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3. Glauber model for initial stages 3.4 Binary collisions & wounded nucleaons

Binary collisions

The total probability of an inelastic nuclear collision is the sum over n from n = 1 to
n = AB

Pin (AB; b) =
AB∑

n=1

P (n; AB; b) = 1− [1− TAB (b)σin]AB . (7)

From (7), by integrating over the impact parameter space, one may obtain the total
inelastic cross section for the collision of the two nuclei A and B

σAB
in =

∫
d2b

(
1− [1− TAB (b)σin]AB

)
. (8)

Using the thickness function for the Au+Au collisions we find σAuAu
in = 6.8 b for σin =

30 mb and σAuAu
in = 7.0 b for σin = 40 mb. We note that those cross sections are larger

than the geometric cross section σAuAu
geo = 4πR2 ≈ 5πA2/3 = 5.3 b. This is due to the

tails of the Woods-Saxon distribution, which make possible that a nucleon-nucleon
collision occurs in the nuclear collision at the impact parameter b larger than 2R.
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3. Glauber model for initial stages 3.4 Binary collisions & wounded nucleaons

Wounded nucleons

A. Bialas, M. Bleszynski, W. Czyz
Multiplicity Distributions in Nucleus-Nucleus Collisions at High-Energies

Nucl.Phys. B111 (1976) 461

The Glauber model can be used also to calculate the number of the participants. To
be more precise we distinguish between the participants which may interact
elastically and the participants which interact only inelastically. The latter are
called the wounded nucleons, and their number is given by the formula

w (A; B; b) = A
∫

d2s TA (b− s)
(

1− [1− σinTB (s)]B
)

+ B
∫

d2s TB (b− s)
(

1− [1− σinTA (s)]A
)
. (9)

ZEROTH ORDER PARADIGM: SOFT AND HARD PROCESSES SCALE WITH THE
NUMBER OF WOUNDED NUCLEONS AND BINARY COLLISIONS,
RESPECTIVELY
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3. Glauber model for initial stages 3.5 Input for hydrodynamics

Input for hydrodynamics

Since the final multiplicities are are determined mainly by the number of wounded
nucleons, it is reasonable to assume that the initial entropy density of the thermalized
system is proportional to the density of wounded nucleons

σi(x⊥) ∝ w (x⊥)

short thermalization/equilibration time, τtherm < 1 fm
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4. Perfect-fluid dynamics

Perfect-fluid

PERFECT-FLUID MODELS
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4. Perfect-fluid dynamics 4.1 Hydrodynamic equations

Hydrodynamic equations

main assumption: system is in local thermal equilibrium – conservation of the baryon
number (and other conserved charges), energy and momentum

∂µNµ = 0 Nµ ≡ nuµ

∂µTµνid = 0 Tµνid ≡ Euµuν −∆µνP

6 independent variables: (E ,P, n, uµ(3))

6 equations (equation of state E(n,P))
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4. Perfect-fluid dynamics 4.2 Equation of state

Equation of state

in ultra relativistic collisions we may neglect the baryon number

R. Kuiper and G. Wolschin, Annalen Phys. 16, 67 (2007)
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M. Chojnacki, WF, Acta Phys.Pol. B38 (2007) 3249
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4. Perfect-fluid dynamics 4.2 Equation of state

Equation of state
EOS can be checked experimentally by looking at the HBT correlations that give
information about the space-time extensions of the system

further evidence from complete hydro simulations
W. Broniowski, M. Chojnacki, WF, A. Kisiel, PRL 101 (2008) 022301
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4. Perfect-fluid dynamics 4.3 Landau model

Landau model

E. Fermi, High-energy nuclear events, Prog. Theor. Phys. 5 (1950) 570
I. Y. Pomeranchuk, On the theory of multiple particle production in a single collision
Dokl. Akad. Nauk Ser. Fiz. 78 (1951) 889
L. D. Landau, On the multiparticle production in high-energy collisions

Izv. Akad. Nauk SSSR 17 (1953) 51

One-dimensional expansion of matter along the collision axis z, the equations of
perfect-fluid relativistic hydrodynamics with zero baryon chemical potential,

u0∂0(Tu0) + u3∂3(Tu0) = ∂0T ,

u0∂0(Tu3) + u3∂3(Tu3) = ∂3T . (10)

Equations (10) together with the normalization condition for four-velocity give

∂

∂x0 (Tu3) =
∂

∂x3 (Tu0) , (11)

which means that Tu0 and Tu3 may be written as the derivatives of a potential field ΦL,

Tu0 = −∂0ΦL, Tu3 = −∂3ΦL. (12)
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4. Perfect-fluid dynamics 4.3 Landau model

Landau model

The next convenient step is to perform the Legendre transformation and switch from
the potential ΦL to the potential χ defined as

χ = ΦL + Tu0t − Tu3z. (13)

The total differential of χ is (with u0 = coshϑ, u3 = sinhϑ)

dχ =
(

u0t − u3z
)

dT + tT du0 − Tz du3

= (t coshϑ− z sinhϑ) dT + (t sinhϑ− z coshϑ) Tdϑ. (14)

From the entropy conservation

∂

∂t
(S coshϑ) +

∂

∂z
(S sinhϑ) = 0. (15)

we come to the single, partial differential equation for χ,

1
S

dS
dT

(
∂χ

∂T
− 1

T
∂2χ

∂ϑ2

)
+
∂2χ

∂T 2 = 0. (16)
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4. Perfect-fluid dynamics 4.3 Landau model

Landau model

Further simplifications may be achieved if we introduce

Y = ln

(
T
Ti

)
. (17)

In this way we obtain the Khalatnikov equation

∂2χ
∂ϑ2 − c2

s
∂2χ
∂Y 2 + (c2

s − 1) ∂χ
∂Y = 0. (18)

For constant sound velocity it becomes a partial differential equation with constant
coefficients. For example, in the case c2

s = 1/3,

3
∂2χ

∂ϑ2 −
∂2χ

∂Y 2 − 2
∂χ

∂Y
= 0. (19)
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4. Perfect-fluid dynamics 4.3 Landau model

Landau model

(a) at the beginning, matter forms a highly compressed disk of the width ∆ = 2l ,
because of the reflection symmetry with respect to the plane z = −l we may consider
z ≥ −l ,

(b) next, the evolution of matter consists of the expansion into vacuum (indicated by
the two solid arrows) and the rarefaction wave entering the system (indicated by the
dashed arrow),

(c) after t0 = l/cs, when the rarefaction wave hits the plane z = −l , the evolution of the
central region becomes quite complicated, it consists of the incident rarefaction wave
and the reflected waves, in the outer region the simple Riemann solution always holds,
and should be matched to the non-trivial solution found by Khalatnikov.
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4. Perfect-fluid dynamics 4.3 Landau model

Landau model

Landau finds that in the leading order of magnitude the function χ is given by

χ = −lTi exp
[
−Y +

√
Y 2 − c2

sϑ2
]

(20)

where
l =

∆

2
= R

2mN√
sNN

. (21)

Landau further argues that the end of one-dimensional motion takes place when

t2 − z2 = R2
f (connection between t and z, Rf ≈ 2R). (22)

New variable L is introduced

L = −2Y +
√

Y 2 − ϑ2/3 (connection between T and ϑ). (23)

L = ln

(
Rf

∆

)
= ln

(√
sNN

2mN

)
. (24)
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4. Perfect-fluid dynamics 4.3 Landau model

Landau model
Rapidity profile of temperature,

T = Ti exp

[
−1

3

(
2L−

√
L2 − ϑ2

)]
. (25)

Similarly, we find the rapidity profile of the entropy density,

S = Si exp
[
−2L +

√
L2 − ϑ2

]
. (26)

In order to calculate the rapidity distribution we first consider a thin slice of the fluid.
Since the fluid element moves in the center-of-mass frame with the velocity
v = tanhϑ, may write

dS = πR2 Rf Si exp
[
−2L +

√
L2 − ϑ2

]
dϑ. (27)

For ϑ� L we find
dS
dϑ

= πR2 Rfe−L Si exp

(
−ϑ

2

2L

)
. (28)

if we identify the entropy density with the particle density

dN
dy = N

(2πL)1/2 exp
(
− y2

2L

)
(29)

GAUSSIAN RAPIDITY DISTRIBUTION!
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4. Perfect-fluid dynamics 4.4 Bjorken model

Bjorken model

J. D. Bjorken, Highly Relativistic Nucleus-Nucleus Collisions: The Central Rapidity

Region, Phys.Rev. D27 (1983) 140

Landau model – initial conditions are specified for a given laboratory time, considered
in the center-of-mass frame, when the matter is highly compressed and at rest.

Landau’s description looses one aspect of high-energy hadronic collisions – fast
particles are produced later and further away from the collision center than the slow
ones. It is possible to account for this effect in the hydrodynamic description by
imposing special initial conditions. This idea was proposed and studied by Bjorken.

The Bjorken hydrodynamic model was based on the assumption that the rapidity
distribution of the charged particles, dNch/dy, is constant in the mid-rapidity region.
This fact means that the central region is invariant under Lorentz boosts along the
beam axis. This in turn implies that the longitudinal flow has the form vz = z/t and all
thermodynamic quantities characterizing the central region depend only on the
longitudinal proper time τ =

√
t2 − z2 and the transverse coordinates x and y .
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4. Perfect-fluid dynamics 4.4 Bjorken model

Bjorken model

One-dimensional hydrodynamic model where thermodynamic variables are functions
of the longitudinal proper time only,

E = E (τ) , P = P (τ) , T = T (τ) , etc. (30)

The initial conditions for the hydrodynamic expansion are imposed along the
hyperbola of the constant proper time√

t2 − z2 = τi. (31)

In this way one accounts for the time dilation effects characterizing the particle
production. The fluid four-velocity field has the form

uµ =
1
τ

(t , 0, 0, z) = γ
(

1, 0, 0,
z
t

)
. (32)

This form implies

∂µuµ =
1
τ
. (33)
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4. Perfect-fluid dynamics 4.4 Bjorken model

Bjorken model
We identify all kinds of rapidities

y = arctanh
(
v‖
)

= arctanh
(z

t

)
, (34)

t = τ cosh y, z = τ sinh y (35)

baryon number density in the central region is negligible, entropy conservation gives

∂µ (Suµ) =
dS (τ)

dτ
+
S (τ)

τ
= 0. (36)

the solution of this equation is
S (τ) = S (τi)

τi
τ

(37)

for the energy density we find
dE
E + P = −dτ

τ
(38)

This equation can be solved if the equation of state is known. For ultra-relativistic
particles P = λ E (with λ = c2

s = 1/3) and we find

E (τ) = E (τi)
(τi
τ

)1+λ

. (39)
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4. Perfect-fluid dynamics 4.4 Bjorken model

Bjorken model
in the reference frame where the fluid element is at rest we have

d3x = d2x⊥τ dy (40)

thus the entropy contained in the interval dy around y = 0 is

dS = τ S (τ)

∫
d2x⊥ dy (41)

d
dτ

[
dS
dy

]
=

∫
d2x⊥

d
dτ

[τ S (τ)] = 0 (42)

simple estimate of the energy density achieved in the central region, we first calculate
the entropy density S (τi) at the time τi when the hydrodynamic description starts

S (τi) =
1
τiA

dS
dy

(y = 0) ≈ 3.6
τiA

dN
dy

(y = 0) . (43)

Here we used the result S/n = 2π4/ (45ζ (3)) ≈ 3.6, the transverse overlap area of
the two colliding nuclei A = π (3A/ (4πρ0))2/3, where A is the mass number of the
nuclei and ρ0 is the nuclear saturation density,

E (τi) =

[
1215 S4 (τi)

128 g π2

] 1
3

≈ 5.4

g
1
3

[
1
τiA

dN
dy

] 4
3

. (44)
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5. Viscous fluid dynamics

Viscous fluid dynamics

VISCOUS (DISSIPATIVE) HYDRO MODELS
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5. Viscous fluid dynamics 5.1 Navier-Stokes equations

Relativistic Navier-Stokes equations

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P + Π) + πµν

# of unknowns: 5 + 6 (E ,P, uµ(3),Π, πµν(5))
# of equations: 4 + 1 (equation of state E(P))
we need 6 extra equations - different methods possible

Π̇+
Π

τΠ
= −βΠθ, θ = ∂µuµ– expansion scalar

π̇〈µν〉+
πµν

τπ
= 2βπσµν , σµν– shear flow tensor

T , uµ are the only hydrodynamic variables, uµµ = 1
kinetic coefficients: τΠβΠ = ζ → bulk viscosity, τπβπ = η → shear viscosity
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5. Viscous fluid dynamics 5.2 Israel-Stewart equations

Israel-Stewart equations

Israel-Stewart equations — Π, πµν promoted to dynamic variables —
non-hydrodynamic modes are introduced with the appropriate relaxation times τΠ, τπ

W. Israel and J.M. Stewart, Transient relativistic thermodynamics and kinetic theory, Annals of Physics 118 (1979) 341

Π̇ +
Π

τΠ
= −βΠθ+λΠππ

µνσµν

π̇〈µν〉 +
πµν

τπ
= 2βπσµν−τπππ〈µγ σν〉γ + λπΠΠσµν

1) HYDRODYNAMIC EQUATIONS DESCRIBE BOTH HYDRODYNAMIC AND NON-HYDRODYNAMIC MODES

2) HYDRODYNAMIC MODES CORRESPOND TO GENUINE HYDRODYNAMIC BEHAVIOR

3) NON-HYDRODYNAMIC MODES (TERMS) SHOULD BE TREATED AS REGULATORS OF THE THEORY

4) NON-HYDRODYNAMIC MODES GENERATE ENTROPY
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5. Viscous fluid dynamics 5.2 Israel-Stewart equations

Old Maxwell’s idea?

J. Clerk Maxwell, On the Dynamical Theory of Gases, Phil. Trans. R. Soc. Lond. 147 (1867) 49-88, Eq. (143)

C. Cattaneo, Sur une forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée

Comptes Rendus 247(4) (1958) 431
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5. Viscous fluid dynamics 5.2 Israel-Stewart equations

What is the real problem with the relativistic Navier-Stokes theory?

P. Kovtun: Existence of gapped modes (non-hydrodynamic modes) with frequencies that have a positive imaginary part. These

are unphysical modes. These (UV) modes are outside of the validity regime of the low-energy hydro approximation.

HYDRODYNAMIC VS. NON-HYDRODYNAMICMODES

perturbations∼ exp(−iωk t + ikx), hydro modes ωk → 0 for k → 0, non-hydro modes ωk → const 6= 0 for k → 0

instability for Im(ωk ) > 0.

Most popular fix is the Israel-Stewart theory: the hydro equations are coupled to extra UV degrees of freedom, which in turn kill

the unphysical UV modes.

Analogy to quantum field theory.

Rayski-Pauli-Villars regularization: introduction of physical heavy particles whose presence regulates the UV behavior.
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5. Viscous fluid dynamics 5.2 Israel-Stewart equations

ISRAEL-STEWART ENTROPY PRODUCTION ANALYSIS
First-law of thermodynamics + extensivity of energy, entropy, particle (baryon) number

dE = TdS − PdV + µdN −→ dε = Tdσ + µdn, (45)

E + PV = TS + µN −→ ε+ P = Tσ + µn. (46)

We can make it looking „covariant”

Sµeq = Suµ = Pβµ − ξNµ
eq + βλTλµeq , (47)

βµ =
uµ

T
, β =

√
βλβλ =

1
T
, ξ =

µ

T
. (48)

dSµeq = −ξdNµ
eq + βλdTλµeq , d(Pβµ) = Nµ

eqdξ − Tλµeq dβλ. (49)

Near equilibrium entropy current

Sµ = Pβµ − ξNµ + βλTλµ + Qµ (50)

and its growth

∂µSµ = −
(
Nµ − Nµ

eq
)
∂µξ +

(
Tλµ − Tλµeq

)
(∂µβλ) + ∂µQµ. (51)
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5. Viscous fluid dynamics 5.2 Israel-Stewart equations

T∂µSµ =
nT
E + P

qλ∂λ
( µ

T

)
+ πλµ∂<µuλ> − Πθ + T∂µQµ. (52)

The requirement that the entropy production is positive (with Qµ = 0) gives:
heat flow (not discussed before)

qλ = − λnT 2

E + P
∇λ
( µ

T

)
, (53)

bulk pressure

Π = −ζ∂µuµ = −ζθ, (54)

shear stress tensor

πλµ = 2η∂<λuµ> = 2ησλµ. (55)
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5. Viscous fluid dynamics 5.2 Israel-Stewart equations

BEYOND NAVIER-STOKES — a non-zero Qµ proposed
second-order theory

Sµ = SµNS −
(
β0Π2 − β1qνqν + β2πνλπ

νλ
) uµ

2T
− α0

Πqµ

T
+ α1

πµνqν
T

. (56)

T∂µSµ = −Π

[
θ + β0DΠ + T Π∂λ

(
β0uλ

2T

)
+ α0∂νqν

]

−qµ
[
∇µ ln T−Duµ−β1Dqµ−Tqµ∂λ

(
β1uλ

2T

)
−α1∂νπ

ν
µ+T∇µ

(
α0Π

T

)]

+πµν
[
σµν−β2Dπµν−Tπµν∂λ

(
β2uλ

2T

)
+ T∇µ

(
α1qν

T

)]
. (57)
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5. Viscous fluid dynamics 5.2 Israel-Stewart equations

MIS equations

Müller-Israel-Stewart or Muronga-Israel-Stewart (MIS)

I. Müller, Zum Paradoxon der Wärmeleitungstheorie, Zeit. f. Physik 198 (1967) 329

A. Muronga, Second-order dissipative fluid dynamics for ultra relativistic nuclear collisions, PRL 88 (2002) 062302

Π̇ +
Π

τΠ
= −βΠθ −

ζT
2τΠ

Π ∂λ

(
τΠ

ζT
uλ
)

π̇〈µν〉 +
πµν

τπ
= 2βπσµν −

ηT
2τπ

πµν ∂λ

(
τπ
ηT

uλ
)
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5. Viscous fluid dynamics 5.3 BRSSS equations

BRSSS equations

Baier, Romatschke, Son, Starinets, Stephanov (BRSSS)
symmetry arguments due to Lorentz and conformal symmetry, ...

R. Baier, P. Romatschke, D.T. Son, A. O. Starinets, M. A. Stephanov,

Relativistic viscous hydrodynamics, conformal invariance, and holography, JHEP 0804 (2008) 100

∂µTµνvis = 0 Tµνvis = Euµuν −∆µν(P + Π) + πµν

Π = 0

π̇〈µν〉 +
πµν

τπ
= 2βπσµν −

4
3
πµνθ +

λ1

τπη2 π
〈µ
λπ

ν〉λ

(+ terms including vorticity and curvature)
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5. Viscous fluid dynamics 5.4 DNMR equations

DNMR equations

Denicol, Niemi, Molnar, Rischke (DNMR)
simultaneous expansion in the Knudsen number and inverse Reynolds number

approach based on the kinetic theory

Π̇ +
Π

τΠ
= −βΠθ − δΠΠΠθ+λΠππ

µνσµν

π̇〈µν〉 +
πµν

τπ
= 2βπσµν + 2π〈µγ ω

ν〉γ − δπππµνθ−τπππ〈µγ σν〉γ + λπΠΠσµν

the version of equations shown is for RTA version of the Boltzmann kinetic equation, with neglected vorticity, for standard form of
the collision term additional terms (with new kinetic coefficients) appear

shear-bulk coupling η − ζ
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5. Viscous fluid dynamics 5.4 DNMR equations

Review of different viscous-fluid frameworks

Bjorken viscous expansion
φ = −πy

y component of the shear stress tensor (the only independent one)
energy-momentum conservation

τ ε̇ = −4
3
ε+ φ

BRSSS

τπφ̇ =
4η
3τ
− λ1φ

2

2η2 −
4τπφ
3τ
− φ (58)

DNMR with RTA kinetic equation

τπφ̇ =
4η
3τ
− 38

21
τπφ

τ
− φ (59)

MIS with RTA kinetic equation

τπφ̇ =
4η
3τ
− 4τπφ

3τ
− φ (60)
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