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Overview of lectures

Lecture 1: Introduction to the
® What are they, how do they form, and what are they made up of?

Lecture 2: (Electromagnetic) Observations of Neutron Stars

® Neutron star masses, radii, and how these measurements constrain the equation of state

Lecture 3: Gravitational Wave Astronomy: a new window into neutron star interiors
® |ntroduction to gravitational waves (astro)physics
® Introduction to the LIGO experiment: how it works and what has been measured to date

® What to expect from neutron star mergers over the next ~decade



Introduction to Neutron Stars



A (biased and incomplete) history of neutron stars
:l 1932 — James Chadwick discovers the neutron
. =

»
I 1934 — Baade & Zwicky predict existence of neutron stars, as the end product of core-collapse supernovae

“With all reserve, we advance the view that a super-nova represents the
transition of an ordinary star into a neutron star, consisting mainly of
neutrons. Such a star may possess a very small radius and an extremely
high density. As neutrons can be packed much more closely than ordinary
nuclei and electrons, the “gravitational packing” energy in a cold neutron
star may become very large, and, under certain circumstances may far
exceed the ordinary nuclear packing fractions. ...”




A (biased and incomplete) history of neutron stars
1932 — James Chadwick discovers the neutron

.
I 1934 — Baade & Zwicky predict existence of neutron stars, as the end product of core-collapse supernovae
-

.I 1939 — Oppenheimer & Volkoff predict that NS must have a maximum mass; 0.7 Me for degenerate n gas
-

= I 1967 — Jocelyn Bell Burnell discovers the first pulsar (leads to 1974 Nobel for Anthony Hewish)
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A (biased and incomplete) history of neutron stars
:l 1932 — James Chadwick discovers the neutron
. =

»
I 1934 — Baade & Zwicky predict existence of neutron stars, as the end product of core-collapse supernovae
-

-I 1939 — Oppenheimer & Volkoff predict that NS must have a maximum mass; 0.7 Me for degenerate n gas

Signal repeats every 33 milliseconds!




A (biased and incomplete) history of neutron stars
:I 1932 — James Chadwick discovers the neutron
[

»
I 1934 — Baade & Zwicky predict existence of neutron stars, as the end product of core-collapse supernovae
-

-I 1939 — Oppenheimer & Volkoff predict that NS must have a maximum mass; 0.7 Me for degenerate n gas
-

= I 1967 — Jocelyn Bell Burnell discovers the first pulsar (leads to 1974 Nobel for Anthony Hewish)
as

I 1968 — Discovery of a pulsar in the Crab Nebula; cements association of NS with supernovae
-

[ ]
1974 — First binary pulsar (B1913+16) discovered by Hulse & Taylor (leads to 1993 Nobel prize)

[ ]
I 1982 — First millisecond (!) pulsar discovered by Backer et al.

ae
. I 1992 — Pulsars are used to discover the first exo-planets by Wolszczan & Frail

2017 — First direct detection of gravitational waves from a neutron star merger by LIGY
- collaboration; first kilonova, first evidence of r-process nucleosynthesis from neutron star me

I 2020 — First NS-black hole mergers observed



Temperature of neutron stars

Proto-neutron stars are born with T ~ 1011- 1012 K
(~50 MeV) Crust cools by conduction

Isothermal core cools by neutrino emission;
dominates cooling for first 104-105 years

PNS cooling is regulated by neutrino emission, heat Surface photon emission dominates
capacity, superfluidity of interior, and heat-insulating at late time t > 106 yrs
properties of the outer layers

Data from young neutron stars can help constrain
these processes



Neutron star cooling curves

Redshifted thermal luminosity as a function of stellar age t
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Conclusion: matter is thermodynamically cold
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Composition of neutron stars

Proton fraction for different values of the symmetry
energy slope, L, for the TM1 parameter set
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Constraints on the nuclear symmetry energy
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Equation of state

Generically: P(n, T, Yp)
For assumption of cold, equilibrated matter, this simplifies to: P(n)

Early model (considered by Oppenheimer, Volkoff 1939) Non-relativistic: P = ¢, p5/3

was a degenerate, ideal, Fermi gas: Relativistic: P=c, p4/3
' — “rel.

More accurate model needs to take into account:
O Electrostatic corrections — important in crust, where charge is not uniformly distributed
o Composition of not just neutrons, but protons and electrons (required to inhibit neutron decays)
o0 Nuclear interactions, which are a significant contribution to the energy density
O Exotic degrees of freedom at high densities

Above psat, there are two key challenges:
1. Determining the nuclear potential for nucleon-nucleon interactions
2. Finding an appropriate computational technique for solving the (relativistic) quantum many-body problem



Theoretical models of the equation of state*
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* for cold, B-equilibrated matter

Nuclear models (npep matter only):

e Potential-method EOSs (PAL6 and Sly)

Variational-method EOSs (AP1-4, FPS, and WFF1-3)
Relativistic Brueckner-Hartree-Fock EOSs (BPAL12 and ENG)
Relativistic mean field theory EOSs (MS1, MS1b)

Models with hyperons, pion condensates, or quarks:

® Neutron-only EOS with pion condensates (PS)

Effective potential EOS including hyperons (BGN1H1)

Relativistic mean field theory EOS with hyperons (GNH3)

Relativistic mean field theory EOS with hyperons and quarks

(PCL2)

® Hybrid EOSs with mixed APR nuclear matter and colour-
flavor-locked quark matter (ALF1-4)

Nomenclature and descriptions from Read et al. 2009



Mass-radius relations for theoretical EOSs
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Further reading

Textbooks:

® “Compact Stars: Nuclear Physics, Particle Physics, and General Relativity” by Glendenning
® “Black Holes, White Dwarfs, and Neutron Stars” by Shapiro & Teukolsky

Reviews:

® “Neutron Stars and the Nuclear Equation of State” — Burgio, Schulze, Vidana, and Wei
(2021, Progress in Particle and Nuclear Physics)

® “Neutron Stars and the Nuclear Matter Equation of State” — Lattimer (2021, Annual
Reviews of Nuclear and Particle Science)

® “Masses, Radii, and the Equation of State of Neutron Stars” — Ozel & Friere (2016, Annual
Reviews of Astronomy & Astrophysics)



