

HEPscore23 Workload Analysis

Ladislav Ondris

1 March 2023

Validation of LHCb MA v1.0

- □ Server utilization as expected
- \Box Spread $\leq 1\%$

□ Reference value: 1949

					inco-sim-run3-ma 🗸				
site	CPU	Online CPUs	# reps	# copies	Threads x copy	Events x thread	Count	50th percentile ↓	Spread
CERN	Neoverse-N1	0-159	3	160	1	10	121	5009	1.01%
CERN	Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz	0-63	3	64	1	10	74	1949	0.533%
CERN	AMD EPYC 7302 16-Core Processor	0-63	3	64	1	10	77	1695	0.398%
CERN	Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz	0-63	3	64	1	10	72	1390	0.441%
CERN	Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz	0-63	3	64	1	10	49	1377	0.475%
CERN	Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz	0-55	3	56	1	10	72	1138	0.620%
CERN	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz	0-47	3	48	1	10	72	863	0.599%
CERN	Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz	0-31	3	32	1	10	72	560	0.975%

Validation of HEPscore

- Server utilization as expected
- \Box Spread $\leq 2.3\%$
- Reference value: 1019

Version	site	CPU	Online CPUs	# reps	Count	Score ↓	spread	hash
/1.5rc9	CERN	Neoverse-N1	0-159	3	8	2712	0.707%	071892
/1.5rc9	CERN	Intel(R) Xeon(R) Gold 6326 CPU @ 2.90GHz	0-63	3	18	1019	0.482%	071892
/1.5rc9	CERN	AMD EPYC 7302 16-Core Processor	0-63	3	18	984	0.905%	071892
/1.5rc9	CERN	Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz	0-63	3	12	712	2.30%	071892
/1.5rc9	CERN	Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz	0-63	3	6	708	0.465%	071892
/1.5rc9	CERN	Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz	0-63	3	2	690	0.124%	071892
/1.5rc9	CERN	Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz	0-55	3	11	631	2.03%	071892
/1.5rc9	CERN	Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz	0-47	3	11	481	1.52%	071892
/1.5rc9	CERN	Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz	0-31	3	11	319	2.32%	071892

HEPscore

- Computed as a geometric mean of scores of preselected workloads
- □ Configuration file lists seven workloads:
 - ATLAS gen_sherpa
 - ATLAS reco
 - CMS gen-sim
 - CMS reco
 - LHCb sim
 - ALICE digi-reco
 - Belle2 gen-sim-reco

epscore_benchmark:	
benchmarks:	
atlas-gen_sherpa	a-ma-bmk:
results_file:	atlas-gen_sherpa-ma_summary.json
<pre>ref_scores:</pre>	
gen: 38.58	
weight: 1.0	
version: v2.0	
args:	
threads: 1	
events: 200	
atlas-reco_mt-ma	a-bmk:
results_file:	atlas-reco_mt-ma_summary.json
<pre>ref_scores:</pre>	
reco: 9.062	
weight: 1.0	
version: v2.0	
args:	
threads: 4	
events: 100	

settings:

name: HEPscore23Beta
reference_machine: "E423521X1B04810-B Gold 6326 CPU @ 2.90GH
registry: oras://gitlab-registry.cern.ch/hep-benchmarks/hepaddarch: true
method: geometric_mean
repetitions: 3
retries: 1
scaling: 1018
container_exec: singularity

Workload Evolution

□ Workloads have changed since the HEPscore workshop in Sep 2022

- New software versions for all the applications inside the WLs
- Support for x86 and ARM (multi-architecture)

□ How do the scores (event throughput) scale for the testbed machines?

□ Correlation plots are presented in the next slides

- WL_m (vx) vs. WL_m (vy)
- E.g., CMS gen-sim (v0.6) vs. CMS gen-sim-ma (v1.0)

ATLAS reco

- Comparison between old and new
 - Points represent CPUs
 - The goodness of fit measured by Figure of merit (FOM)
 - Slope of 1 represented by the gray dashed line
 - Error bars show the standard deviation
- □ Event throughput is 4× the old one

□ Relative discrepancy $\leq 1.5\%$

atlas-reco mt-bmk.reco:v0.1 vs atlas-reco mt-ma-bmk.reco:v2.0

ATLAS gen_sherpa

- Reminder: a bug in the old workload (used the wrong duration for score computation)
- New event throughput ×0.17 the old one
- □ Relative discrepancy $\leq 20\%$

CMS gen-sim

- Same event throughput
- Relative discrepancy $\leq 8\%$

CMS reco

- Lower event throughput
 - Waiting for CMS experts to confirm that it is expected
- \Box Relative discrepancy $\leq 8\%$

LHCb sim

- □ Event throughput 2× of the old one
 - Significant software improvements
- □ Relative discrepancy $\leq 44\%$

ALICE digi-reco

- □ Both workloads are recent
- □ Same event throughput
- □ Relative discrepancy $\leq 0.3\%$

Belle2 gen-sim-reco

□ Same event throughput

□ Relative discrepancy $\leq 7\%$

OLD

HEPscore Configurations

- Multiple HS23 configurations built in the past months
 - All multi-architecture
 - Some only x86

Ladislav Ondris

- Missing some WLs under development
- □ Tracking configurations by their hash

Hash	Description
071	Final HS23 (all multi-architecture)
fb7	Without LHCb (only six workloads)
d44	Without LHCb (only six workloads)
e72	ALICE, Belle2 and LHCb are not MA
856	Without ALICE; Belle2 and LHCb not MA

Effects of HEPscore Configurations

- Already proven that the differences among candidates can be small
 - Limited effect on CPUs ordering

 $https://indico.cern.ch/event/1170924/contributions/4951092/attachments/2510486/4314832/HEPS core Candidates_TristanSullivan.pdf$

Comparing Configurations

- Examining the impact of CPU choice on HEPscore for different configurations
- The configurations can be considered as different candidates
 - Relative discrepancy $\leq 8\%$
 - Low-effect of config hashes on the result
- □ fb7 is the latest configuration
 - Serves as a reference for the rest
 - Overlaps with d44 as expected

2023-03-01 06:28

Effects of Workload Changes

- HEPscore increases for all CPUs
- Ordering is maintained

2023-03-01 06:28

Effects of Workload Changes

- HEPscore changes differently for different CPUs
- CPU ordering may change
- No drastic change if
 only a minority of the
 workloads changes

Conclusion

□ LHCb validation confirms stability and reproducibility of results

- Calibration value for the ref machine is extracted

□ HEPscore23 validation on test bed confirms stability and reproducibility

- Correlation studies of old vs. new workloads show expected differences for some workloads a result of large improvements or bug fixes
- □ The different composition of HEPscore (w/o LHCb and/or ALICE, old LHCb, etc) would affect the servers' HEPscore by < 8%

19