

AI for PET Image Reconstruction

Andrew J. Reader

School of Biomedical Engineering and Imaging Sciences King's College London UK

andrew.reader@kcl.ac.uk

First simplify to an image to image denoising mapping т MEASURED RESPONSE TRAINING (SUPERVISED LEARNING) m_3 INFERENCE \boldsymbol{m}_2 \boldsymbol{m}_{NEW} \boldsymbol{m}_1 **GROUND TRUTH** or HIGH QUALITY REFERENCE Data $= F(\boldsymbol{m}_{NEW}; \boldsymbol{\hat{\theta}})$ Î

Learning 1 convolution kernel

https://youtu.be/JvJgvjm1hco

Learning 1 convolution kernel : sharpening Architecture: One 5 × 5 convolution kernel 25 parameters to learn Training data: Input x: blurred image Target t: ground truth INPUT OUTPUT Loss function: x Mean square error (MSE) y $\frac{1}{V} \sum_{\nu=1}^{V} (y_{\nu} - t_{\nu})^2$ Optimiser: Gradient descent (GD) Stochastic GD (SGD) TARGET t

Deep learning components

1. Training data

From no training data.... ...to tens of examples pairs... to thousands

2. Architecture / inductive prior for the mapping from input to output

Trainable parameters for a code structure E.g. fully-connected (linear) layers, convolutional neural networks (CNNs), transformers

3. Loss functions to decide how well a mapping is doing its job

Mean squared error (MSE) or L2 norm Mean absolute error (MAE) or L1 norm Perceptual loss Adversarial loss

4. Optimisers

Stochastic gradient descent (SGD) Adam ...and many more

So far: No downsampling / upsampling: <u>shift-equivariant</u> mappings

Suitable for image to image mappings

29

CNNs can do more

Using downsampling (or max pooling) / upsampling

Non-linear, shift-variant mappings

Suitable for sinogram to image mappings

COMPARISON OF DIRECT RECONSTRUCTION METHODS										
	NAME	ARCHITECTURE	LOSS FUNCTION	DATA SIZES	NUMBER OF TRAINING PAIRS					
PET	DeepPET Häggström et al. MIA 2019	CNN (CED) [>60 million parameters]	MSE	269x288 to 128x128 (2D)	~200,000					
	DPIR-Net Hu et al. TRPMS 2020	As above + discriminator [>60 million parameters]	MSE, perceptual loss, discriminator	269x288 to 128x128 (2D)	~40,000					
MR	AUTOMAP Zhu et al. Nature 2018	FC layers, CNN [>800 million parameters]	MSE with L1 penalty	128x128 to 128x128 (2D)	~50,000					
СТ	iCT-Net Li et al, IEEE TMI 2019	CNN+FC [~ <1 million parameters]	MSE	512x512 (2D)	58 real scans [millions of simulated samples for pre-training]					
	DirectPET Whiteley et al. MIC 2019 J. Med. Imag. 2020	FC layers, CNN [~350 million parameters]	MAE and perceptual loss and MS-SSIM	400x168x16 to 400x400x16	~2,000					

Embedding deep learning into iterative reconstruction

Unrolled iterative methods:

- Iterative reconstruction uses physics and statistics modelling and theoretically convergent algorithms
- ✓ use DL for the regularisation (the prior, defined by the image manifold of the training data)

Compared to direct DL

- ✓ Practical for 3D
- ✓ Reduced training data needs (~tens of 3D images)
- ✓ Expect improved generalisation outside the training distribution

Examples

- Lim et al 2018 (BCD-Net for low count PET), TMI 2020 (Iterative NN)
- Gong et al 2019 (MAPEM-Net)
- Mehranian and Reader 2020 (FBSEM-Net)
- Rui Hu, Huafeng Liu 2022 (TransEM)

COMPARISON OF UNROLLED METHODS FOR PET									
NAME	ARCHITECTURE (Reduced parameters)	LOSS FUNCTION	DATA SIZES 3 D	NUMBER OF TRAINING PAIRS (LOW NUMBER)	BACKPROP				
MAPEM-Net Gong et al 2019	CNN (U-Net) [>8 x 2 million parameters] Iteration/module dependent	MSE For end image	128x128x105	~18	Through all layers including EM update (Memory intense)				
FBSEM-Net Mehranian & Reader 2020 *	CNN [77,000 parameters] Same for all iterations/modules	MSE For end image	114x114x128	~35	Through all layers, excluding EM update (Memory intense)				
BCD-Net Lim et al 2018, INN Lim et al 2020	[10x4000 =40,000 parameters] Iteration/module dependent	MSE For current module compared to true/reference	200x200x112	~4	Training at iteration module only (Not demanding)				
		* New iterat Sequential	ion-dependent targe training also	t version: Corda-D'Ir	ncan et al TRPMS 202				

School of Biomedical Engineering and Imaging Sciences

REVIEW

END OF PRESENTATION