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Workshop Overview
• Getting the basics 

• Simple FBP via use of iradon

• Deep learning basics

• Code for a CNN in PyTorch to denoise an image

• System model (�) for use in PyTorch

• Code for the system model in PyTorch

• Deep learned FBP and code

• Deep image prior and code

• Iterative reconstruction

• Unrolled MLEM with inter-update CNN and then code



References

• I am presenting some simple but potentially fresh perspectives

• Open to collaboration if you are interested!

• Consider citing
• Reader et al Deep learning for PET image reconstruction IEEE TRPMS 2020

• Reader & Schramm Artificial intelligence for PET image reconstruction 2021 JNM 62 (10), 1330-1333

• Reader AJ 2022 Self-Supervised and Supervised Deep Learning for PET Image Reconstruction AIP 

conference proceedings (under review)
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Deep learning components
1. Training data

From no training data….
…to tens of examples pairs… to thousands

2. Architecture / inductive prior for the mapping from input to output
Trainable parameters for a code structure
E.g. fully-connected (linear) layers, convolutional neural networks (CNNs), transformers

3. Loss functions to decide how well a mapping is doing its job
Mean squared error (MSE) or L2 norm
Mean absolute error (MAE) or L1 norm
Perceptual loss
Adversarial loss

4. Optimisers
Stochastic gradient descent (SGD)
Adam
…and many more
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PET image reconstruction
System model: matrix �
for discrete Radon or x-ray transform

� =            � �

Illustration of a flattened 2D 

image – to give just a vector

Illustration of a flattened 2D 

sinogram – to give just a 

single vector



PET image reconstruction

Each column of A corresponds to a sinogram 

response for each pixel in the object

Each row of A corresponds to a sensitivity image 

for each sinogram bin

A =

System model: matrix �
for discrete Radon or x-ray transform
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BPCNN

FP

Loss

Reader 2022
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Deep image prior
with system model

Hashimoto et al IEEE TRPMS 2022

2017



Deep image prior with system model

Hashimoto et al IEEE TRPMS 2022



CODING EXAMPLE IN 
Jupyter Notebook / 

Python / PyTorch

DEEP IMAGE PRIOR



CODING EXAMPLE IN 
Jupyter Notebook / 

Python / PyTorch

DEEP IMAGE PRIOR



CODING EXAMPLE IN 
Jupyter Notebook / 

Python / PyTorch

DEEP IMAGE PRIOR



CODING EXAMPLE IN 
Jupyter Notebook / 

Python / PyTorch

DEEP IMAGE PRIOR



DD/Month/YYYY Professor/Dr: Topic title:

Review of conventional reconstruction and its limitations

Machine learning principles

Linear operator example: matrix, and convolution mappings

Including non-linearities for CNNs

MLEM, OSEM and MAPEM



Simple
CODING EXAMPLE

Atom / Python and
Jupyter Notebook 

Basic MLEM

If interested, see: 
https://youtu.be/IhETD4nSJec
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Maximum likelihood – expectation maximisation (ML-EM)
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Including a trainable component
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Including a trainable component
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Goal: gain familiarity with 
how to unroll an iterative 

algorithm with trainable 
parameters
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Thank you

andrew.reader@kcl.ac.uk


