

### Al for image reconstruction: workshop

Andrew J. Reader

School of Biomedical Engineering and Imaging Sciences King's College London UK

# **Workshop Overview**

- Getting the basics
  - Simple FBP via use of iradon
- Deep learning basics
  - Code for a CNN in PyTorch to denoise an image
- System model (A) for use in PyTorch
  - Code for the system model in PyTorch
- Deep learned FBP and code
- Deep image prior and code
- Iterative reconstruction
  - Unrolled MLEM with inter-update CNN and then code

# References

- I am presenting some simple but potentially fresh perspectives
  - Open to collaboration if you are interested!

#### Consider citing

- Reader et al Deep learning for PET image reconstruction IEEE TRPMS 2020
- Reader & Schramm Artificial intelligence for PET image reconstruction 2021 JNM 62 (10), 1330-1333
- Reader AJ 2022 Self-Supervised and Supervised Deep Learning for PET Image Reconstruction AIP conference proceedings *(under review)*

### **Basic FBP**

Brief, simple CODING EXAMPLE Jupyter Notebook

Goal: gain familiarity with notation and radon function

from skimage.transformimport iradon, radon, resize# algorithms for image processingfrom skimage.dataimport brainimport numpyas npimport matplotlib.pyplotas plt# library for data visualisation

plt.rcParams['figure.dpi'] = 600 # Improve figure quality
nxd = 256 # nxd is the number of pixels in the x dimension of the reconstructed image
nphi = int(nxd\*1.0) # nphi is the number of view angles
azi\_angles = np.linspace(0.0,180.0, nphi, endpoint=False) # nphi values between 0.0 and 180.0, excluding endpoint

```
brainimage = brain() # a range of brain CT slices
true_object_np = resize(brainimage[5,30:-1,:-30], (nxd,nxd), anti_aliasing=False)
true_sinogram_np = radon(true_object_np, azi_angles, circle=False)
```

```
fig1, ax = plt.subplots(1,4, figsize=(16,2)) # No. rows, cols, figsize Width, Height (inches)
ax[0].imshow(true_object_np, cmap='Greys_r'); ax[0].set_title('True'); ax[0].set_axis_off()
ax[1].imshow(true_sinogram_np.T, cmap='Greys_r'); ax[1].set_title('Sinogram'); ax[1].set_axis_off()
```

```
bp_recon = iradon(true_sinogram_np, output_size=nxd, filter_name = None, circle=False) # Plain backprojection
fbp_recon = iradon(true_sinogram_np, output_size=nxd, filter_name = 'ramp', circle=False) # Basic ramp-filtered FBP
ax[2].imshow(bp_recon, cmap='Greys_r'); ax[2].set_title('BP'); ax[2].set_axis_off()
ax[3].imshow(fbp_recon, cmap='Greys_r'); ax[3].set_title('FBP'); ax[3].set_axis_off()
```









FBP



# **Deep learning basics**

# **Deep learning components**

#### 1. Training data

From no training data....

...to tens of examples pairs... to thousands

#### 2. Architecture / inductive prior for the mapping from input to output

Trainable parameters for a code structure

E.g. fully-connected (linear) layers, convolutional neural networks (CNNs), transformers

#### 3. Loss functions to decide how well a mapping is doing its job

Mean squared error (MSE) or L2 norm Mean absolute error (MAE) or L1 norm Perceptual loss Adversarial loss

#### 4. Optimisers

Stochastic gradient descent (SGD) Adam

...and many more

#### **Basic CNN**

CODING EXAMPLE IN Jupyter Notebook / Python / PyTorch

```
class CNN(nn.Module):
   def init (self, num channels):
       super(CNN, self). init ()
       self.CNN = nn.Sequential(
           nn.Conv2d(1,
                                   num channels, 3, padding=1, padding mode='reflect'), nn.PReLU(),
           nn.Conv2d(num channels, num channels, 3, padding=1, padding mode='reflect'), nn.PReLU(),
           nn.Conv2d(num channels, num channels, 3, padding=1, padding mode='reflect'), nn.PReLU(),
           nn.Conv2d(num channels, num channels, 3, padding=1, padding mode='reflect'), nn.PReLU(),
           nn.Conv2d(num channels, 1,
                                                 3, padding=1, padding mode='reflect'), nn.PReLU()
   def forward(self, x): return torch.squeeze(self.CNN(x.unsqueeze(0).unsqueeze(0)))
cnn = CNN(nxd).to(device) # create a CNN object from the class
   from IPython.display
                           import display, clear output
   #======TRAIN THE NETWORK
   loss fun = nn.MSELoss()
   optimiser = torch.optim.Adam(cnn.parameters(), lr=1e-4)
   train loss = list()
   epochs
             = 5000
   for ep in range(epochs):
       optimiser.zero grad() # set the gradients to zero
       output cnn = cnn(noisy image torch)
       loss = loss fun(output cnn, true object torch)
       train loss.append(loss.item())
       loss.backward()
                        # Find the gradients
       optimiser.step() # Does the update
       if ep % 20 == 0:
          fig2, ax = plt.subplots(1,4, figsize=(16,4))
          ax[0].plot(train loss[19:-1]);
                                                                      ax[0].set title('Loss, epoch %d' % ep)
          ax[1].imshow(torch to np(noisy image torch), cmap='Greys r'); ax[1].set title('Noisy Input')
          ax[2].imshow(torch to np(output cnn),
                                                     cmap='Greys r'); ax[2].set title('CNN output')
          ax[3].imshow(torch to np(true object torch), cmap='Greys r'); ax[3].set title('True')
          ax[1].set_axis_off(); ax[2].set_axis_off(); ax[3].set_axis_off()
          clear output(wait=True); plt.pause(0.001)
```

### **Basic CNN**





Noisy Input



CNN output



CNN output



True



True



### **Creating a system model for use in PyTorch**

# System model: matrix A for discrete Radon or x-ray transform X Illustration of a flattened 2D Illustration of a flattened 2D sinogram – to give just a image – to give just a vector single vector

### System model: matrix A

for discrete Radon or x-ray transform



Implementing a system matrix

Brief, simple CODING EXAMPLE Jupyter Notebook

Goal: gain familiarity with PyTorch and a system matrix In [4]: import torch, torch.nn as nn

```
In [5]: # To demonstrate setting up a system matrix, use smaller values for the image size for speed
                 = 32; nphi
                                 = int(nxd*1.0)
       nxd
       #----- Need to find out the number of projection bins in a parallel projection
       empty image = np.zeros( (nxd,nxd) )
       azi angles = np.linspace(0.0,180.0, nphi, endpoint=False)
       sinogram np = radon(empty image,azi angles, circle=False)
       nrd
                    = sinogram np.shape[0] # nrd is the no. of bins in a parallel projection
In [6]: #-----TORCH SYSTEM MATRIX------
       def make torch system matrix(nxd, nrd, nphi):
           point source = np.zeros( (nxd,nxd) )
           azi angles = np.linspace(0.0, 180.0, nphi, endpoint=False)
                        = nrd * nphi
           num bins
           num pixels = nxd * nxd
           system matrix = torch.zeros(num bins, num pixels) # rows = num sino bins, cols = num image pixels
           col index
                       = 0
           for xv in range(nxd):
               for yv in range(nxd): # Now have selected pixel (xv, yv)
                  point source[:,:] = 0.0
                  point source[xv, vv] = 1.0
                  sinogram np = radon(point source,azi angles, circle=False)
                  system matrix[:,col index] = torch.reshape(np to torch(sinogram np) ,(1, num bins) )
                  col index += 1
           return system matrix
       def fp system torch(image, sys mat, nxd, nrd, nphi):
           return torch.reshape(torch.mm(sys mat, torch.reshape(image, (nxd*nxd,1))), (nrd, nphi))
       def bp_system_torch(sino, sys_mat, nxd, nrd, nphi):
           return torch.reshape(torch.mm(sys mat.T, torch.reshape(sino, (nrd*nphi,1))), (nxd,nxd))
In [7]: #-----TORCH TO NUMPY CONVERTORS------
       def torch to np(torch array): return np.squeeze(torch array.detach().cpu().numpy())
       def np to torch(np array): return torch.from numpy(np array).float()
In [8]: device
                 = torch.device("cuda:0" if torch.cuda.is available() else "cpu"); print(device)
       sys mat
                 = make_torch_system_matrix(nxd, nrd, nphi).to(device);
                                                                               print(sys mat.shape)
       fig1, axs1 = plt.subplots(1,2, figsize=(8,4))
       axs1[0].imshow(torch to np(sys mat), cmap='Greys r'); axs1[0].set title('System matrix')
```





### Learned FBP



#### LEARNED FBP

CODING EXAMPLE IN Jupyter Notebook / Python / PyTorch

#### **LEARNED FBP**

```
class FBP_CNN_Net(nn.Module):
   def init (self, cnn, sino for reconstruction):
       super(FBP_CNN_Net, self).__init__()
       self.sino_ones = torch.ones_like(sino_for_reconstruction)
       self.sens_image = bp_system_torch(self.sino_ones, sys_mat, nxd, nrd, nphi)
       self.cnn = cnn
       self.prelu = nn.PReLU()
   def forward(self, sino_for_reconstruction):
       filtered_sino = self.cnn(sino_for_reconstruction)
                     = bp system torch(filtered sino, sys mat, nxd, nrd, nphi) / (self.sens image+1.0e-15)
        recon
                    = self.prelu(recon)
        recon
                   = fp_system_torch(recon, sys_mat, nxd, nrd, nphi)
       fpsino
       return recon, fpsino, filtered_sino
      = CNN(nxd).to(device) # create a new CNN object from the CNN class
cnn
fbpnet = FBP CNN Net(cnn, true sinogram torch).to(device)
```

#### LEARNED FBP

```
#-----TRAIN THE fbpnet NETWORK
loss fun = nn.MSELoss()
optimiser = torch.optim.Adam(fbpnet.parameters(), lr=1e-4)
train loss = list()
for ep in range(5000 +1):
   optimiser.zero grad() # set the gradients to zero
   recon, rec fp, filtered sino = fbpnet(true sinogram torch)
   # Self-supervised, data fidelity
   loss = loss fun(rec fp, torch.squeeze(true sinogram torch))
   # Ground truth supervised -> #loss = loss fun(fbp recon, torch.squeeze(true object torch))
   train loss.append(loss.item())
   loss.backward() # Find the gradients
   optimiser.step() # Does the update
   if ep % 50 == 0:
       fig2, axs2 = plt.subplots(2,3, figsize=(16,8)) # No. rows, cols, figsize Width, Height (inches)
       axs2[0,0].imshow(torch to np(true sinogram torch).T, cmap='Greys r'); axs2[0,0].set title('Measured data')
       axs2[0,1].imshow(torch to np(filtered sino).T, cmap='Greys r'); axs2[0,1].set title('Filtered data')
       axs2[0,0].set axis off(); axs2[0,1].set axis off()
       axs2[0,2].set axis off(); axs2[1,1].set axis off()
       axs2[1,1].imshow(torch to np(recon), cmap='Greys r'); axs2[1,1].set title('Recon %d' % (ep))
       axs2[0,2].imshow(torch to np(rec fp).T, cmap='Greys r'); axs2[0,2].set title('Forward projection')
       axs2[1,2].plot(train loss[-49:-1]); axs2[1,2].set title('Loss, epoch %d' % ep)
       axs2[1,0].plot(train_loss[49:-1]); axs2[1,0].set_title('Loss, epoch %d' % ep)
       axs2[1,0].spines['top'].set_visible(False); axs2[1,0].spines['right'].set visible(False)
       clear output(wait=True); plt.pause(0.001)
```





Forward projection





Recon 20000



Loss, epoch 20000 0.0942 -0.0940 -0.0938 -0.0936 -0.0934 -0.0934 -0.0930 -0 10 20 30 40

### **Deep Image Prior**

### **Deep image prior** with system model

#### **Deep Image Prior**

2017

Dmitry Ulyanov · Andrea Vedaldi · Victor Lempitsky



Hashimoto et al IEEE TRPMS 2022

# Deep image prior with system model



Hashimoto et al IEEE TRPMS 2022

CODING EXAMPLE IN Jupyter Notebook / Python / PyTorch

```
#_____
# Now create a recon network class: process z with a CNN
#_____
class Z CNN Net(nn.Module):
   def __init__(self, cnn, nxd, input_image):
      super(Z_CNN_Net, self).__init ()
      self.z_image = input_image
             = cnn
      self.cnn
   def forward(self):
      recon = self.cnn(self.z image)
      fpsino = fp_system_torch(recon, sys_mat, nxd, nrd, nphi)
      return recon, fpsino
z image
        = torch.rand(nxd,nxd).to(device)
        = CNN(nxd).to(device) # create a new CNN object from the CNN class
cnn
        = Z_CNN_Net(cnn, nxd, z_image).to(device)
znet
```

```
===============TRAIN THE NETWORK
loss fun = nn.MSELoss()
optimiser = torch.optim.Adam(znet.parameters(), lr=1e-4)
train loss = list()
for ep in range(10000 +1):
    optimiser.zero grad() # set the gradients to zero
    recon, rec fp = znet()
    loss = loss fun(rec fp, torch.squeeze(true sinogram torch))
    train loss.append(loss.item())
    loss.backward() # Find the gradients
    optimiser.step() # Does the update
    if ep % 50 == 0:
        fig2, axs2 = plt.subplots(2,3, figsize=(16,8)) # No. rows, cols, figsize Width, Height (inches)
        axs2[0,0].spines['top'].set visible(False); axs2[0,0].spines['right'].set visible(False)
        axs2[0,1].set axis off(); axs2[0,2].set axis off();
        axs2[1,0].set axis off(); axs2[1,1].set axis off();
        axs2[0,2].imshow(torch to np(true sinogram torch).T, cmap='Greys r'); axs2[0,2].set title('Measured data')
        axs2[0,1].imshow(torch to np(rec fp).T, cmap='Greys r'); axs2[0,1].set title('Forward projection')
        axs2[1,0].imshow(torch to np(z image), cmap='Greys r'); axs2[1,0].set title('z image %d x %d' % (nxd,nxd))
        axs2[1,1].imshow(torch to np(recon), cmap='Greys r'); axs2[1,1].set title('Recon %d' % (ep))
        axs2[1,2].plot(train loss[-19:-1]); axs2[1,2].set title('Loss, epoch %d' % ep);
        axs2[0,0].plot(train loss[19:-1]); axs2[0,0].set title('Loss, epoch %d' % ep);
        clear output(wait=True); plt.pause(0.001)
```







Recon 10000



Measured data





### MLEM, OSEM and MAPEM

### **Basic MLEM**



### If interested, see: https://youtu.be/lhETD4nSJec

### **Iterative reconstruction with DL**

### Maximum likelihood – expectation maximisation (ML-EM)

$$\boldsymbol{x}^{k+1} = \frac{\boldsymbol{x}^k}{\boldsymbol{A}^T \boldsymbol{1}} \boldsymbol{A}^T \frac{\boldsymbol{m}}{\boldsymbol{A} \boldsymbol{x}^k}$$

for it in range(self.num\_its):

fpsino = fp\_system\_torch(recon, sys\_mat, nxd, nrd, nphi)

ratio = sino\_for\_reconstruction / (fpsino +1.0e-9)

correction = bp\_system\_torch(ratio, sys\_mat, nxd, nrd, nphi) / (self.sens\_image+1.0e-9)
recon = recon \* correction





### Maximum likelihood – expectation maximisation (ML-EM)

$$\boldsymbol{x}^{k+1} = \frac{\boldsymbol{x}^k}{\boldsymbol{A}^T \boldsymbol{1}} \boldsymbol{A}^T \frac{\boldsymbol{m}}{\boldsymbol{A} \boldsymbol{x}^k}$$

Unrolled into a deep network for fixed number of iterations:





### Maximum likelihood – expectation maximisation (ML-EM)

$$x^{k+1} = rac{x^k}{A^T \mathbf{1}} A^T rac{m}{Ax^k}$$

```
class MLEM_Net(nn.Module):
    def __init__(self, sino_for_reconstruction, num_its):
        super(MLEM_Net, self).__init__()
        self.num_its = num_its
        self.sino_ones = torch.ones_like(sino_for_reconstruction)
        self.sens_image = bp_system_torch(self.sino_ones, sys_mat, nxd, nrd, nphi)
    def forward(self, sino_for_reconstruction):
        recon = torch.ones(nxd,nxd).to(device)
        for it in range(self.num_its):
            fpsino = fp_system_torch(recon, sys_mat, nxd, nrd, nphi)
            ratio = sino_for_reconstruction / (fpsino +1.0e-9)
            correction = bp_system_torch(ratio, sys_mat, nxd, nrd, nphi) / (self.sens_image+1.0e-9)
            recon = recon * correction
        return recon
```

### Including a trainable component

```
class CNN(nn.Module):
    def init (self):
        super(CNN, self).__init__()
        self.CNN = nn.Sequential(
            nn.Conv2d(1, 8, 7, padding=(3, 3)), nn.PReLU(),
            nn.Conv2d(8, 1, 7, padding=(3, 3)), nn.PReLU()
    def forward(self, x):
        x = torch.squeeze(self.CNN(x.unsqueeze(0).unsqueeze(0)))
        return x
```

cnn = CNN().to(device)

### Including a trainable component

```
class MLEM_CNN_Net(nn.Module): # torch.nn is the Base class for all PyTorch neural network modules.
    def __init__(self( cnn,)sino_for_reconstruction, num_its):
        super(MLEM CNN Net, self). init () # inherit attributes and methods from the base class, torch.nn
        self.num its = num its
        self.sino ones = torch.ones like(sino for reconstruction)
        self.sens image = bp system torch(self.sino ones, sys mat, nxd, nrd, nphi)
       self.cnn = cnn
    def forward(self, sino for reconstruction):
        recon = torch.ones(nxd,nxd).to(device)
        for it in range(self.num_its):
            fpsino = fp_system_torch(recon, sys_mat, nxd, nrd, nphi)
            ratio = sino for reconstruction / (fpsino +1.0e-9)
            correction = bp_system_torch(ratio, sys_mat, nxd, nrd, nphi) / (self.sens_image+1.0e-9)
            recon = recon * correction
           _recon = torch.abs(recon + self.cnn(recon))<sup>l</sup>
        return recon
cnnmlem = MLEM_CNN_Net(cnn, true_sinogram_torch, core_iterations).to(device)
```

mlemcnn\_recon = cnnmlem(true\_sinogram\_torch)

# Unrolled EM reconstruction example

Brief, simple CODING EXAMPLE Jupyter Notebook

Goal: gain familiarity with how to unroll an iterative algorithm with trainable parameters

#### **Unrolled EM**

```
#______
# Now create a recon network class: MLEM
#_____
class MLEM_Net(nn.Module):
   def init (self, num iterations, cnn, sino for reconstruction):
       super(MLEM Net, self). init ()
       self.num iterations = num iterations
       self.sino_ones = torch.ones_like(sino_for_reconstruction)
       self.sens_image = bp_system_torch(self.sino_ones, sys_mat, nxd, nrd, nphi)
       self.cnn = cnn
       self.prelu = nn.PReLU()
   def forward(self, sino_for_reconstruction):
       recon image = torch.ones(nxd,nxd).to(device)
       for it in range(self.num iterations):
                     = fp_system_torch(recon_image, sys_mat, nxd, nrd, nphi)
          fpsino
          ratio sino = sino for reconstruction / (fpsino + 1e-10)
          bp_ratio_sino = bp_system_torch(ratio_sino, sys_mat, nxd, nrd, nphi)
          recon_image = recon_image * bp_ratio_sino / (self.sens_image + 1e-10)
          # Inter update regularisation
          recon image = torch.abs(self.cnn(recon image))
       return recon_image, fpsino, ratio_sino, bp_ratio_sino
number MLEM iterations = 2
sinogram to use torch = true sinogram torch
# instantiate the class - create an object
mlemnet = MLEM_Net(number_MLEM_iterations, cnn, sinogram_to_use_torch).to(device)
```

### **Unrolled EM**



Loss, epoch 41400





Forward projection





Recon 41400

# Thank you



| IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, VOL. 5, NO. 1, JANUARY 2021                                                                                                                                                                                                        | andrew.re              | eader@kcl.ac.uk |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------|
| Deep Learning for PET Image Reconstruction<br>Andrew J. Reader <sup>®</sup> , Guillaume Corda, Abolfazl Mehranian <sup>®</sup> , Casper da Costa-Luis <sup>®</sup> , <i>Student Member, IEEE</i> ,<br>Sam Ellis <sup>®</sup> , and Julia A. Schnabel <sup>®</sup> , <i>Senior Member, IEEE</i> |                        |                 |
| Journal of Nuclear Medicine October 2021, 62 (10) 1330-1333; DOI: https://doi.org/10.2967/jnumed.12                                                                                                                                                                                            | 1.262303<br><b>H O</b> | TTOPICS         |
| Artificial Intelligence for PET Image Recor                                                                                                                                                                                                                                                    | nstruction             |                 |

And rew J.  $\ensuremath{\mathsf{Reader}}^1$  and  $\ensuremath{\mathsf{Georg}}$   $\ensuremath{\mathsf{Schramm}}^2$ 

<sup>1</sup>School of Biomedical Engineering and Imaging Department of Imaging and Pathology, KU/UZ, 1



#### Andrew Reader



HOME V

VIDEOS

PLAYLISTS COMMUNITY

CHANNELS