

Ultrafast dynamics in microsolvated biomolecules

Jochen Küpper
Controlled Molecule Imaging Group
Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Department of Physics, Universität Hamburg
Department of Chemistry, Universität Hamburg
Center for Ultrafast Imaging, Universität Hamburg

Motivation: Unraveling elementary steps of (bio)chemical dynamics

 Fun example: Ribosome, one complex molecular machine

- molecular structure and structural recognition
- intermolecular interactions, hydrogen bonding, and the d-r hat allows nit rotation
Bridging the gap nanoscience
between molecular physics and aking) of peptide bond
- (how) can we understand the details (of the parts)?

Motivation: unraveling (bio)chemistry in real time and real space

(Quantum) Molecular movie

Control for high-fidelity imaging of complex molecules What does a molecule (in free space) look like?

Selecting individual molecular species

Alignment and
M orientation
0_{1}

Experimental approach

Spatial separation of conformers using electric fields

Filsinger, Erlekam, von Helden, Küpper, Meijer, Phys. Rev. Lett. 100, 133003 (2008); arXiv:0802.2795 [physics] Filsinger, Küpper, Meijer, Hansen, Maurer, Nielsen, Holmegaard, Stapelfeldt, Angew. Chem. Int. Ed. 48, 6900 (2009) Chang, Horke, Trippel, Küpper, Int. Rev. Phys. Chem. 34, 557-590 (2015); arXiv:1505.05632 [physics]

Conformer-specific reactivity The structure-function relationship in chemistry

Fragmentation of ionized water dimer $\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$

Exploiting a new transportable endstation with everything implemented

Molecular movies: Imaging quantum "rotational" dynamics Two-pulse alignment of absolute-ground-state-selected OCS

The real-time dissociation dynamics of ultraviolet (UV) excited OCS Getting started ... time-dependent experimental ion yields

Trabattoni, Wiese, De Giovannini, Olivieri, Mullins, Onvlee, Son, Frusteri, Rubio, Trippel, Küpper, Nat. Comm 11, 2546; arXiv:1802.06622 [physics] Karamatskos, Goldsztejn, Raabe, Stammer, Mullins, Trabattoni, Johansen, Stapelfeldt, Trippel, Vrakking, Küpper, Rouzée, J. Chem. Phys. 150, 244301 (2019); arXiv:1905.03541 [physics]

Biological molecules in solvation
From proteins to precision studies of model systems

8

Solvent Reorganization in the Electronically Excited State

Molecular interactions of indole in aqueous solution

 x-ray (600 eV) photoelectron spectroscopy of indole in an aqueous liquid jet

He, Malerz, Trinter, Trippel, Tomaník, Belina, Slavíček, Winter, Küpper, J. Phys. Chem. Lett. accepted (2023); arXiv:2205.08217 [physics]

Water molecule as "molecular sunscreen" Dynamics of bond-breaking in electronically excited indole-water

Observing the timescale of the formation of the dipole-bound electron?

Pump: UV 266 nm

Probe: x-ray ~500 eV

Molecular frame photoelectron angular distributions of the 3D-aligned indole-water complex

Holmegaard, Hansen, Kalhøj, Kragh, Stapelfeldt, Filsinger, Küpper, Meijer, Dimitrovski, Abu-samha, Martiny, Madsen, Nature Phys. 6, 428 (2010); arXiv:1003.4634 [physics] Trippel, Wiese, Mullins, Küpper, J. Chem. Phys. 148, 101103 (2018); arXiv:1801.08789 [physics]

Toward atomic-resolution imaging of the radiation-protection effect Watching the changes from reactants to products

Influence of solvation on ultrafast electron dynamics?

 Electronic $L_{a}-L_{b}$ dynamics in indole

Küpper, Pratt, Meerts, Brand, Tatchen, Schmitt, PCCP 12, 4980 (2010)

Next challenge:

Imaging the elementary ultrafast steps of thermal-energy dynamics

Imaging ultrafast elementary steps of thermal-energy chemistry

Tackling biological macromolecules directly

Benchmarking single-particle imaging and creating an extended dataset The million pattern gold standard

Recording the "Molecular Movie"
Electron-phonon-coupling in gold nanoparticles

Höing, Salzwedel, Worbs, et int. (15 authors), Knorr, Ayyer, Küpper, Lange, Nano Lett. 23, 5943-5950 (2023); https://arxiv.org/abs/2303.04513 [physics]

transient-SAXS imaging of AuNP structure (size)

 and the necessary new concept for electron-phonon coupling

Relaxation dynamics in plasmonic nanoparticles
 From traditional scattering concepts to direct field-driven coupling

Modeling of laser-induced alignment using classical-mechanics simulations

Experimental realization of laser-induced alignment and detection

Detection pulse

Summary

- Electric fields allow for strong control of molecules and nanoparticles
- separating molecular species: quantum states, conformers, (microsolvated) aggregates, ...
- fixing molecules in space: one- and three-dimensional alignment and orientation
- (control of chirality is feasible)
- Appropriate control schemes allow to disentangle the ultrafast dynamics of molecular systems in specific detail
- directly connected to radiation damage processes in biological matter:
- low-energy ionization of molecule-water complexes demonstrates specific protection effect
- UV-induced initial electronic and dissociation dynamics of indole-water
- Imaging ultrafast elementary steps of thermal-energy (bio)chemistry
- Diffractive imaging unravels gas-phase molecular structures down to fewpicometer spatial resolution (on femtosecond timescales)
- Imaging nanoscale-particle structural dynamics provides novel insight into energy-transfer processes and time-resolved structural biology

Acknowledgments

CFEL Controlled Molecule Imaging Group

Acknowledgments

CFEL Controlled Molecule Imaging Group

We are looking for motivated colleagues at all career levels, please see https://www.controlled-molecule-imaging.org/careers or contact me directly.

Open positions at Master-student, doctoral, and postdoctoral level

- Disruptive sample-delivery approaches for atomic-resolution cryo-EM
- Solvent effects in the ultrafast dynamics of (bio)molecules
- Single-particle imaging of cryogenically cooled and controlled beams of (bio-) nanoparticles

