

Ultrafast dynamics in microsolvated biomolecules

Controlled Molecule Imaging Group

Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Department of Physics, Universität Hamburg Department of Chemistry, Universität Hamburg Center for Ultrafast Imaging, Universität Hamburg

Jochen Küpper

Motivation: Unraveling elementary steps of (bio)chemical dynamics Fun example: Ribosome, one complex molecular machine

artists rendering (downloaded from Wikipedia, 2018)

- molecular structure and structural recognition
 - intermolecular interactions, hydrogen bonding, and the that allows
 - nit rotation
- Jaking) of unernical bonds, incl. the peptide bond
 - (how) can we understand the details (of the parts)?

Motivation: unraveling (bio)chemistry in real time and real space

(Quantum) Molecular movie

Control for high-fidelity imaging of complex molecules What does a molecule (in free space) look like?

Selecting individual molecular species

Experimental approach

Spatial separation of conformers using electric fields

Filsinger, Erlekam, von Helden, Küpper, Meijer, Phys. Rev. Lett. 100, 133003 (2008); arXiv:0802.2795 [physics] Filsinger, Küpper, Meijer, Hansen, Maurer, Nielsen, Holmegaard, Stapelfeldt, Angew. Chem. Int. Ed. 48, 6900 (2009) Chang, Horke, Trippel, Küpper, Int. Rev. Phys. Chem. 34, 557–590 (2015); arXiv:1505.05632 [physics]

Conformer-specific reactivity The structure-function relationship in chemistry

Chang, Długołęcki, Küpper & Rösch, Wild, Willitsch, Science 342, 46–47 (2013); arXiv:1308.6538 [physics]

Fragmentation of ionized water dimer (H₂O)₂ Exploiting a new transportable endstation with everything implemented

Vinklárek, Bromberger, Vadassery, Jin, Küpper, Trippel, submitted (2023); arXiv:2308.08006 [physics]

Molecular movies: Imaging quantum "rotational" dynamics **Two-pulse alignment of absolute-ground-state-selected OCS**

Karamatskos, et int (13 authors), Rouzée, Küpper, Nat. Comm. 10, 3364 (2019); arXiv:1802.06622 [physics]

The *real-time* dissociation dynamics of ultraviolet (UV) excited OCS Getting started ... time-dependent experimental ion yields

Karamatskos, Yarlagadda, Patchkovskii, Vrakking, Welsch, Küpper, Rouzée, Faraday Discusssions (2020), DOI: 10.1039/d0fd00119h

Atomic-resolution imaging Laser-induced electron diffraction of OCS

AIP Publishing

cal Physics

hemi

n 0

Karamatskos, Goldsztejn, Raabe, Stammer, Mullins, Trabattoni, Johansen, Stapelfeldt, Trippel, Vrakking, Küpper, Rouzée, J. Chem. Phys. 150, 244301 (2019); arXiv:1905.03541 [physics]

Biological molecules in solvation From proteins to precision studies of model systems

Pal, Peon, Zewail, *PNAS* **99**, 1763 (2002)

High-resolution UV spectroscopy: Structure determination of gas phase molecules

Molecular interactions of indole in aqueous solution x-ray (600 eV) photoelectron spectroscopy of indole in an aqueous liquid jet

He, Malerz, Trinter, Trippel, Tomaník, Belina, Slavíček, Winter, Küpper, J. Phys. Chem. Lett. accepted (2023); arXiv:2205.08217 [physics]

Water molecule as "molecular sunscreen" Dynamics of bond-breaking in electronically excited indole-water

Onvlee, Trippel, Küpper, Nat. Comm. 13, 7462 (2022); arXiv:2103.07171 [physics]

Observing the timescale of the formation of the dipole-bound electron?

Koulentianos, Wiese, Trippel, Küpper & Inhester, Santra & al, in preparation (2023)

Molecular frame photoelectron angular distributions of the 3D-aligned indole-water complex

Holmegaard, Hansen, Kalhøj, Kragh, Stapelfeldt, Filsinger, Küpper, Meijer, Dimitrovski, Abu-samha, Martiny, Madsen, Nature Phys. 6, 428 (2010); arXiv:1003.4634 [physics] Trippel, Wiese, Mullins, Küpper, J. Chem. Phys. 148, 101103 (2018); arXiv:1801.08789 [physics]

Toward atomic-resolution imaging of the radiation-protection effect Watching the changes from reactants to products

Wiese, Onvlee, Küpper, in preparation (2022)

Influence of solvation on ultrafast electron dynamics? **Electronic** *L_a-L_b* **dynamics in indole**

Küpper, Pratt, Meerts, Brand, Tatchen, Schmitt, PCCP 12, 4980 (2010) Popova-Gorelova, Küpper, Santra, Phys. Rev. A 94, 013412 (2016); arXiv:1607.01322 [physics]

Next challenge: Imaging the elementary ultrafast steps of thermal-energy dynamics

https://www.biologyonline.com/dictionary/krebs-cycle.

Robinson, Küpper, submitted (2023); arXiv:2308.09602 [physics]

Imaging ultrafast elementary steps of thermal-energy chemistry

cf. Dian, Clarkson, Zwier, *Science* 303, 1169 (2004)

Robinson, Küpper, submitted (2023); arXiv:2308.09602 [physics]

Tackling biological macromolecules directly

artists rendering (downloaded from Wikipedia, 2018)

Benchmarking single-particle imaging and creating an extended dataset The million pattern gold standard

Ayyer, Lourdu, Bielecki, et int (34 authors), Küpper, Loh, Mancuso, Chapman, Optica 8, 15 (2020); arXiv:2007.13597 [physics]

Recording the "Molecular Movie" Electron-phonon-coupling in gold nanoparticles

Höing, Salzwedel, Worbs, et int. (15 authors), Knorr, Ayyer, Küpper, Lange, Nano Lett. 23, 5943–5950 (2023); https://arxiv.org/abs/2303.04513 [physics]

FLASH	-

transient-SAXS imaging of AuNP structure (size) and the necessary new concept for electron-phonon coupling

Höing, Salzwedel, Worbs, et int. (15 authors), Knorr, Ayyer, Küpper, Lange, Nano Lett. 23, 5943–5950 (2023); https://arxiv.org/abs/2303.04513 [physics]

Relaxation dynamics in plasmonic nanoparticles From traditional scattering concepts to direct field-driven coupling

Höing, Salzwedel, Worbs, et int. (15 authors), Knorr, Ayyer, Küpper, Lange, Nano Lett. 23, 5943–5950 (2023); arxiv.org:2303.04513 [physics]

Modeling of laser-induced alignment using classical-mechanics simulations

https://github.com/CMIclassirot

Experimental realization of laser-induced alignment and detection

18 nm

300 nm

theory: Amin, Hartmann, Samanta, Küpper, submitted (2023); arXiv:2306.05870 {physics] Haas, Cheng, Amin, Samanta, Küpper, in preparation, (2023)

- Electric fields allow for strong control of molecules and nanoparticles

 - fixing molecules in space: one- and three-dimensional alignment and orientation
 - (control of chirality is feasible)
- *molecular systems* in specific detail
 - directly connected to radiation damage processes in biological matter:
 - low-energy ionization of molecule-water complexes demonstrates specific protection effect
 - UV-induced initial electronic and dissociation dynamics of indole-water
- Imaging ultrafast elementary steps of thermal-energy (bio)chemistry
- Diffractive imaging unravels gas-phase molecular structures down to few*picometer spatial resolution* (on femtosecond timescales)
- Imaging nanoscale-particle structural dynamics provides novel insight into energy-transfer processes and time-resolved structural biology

Summary

• separating molecular species: quantum states, conformers, (microsolvated) aggregates, ...

Appropriate control schemes allow to disentangle the ultrafast dynamics of

Acknowledgments **CFEL Controlled Molecule Imaging Group**

EXC Center for Ultrafast Imaging EXC Advanced Imaging of Matter

SPP 1840 Quantum Dynamics in Tailored Light Fields

Alexander von Humboldt Stiftung/Foundation

Acknowledgments **CFEL Controlled Molecule Imaging Group**

THE HAMBURG CENTER FOR ULTRAFAST IMAGING UН Universität Hamburg DER FORSCHUNG | DER LEHRE | DER BILDUNG

EXC Center for Ultrafast Imaging EXC Advanced Imaging of Matter SPP 1840 Quantum Dynamics in Tailored Light Fields

Bundesministerium für Bildung und Forschung

Alexander von Humboldt Stiftung/Foundation

Join us on Science Campus Hamburg-Bahrenfeld...

We are looking for motivated colleagues at all career levels, please see https://www.controlled-molecule-imaging.org/careers or contact me directly.

Open positions at Master-student, doctoral, and postdoctoral level

- Disruptive sample-delivery approaches for atomic-resolution cryo-EM
- Solvent effects in the ultrafast dynamics of (bio)molecules

