C₅N⁻ in collision with He: rotational transitions in the ISM

L. González-Sánchez, ª A. Veselinova, ª A. Martín Santa Daría, ª F. A. Gianturco^b

^aDepartamento de Química Física, University of Salamanca, Plaza de los Caídos sn, 37008 Salamanca, Spain

^bInstitut für Ionenphysik und Angewandte Physik, Universität Innsbruck, A-6020 Innsbruck, Austria

e-mail: lgonsan@usal.es

Keywords: inelastic collisions, computational chemistry, rotational excitations

In the last years, several C-bearing and (C,N)-bearing chains of molecular anions have been detected in the interestellar medium (ISM). Since experimental treatments are still challenging, computational methods have to be used to understand their chemistry. The C₅N⁻ anion is one of the largest (C,N)bearing chains and, although there are several theoretical studies [1-3] that describe the dynamics of the smaller (CN⁻,C₃N⁻) + He/H₂ systems, for the moment there has been no study reported for the collision between this molecular anion with He or H₂. We have recently published our results [4].

We have performed quantum scattering calculations using a new ab initio potential energy surface (PES) where the interaction potential between C_5N and He was obtained using CCSD(T) approach and the complete basis set (CBS) limit (see Figure 1). Given the ISM conditions of this system, we calculate the state-to-state (de-)excitation cross sections and the respective rate coefficients as a function of temperature. These results have been also compared by those obtained for the $C_3N^2/C_5N^2 + H_2$ system.

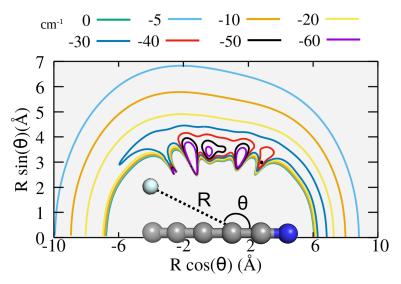


Figure 1. Potential energy contours for the C₅N⁻/He system.

References

[1] L. González-Sánchez et al., Rotationally Inelastic Collisions of CN⁻ with He: Computing Cross Sections and Rates in the Interstellar Medium. APJ **897** (2020) 75.

[2] J. Klos and F. Lique, First rate coefficients for an interstellar anion: application to the CN^--H_2 collisional system. MNRAS **418** (2011) 271.

[3] M. Lara-Moreno, T. Stoecklin, P. Halvick, Rotational (de-)excitation of C_3N^- by collision with He atoms. MNRAS **467** (2017) 4174.

[4] R. Biswas, K. Giri, L. González-Sánchez, et al., Rotational state-changes in C_5N^- by collisions with He and H_2 . MNRAS **522** (2023) 5775.