IBER, Coimbra, September 2023

"INTERSTELLAR DETECTION OF CARBONIC ACID (HOCOOH) AT LAST"

Miguel Sanz-Novo 1,2

¹Centro de Astrobiología (CAB, INTA-CSIC), Torrejón de Ardoz, 28850 Madrid, Spain

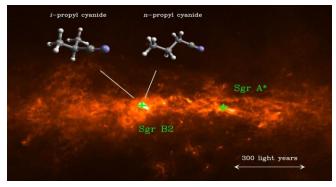
² Computational Chemistry Group, Departamento de Química Física y Química Inorgánica, Universidad de Valladolid, E-47011 Valladolid, Spain

Image Credit: SARAO

MINISTERIO DE CIENCIA E INNOVACIÓN

Financiado por la Unión Europea NextGenerationEU

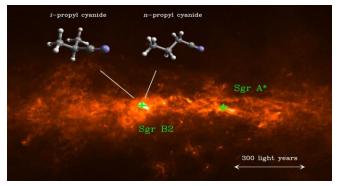
CENTRO DE ASTROBIOLOGÍA · CAB asociado al nasa astrobiology program


3. RESULTS AND DISCUSSION 4. CONCLUSIONS & PROSPECTS

1.1. Exploring complex chemistry in the ISM

Interstellar medium (ISM): diluted mix of ions, atoms, molecules, dust particles and electromagnetic fields between stars.

Taurus Molecular Cloud (TMC). Credit: ESO/APEX (MPIfR/ESO/OSO)


Sgr B2 Molecular Cloud. Credit: A. Belloche.

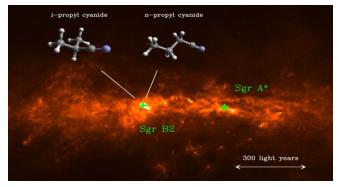
1.1. Exploring complex chemistry in the ISM

Interstellar medium (ISM): diluted mix of ions, atoms, molecules, dust particles and electromagnetic fields between stars.

Taurus Molecular Cloud (TMC). Credit: ESO/APEX (MPIfR/ESO/OSO)

Sgr B2 Molecular Cloud. Credit: A. Belloche.

Exploring complex chemistry:


- How complex can molecules get in the ISM?
- How do they form, grains, gas phase, which routes?
- Where do they form cold dark clouds or hot molecular cores?

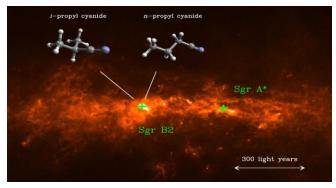
1.1. Exploring complex chemistry in the ISM

Interstellar medium (ISM): diluted mix of ions, atoms, molecules, dust particles and electromagnetic fields between stars.

Taurus Molecular Cloud (TMC). Credit: ESO/APEX (MPIfR/ESO/OSO)

Sgr B2 Molecular Cloud. Credit: A. Belloche.

Exploring complex chemistry:

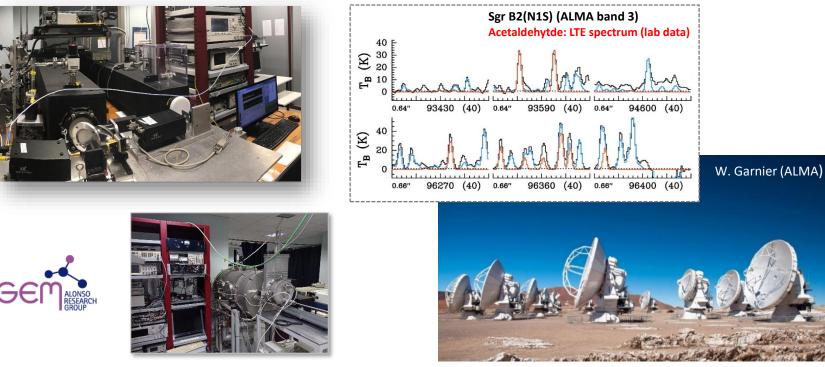

- How complex can molecules get in the ISM?
- How do they form, grains, gas phase, which routes?
- Where do they form cold dark clouds or hot molecular cores?

1.1. Exploring complex chemistry in the ISM

Interstellar medium (ISM): diluted mix of ions, atoms, molecules, dust particles and electromagnetic fields between stars.

Taurus Molecular Cloud (TMC). Credit: ESO/APEX (MPIfR/ESO/OSO)

Sgr B2 Molecular Cloud. Credit: A. Belloche.


Exploring complex chemistry:

- How complex can molecules get in the ISM?
- How do they form, grains, gas phase, which routes?
- Where do they form cold dark clouds or hot molecular cores?

1.2. Synergy between radio astronomy and rotational spectroscopy

To answer this questions:

Symbiotic relationship between radio astronomy and laboratory experiments by means of rotational spectroscopy: *need of accurate rotational data*.

Atacama Large Millimeter/Submillimeter Array - ALMA

1.3. Systems under study and fundamental goals

Background: Significant experimental efforts have been made to study the so-called COMs.

Carboxylic acids (R-COOH) are some of the most widespread species in nature, being **precursors of many biologically relevant molecules (i.e., amino acids).**

Zuckerman et al. 1971Detection of formic acid (HCOOH; 50 yrs ago)Mehringer et al. 1997Acetic acid (CH₃COOH; 25 yrs ago)

The **census** of identified interstellar species has remained **untouched** for almost **a quarter century**

Need of new and dedicated observational effort

1. INTRODUCTION

2. METHODOLOGY

3. RESULTS AND DISCUSSION

4. CONCLUSIONS & PROSPECTS

1.3. Systems under study and fundamental goals

Final goal:

Holy Grail: precursors of life

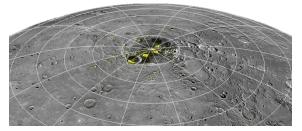
3. RESULTS AND DISCUSSION

4. CONCLUSIONS & PROSPECTS

1.4. Relevance of Carbonic acid.

Relevance of Carbonic acid (HOCOOH):

On earth:


- Important role in various biological and geochemical processes (Adamczyk et al. 2009; Loerting et al. 2000)
- Implications in the global carbon cycle (Jones et al. 2014; Wang et al. 2016)
- Anthropogenic carbon and ocean pH (Caldeira & Wickett 2003)

Cis-cis carbonic acid (HOCOOH)

In space: Its presence has been suggested in different astronomical environments:

- The Galilean icy moons (Delitsky & Lane 1998; Jones et al. 2014; Bennett et al. 2014)
- Mercury's north polar region (Delitsky et al. 2017)
- The surface and/or atmosphere of Mars (Strazzulla et al. 1996)
- Icy mantles of dust grains (vast amounts of H₂O and CO₂) *Physics I* (Moore et al. 2001; Zheng & Kaiser 2007; Oba et al. 2010; Ioppolo et al. 2021)

Credit: NASA/Johns Hopkins University Applied Physics Laboratory

1. INTRODUCTION

2. METHODOLOGY

3. RESULTS AND DISCUSSION

4. CONCLUSIONS & PROSPECTS

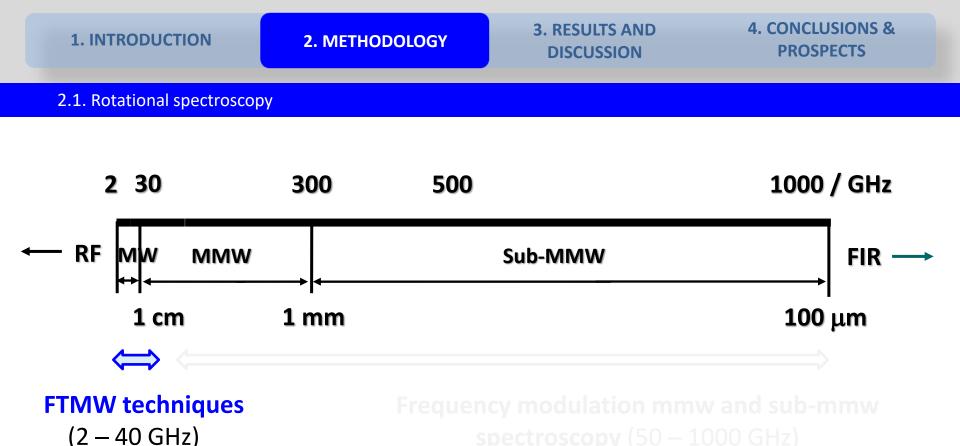
1.4. Relevance of Carbonic acid.

Relevance of Carbonic acid (HOCOOH):

On earth:

- Important role in various biological and geochemical processes (Adamczyk et al. 2009; Loerting et al. 2000)
- Implications in the global carbon cycle (Jones et al. 2014; Wang et al. 2016)
- Anthropogenic carbon and ocean pH

Despite being an **auspicious interstellar candidate** (-OH derivative of formic acid)


HOCOOH still awaited detection in the ISM

(Delitsky & Lane 1998; Jones et al. 2014; Bennett et al. 2014)

- Mercury's north polar region (Delitsky et al. 2017)
- The surface and/or atmosphere of Mars (Strazzulla et al. 1996)
- Icy mantles of dust grains (vast amounts of H₂O and CO₂) *Physics* (Moore et al. 2001; Zheng & Kaiser 2007; Oba et al. 2010; Ioppolo et al. 2021)

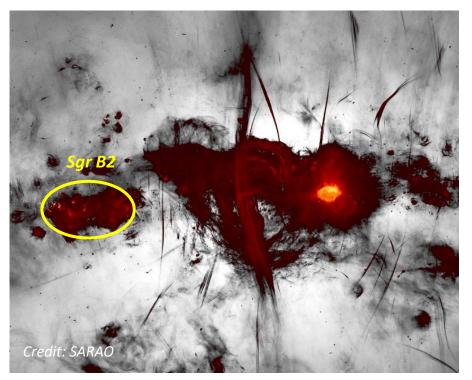
Credit: NASA/Johns Hopkins University Applied Physics Laboratory

First step: Rotational studies of COMs

Very robust technique for structural elucidation of molecules in the **gas-phase** that present a **permanent dipole moment:** accurate three-dimensional description.

Narrowband FTMW spectroscopy (pulsed discharge nozzle) + DR

• Experimental work by Mori et al. JChPh, 139 (2009); JChPh, 134 (2011).


2.1. Observational radioastronomy

Single dish astronomical observations:

Search toward the **G+0.693-0.027** molecular cloud with IRAM 30m (3-mm) and Yebes 40m (7-mm) observations.

Observational Project lead by Víctor M. Rivilla (CAB, CSIC-INTA)

First identification in the ISM of a dozen of molecules:

- ethanolamine (Rivilla, V. M. et al., 2021)
- **1,2-ethenediol** (Rivilla, V. M. et al., 2022)
- hydroxylamine (Rivilla, V. M., et al., 2020)

3. RESULTS AND DISCUSSION

4. CONCLUSIONS & PROSPECTS

2.1. Observational radioastronomy

NEW OBSERVING RUNS: Ultra-deep spectral survey of G+0.693

Yebes-40m sub-mK survey (new observations, March 2021 and March 2022): Final noise levels between 0.25 – 0.9 mK across the whole Q-band

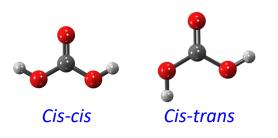
IRAM-30m (new observations, February 1–18 2023):

Final noise levels between 0.5 – 2.5 mK at 3 mm, and 1.0–1.6 mK at 2 mm.

NEW THRILLING SCIENCE!!!

Sanz-Novo, M. Rivilla, V. M., et al., ApJ, 954 3, 2023 Rivilla, V. M., Sanz-Novo, M. et al., ApJL, 953, L20, 2023

LINK TO THE PAPER


3.1. Rotational spectroscopy: generation of line catalogues and initial search

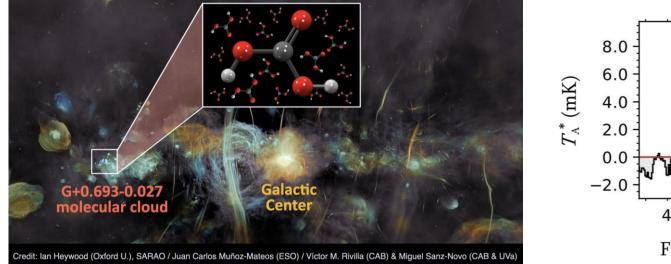
Scarce rotational spectroscopic data

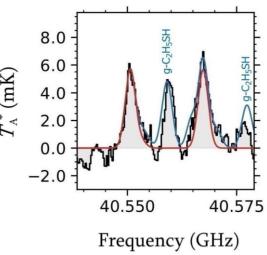
Very unstable molecule (rapidly decomposes into CO_2 and H_2O under the presence of water).

Laboratory detection and conformational identification

• Cavity-based FTMW (and DR) rotational study (Mori et al. 2009, 2011)

Our work approach

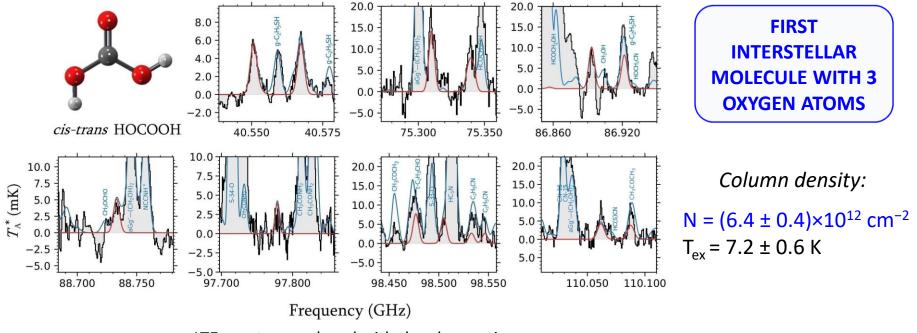

- Two conformers well-characterized in the lab (up to 41 and 65 GHz, respectively).
- The lower-energy conformer, *cis-cis* HOCOOH: **extremely low dipole moment** (fifteen times lower), which will hamper its detection.
- Preparation of line catalogues and implementation in MADCUBA
- First **inspection of the Q-band data** (31-50 GHz) Detection of several lines
- Exploration of the **3mm data** Systematic frequency shifts at high frequencies.
- New global fit including the newly measured astronomical lines


3. RESULTS AND DISCUSSION

4. CONCLUSIONS & PROSPECTS

3.1. Rotational spectroscopy: generation of line catalogues and initial search

Initial search: *cis-trans* conformer of HOCOOH

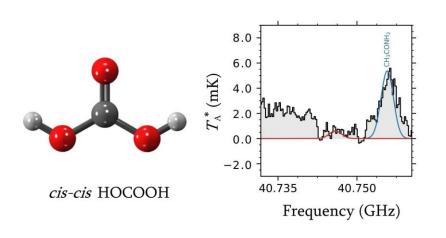


Our work approach

- Preparation of line catalogues and implementation in MADCUBA
- First **inspection of the Q-band data** (31-50 GHz) Detection of several lines
- New global fit including the newly measured astronomical lines

3.2. Astronomical search for HOCOOH

Search for cis-trans HOCOOH toward the G+0.693 molecular cloud


LTE spectra overlayed with the observations

We detected several **clear and unblended spectroscopic features** with **S/N ratio > 6**, highlighting **four pairs of lines** of *cis-trans* HOCOOH corresponding to different $K_a = 0,1$ and 2 progressions.

3.2. Astronomical search for HOCOOH

Search for cis-cis HOCOOH toward the G+0.693 molecular cloud

Nondetecton of the low-lying *cis-cis* conformer:

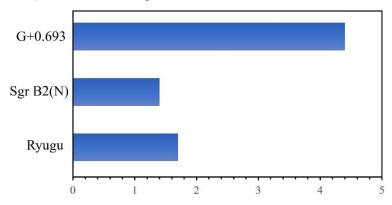
Upper limit of cis-trans HOCOOH: $N \le 1.6 \times 10^{14} \text{ cm}^{-2}$

Molecular abundance compared to H_2 of $\leq 1.2 \times 10^{-9}$

Constrains on the abundance of *cis-cis* HOCOOH in the ISM

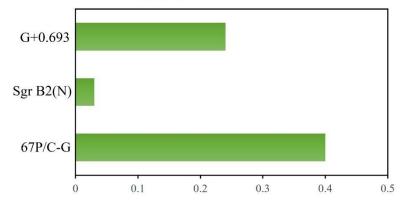
Its abundance is expected to be of the same order as that of trans-HCOOH.

Carbonic acid possibly emerges as an **abundant O-bearing COM** in the ISM although it went unnoticed so far.


3.3. Discussion

Abundance of carboxylic acids in different astronomical environments:

- Molecular cloud: G+0.693 (This work)
- Star forming-regions: Sgr B2(N) (Belloche et al. 2013)
- Asteroids: Ryugu material (Naraoka et al. 2023)
- Comets: 67P/Churyumov-Gerasimenko (Altwegg et al. 2016; Drozdovskaya 2019)


Relationship between their **relative molecular abundances** in the ISM and that found in **minor bodies of the Solar System**

Carboxylic acids seem to survive the star-formation process.

a) t-HCOOH/CH₃COOH abundance ratio

b) t-HCOOH/C₂O₂H₄ abundance ratio

Chemical inheritance of inteterstellar carboxylic acids

3.3. Discussion

Formation pathways of HOCOOH: Plethora of experimental and theoretical studies

Surface of dust grains: OH radical addition to HOCO, which can be formed:

- Through the reaction of CO and the radical species OH (Lester et al. 2001; Noble et al. 2011; Nguyen et al. 2012; Ruaud et al. 2015; Tachikawa & Kawabata 2016; Ioppolo et al. 2021).
 - $CO + OH \rightarrow trans-HOCO$ (1)
 - $CO + OH \rightarrow cis-HOCO$ (2)
 - $trans-HOCO + OH \rightarrow HOCOOH$ (3)
 - cis-HOCO + OH \rightarrow HOCOOH (4)
- Through energetic processing of H₂O/CO₂ icy mixtures (Zheng & Kaiser 2007)
 - $H_2O + e^- \rightarrow H + OH + e^-$ (5)
 - $H + CO_2 \rightarrow cis-HOCO$ (6)

- Discovery of HOCOOH, the third insterstellar carboxylic acid and the first interstellar molecule with more than two oxygen atoms detected so far.
- Relevant insight into the actual degree of chemical complexity of the ISM, significant implications to unravel the role of HOCOOH within interstellar C- and O- chemistry.
- Overall good correlation between the relative molecular abundance of carboxylic acids in different astronomical environments.
- We open the door to achieve indirect interstellar identifications of conformers that remained undetectable to radioastronomy.

- Discovery of HOCOOH, the third insterstellar carboxylic acid and the first interstellar molecule with more than two oxygen atoms detected so far.
- Relevant insight into the actual degree of chemical complexity of the ISM, significant implications to unravel the role of HOCOOH within interstellar C- and O- chemistry.
- Overall good correlation between the relative molecular abundance of carboxylic acids in different astronomical environments.
- We open the door to achieve indirect interstellar identifications of conformers that remained undetectable to radioastronomy.

- Discovery of HOCOOH, the third insterstellar carboxylic acid and the first interstellar molecule with more than two oxygen atoms detected so far.
- Relevant insight into the actual degree of chemical complexity of the ISM, significant implications to unravel the role of HOCOOH within interstellar C- and O- chemistry.
- Overall good correlation between the relative molecular abundance of carboxylic acids in different astronomical environments.
- We open the door to achieve indirect interstellar identifications of conformers that remained undetectable to radioastronomy.

- Discovery of HOCOOH, the third insterstellar carboxylic acid and the first interstellar molecule with more than two oxygen atoms detected so far.
- Relevant insight into the actual degree of chemical complexity of the ISM, significant implications to unravel the role of HOCOOH within interstellar C- and O- chemistry.
- Overall good correlation between the relative molecular abundance of carboxylic acids in different astronomical environments.
- We open the door to achieve indirect interstellar identifications of conformers that remained undetectable to radioastronomy.

IBER, Coimbra, September 2023

"INTERSTELLAR DETECTION OF CARBONIC ACID (HOCOOH) AT LAST"

Acknowledgments

We are grateful to the IRAM 30 m and Yebes 40 m telescope staff for their help during the different observing runs. M.S.N. is thankful for funding from the European Union-NextGenerationEU, Ministerio de Universidades and the University of Valladolid under a postdoctoral Margarita Salas Grant, and funding from the Spanish Ministry of Science and Innovation (PID2020- 117742GB-I00) and the GEFAM group.

The authors thank MCIN/AEI (PID2020- 117742GB-I00, RYC2020- 029387-I, PID2019-105552RB-C41, PID2019-107115GB-C21, PID2019- 106235GB-I00, PID2022-136814NB-I00) for financial support.

Image Credit: SARAO

Financiado por la Unión Europea

CENTRO DE ASTROBIOLOGÍA CAB ASOCIADO AL NASA ASTROBIOLOGY PROGRAM

IBER, Coimbra, September 2023

THANK YOU FOR YOUR ATTENTION!

LINK TO THE PAPER

Financiado por la Unión Europea

NextGenerationEU

CENTRO DE ASTROBIOLOGÍA CAB ASOCIADO AL NASA ASTROBIOLOGY PROGRAM

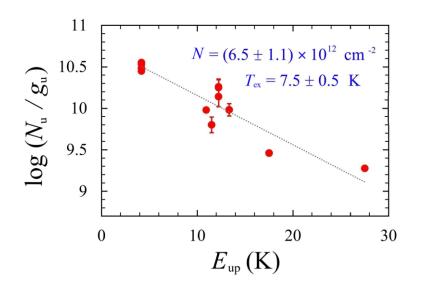


Image Credit: SARAO

3.2. Astronomical search for HOCOOH

Search for cis-trans HOCOOH toward the G+0.693 molecular cloud

Rotational diagram of cis-trans HOCOOH

Autofit results of cis-trans HOCOOH:

N = $(6.4 \pm 0.4) \times 10^{12} \text{ cm}^{-2}$ T_{ex} = 7.2 ± 0.6 K

Molecular abundance compared to $\rm H_2$ of $\sim 4.7 \ x \ 10^{-11}$

Consistent with the rotational diagram analysis

cis-trans HOCOOH is ~31 and 7 times less abundant than *trans* HCOOH and CH₃COOH, respectively, toward G+0.693, but it is also ~4 times more abundant than *cis* HCOOH.

HOCOOH can also **exhibit** *trans/cis* rotational or **conformational isomerism**: (Pettersson et al. 2002; Macôas et al. 2005; Tsuge & Khriachtchev 2015; García de la Concepción et al. 2022)

We obtain a *cis-cis/cis-trans* HOCOOH abundance ratio of ≤25, rationalized in terms of the different relative electronic energies:

Molecule	$\Delta E / kcal mol^{-1}$	Abundance ratio	Rerefence
HC(O)SH	0.68	~3.7	(García de la Concepción et al. 2022)
НОСООН	1.71	≤25	(Mori et al. 2009)
НСООН	4.04	~ 117	(García de la Concepción et al. 2022)

These isomerization processes are feasible under ISM conditions due to multidimensional ground-state quantum tunnelling effects.

(García de la Concepción et al. 2022)