
Unravelling the excited state dynamics in Graphene Quantum Dots: from coronene to circumcoronene.

Alberto Martín Santa Daría

albertoms@usal.es

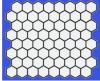
DINMOL Research Group Facultad de Ciencias Químicas Universidad de Salamanca

September 7, 2023

VNiVERSiDAD Ð SALAMANCA

Graphene quantum dots (GQDs):

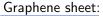
What is a GQDs?

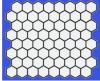

"nanoparticle or region that exhibits quantum confinement in all three spatial directions."

Graphene quantum dots (GQDs):

What is a GQDs?

"nanoparticle or region that exhibits quantum confinement in all three spatial directions."

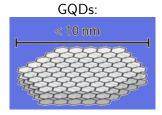




Graphene quantum dots (GQDs):

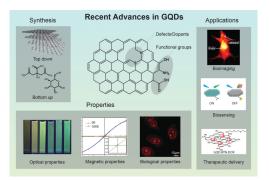
What is a GQDs?

"nanoparticle or region that exhibits quantum confinement in all three spatial directions."



And then...why **QUANTUM**?

"...due to their nanoscale size, quantum effects play a significant part in their light emitting properties"

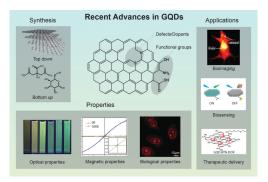

Graphene quantum dots (GQDs):

What is a GQDs? Why are they interesting?

э

Graphene quantum dots (GQDs):

What is a GQDs? Why are they interesting?


Unique properties for a wide range of applications:

- → Tunable electronic structure, magnetic properties, biological properties, photoluminescence (PL),...
- → Bioimaging (via optical/ magnetic modalities), in vitro/in vivo biosensing, drug delivery or gene delivery in therapeutic approaches, photodynamic therapy (PDT),...

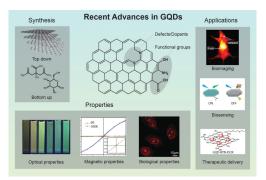
< A

Graphene quantum dots (GQDs):

What is a GQDs? Why are they interesting?

Unique properties for a wide range of applications:

- → Tunable electronic structure, magnetic properties, biological properties, photoluminescence (PL),...
- → Bioimaging (via optical/ magnetic modalities), in vitro/in vivo biosensing, drug delivery or gene delivery in therapeutic approaches, photodynamic therapy (PDT),...


Highly fluorescent doped QDs have been measured by our experimental colleagues here at USAL:

Carolina de Passos , M. Dolores Merchán , M. Mercedes Velázquez Journal of Science: Advanced Materials and Devices , 7, 100408 (2021)

< □ > < □ > < □ > < □ > < □ > < □ >

Graphene quantum dots (GQDs):

What is a GQDs? Why are they interesting?

Unique properties for a wide range of applications:

- → Tunable electronic structure, magnetic properties, biological properties, photoluminescence (PL),...
- → Bioimaging (via optical/ magnetic modalities), in vitro/in vivo biosensing, drug delivery or gene delivery in therapeutic approaches, photodynamic therapy (PDT),...

Highly fluorescent doped QDs have been measured by our experimental colleagues here at USAL:

Carolina de Passos , M. Dolores Merchán , M. Mercedes Velázquez Journal of Science: Advanced Materials and Devices , 7, 100408 (2021)

< □ > < □ > < □ > < □ > < □ > < □ >

We are theoreticians, so we need reduced model systems

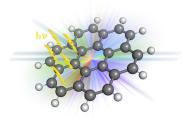
3/16

Coronene

Smallest Polycyclic aromatic hydrocarbons (PAHs)

э

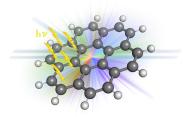
Coronene


Smallest Polycyclic aromatic hydrocarbons (PAHs)

э

Coronene

Smallest Polycyclic aromatic hydrocarbons (PAHs)



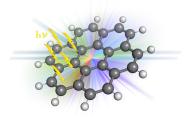
albertoms@usal.es

Coronene

Smallest Polycyclic aromatic hydrocarbons (PAHs)

We had some work to do...

Image: A matrix



A. M. Santa Daría, L. Gonzalez-Sanchez, P. G. Jambrina, S. Gomez, in peer review in Phy. Chem. Phy. (2023)

albertoms@usal.es

Coronene

Smallest Polycyclic aromatic hydrocarbons (PAHs)

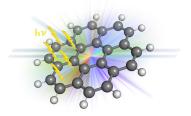
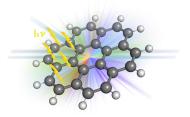

We had some work to do... \rightarrow High symmetry: D_{6h}

Image: A matrix

Coronene

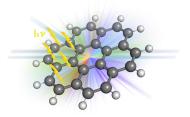
Smallest Polycyclic aromatic hydrocarbons (PAHs)


We had some work to do...

- \rightarrow High symmetry: D_{6h}
- $\rightarrow~$ Usual QC programs allow only $D_{\rm 2h}$

Coronene

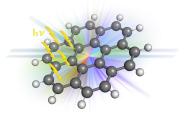
Smallest Polycyclic aromatic hydrocarbons (PAHs)


We had some work to do...

- \rightarrow High symmetry: D_{6h}
- $\rightarrow~$ Usual QC programs allow only $D_{\rm 2h}$
- $\rightarrow~36~atoms \rightarrow 102$ vibrational degrees of freedom

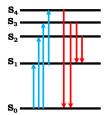
Coronene

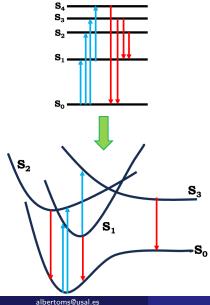
Smallest Polycyclic aromatic hydrocarbons (PAHs)


We had some work to do...

- \rightarrow High symmetry: D_{6h}
- $\rightarrow~$ Usual QC programs allow only $D_{\rm 2h}$
- $\rightarrow~36~atoms \rightarrow 102~vibrational~degrees$ of freedom
- \rightarrow Pretty rigid \rightarrow Harmonic potentials?

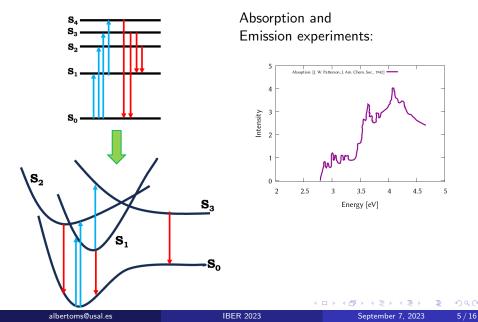
Coronene

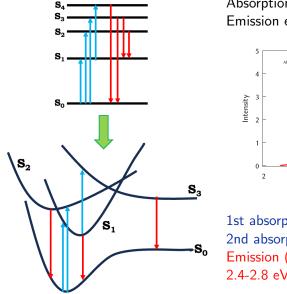

Smallest Polycyclic aromatic hydrocarbons (PAHs)



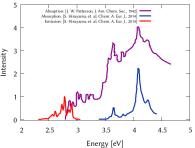
We had some work to do...

- \rightarrow High symmetry: D_{6h}
- $\rightarrow~$ Usual QC programs allow only $D_{\rm 2h}$
- $\rightarrow~36~atoms \rightarrow 102~vibrational~degrees$ of freedom
- \rightarrow Pretty rigid \rightarrow Harmonic potentials?
- \rightarrow Very high density of states


э



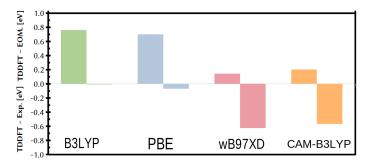
IBER 2023


5/16

э

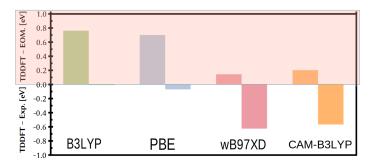
Absorption and Emission experiments:

1st absorption band at 3.65 eV 2nd absorption band at 4.13 eV Emission (exciting to the 1st band) 2.4-2.8 eV (phosphorescence?)


albertoms@usal.es

IBER 2023

September 7, 2023

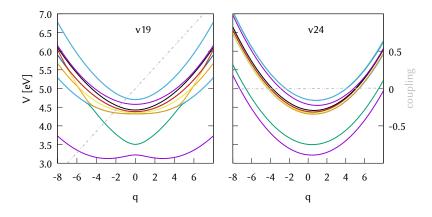

Coronene: Quantum chemistry benchmark

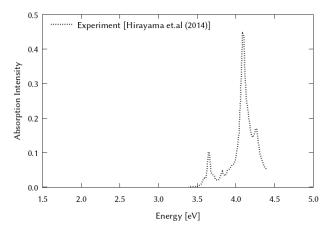
Energy deviations of the bright state with respect to experiment and EOM-CCSD.

Coronene: Quantum chemistry benchmark

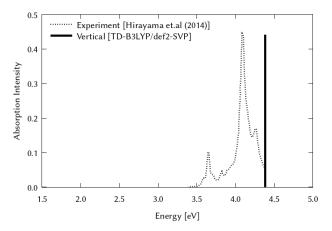
Energy deviations of the bright state with respect to experiment and EOM-CCSD.

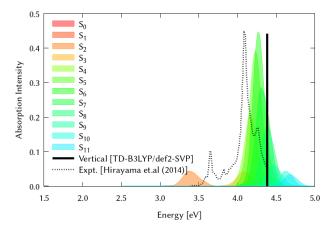
Coronene: Quantum chemistry benchmark

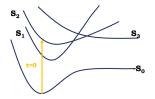

Energy deviations of the bright state with respect to experiment and EOM-CCSD.

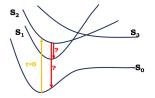

Based on experiments: We choose $B3LYP/6-31G^{**}+$.

Let's start computing the absorption spectrum! What about dynamic effects?


First step: Construction of the LVC potentials


Second step: Validate the approximated Hamiltonian




Second step: Validate the approximated Hamiltonian

Second step: Validate the approximated Hamiltonian

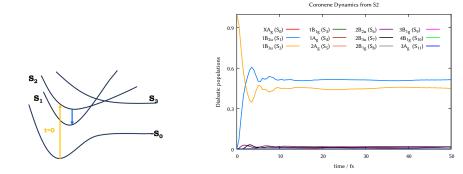
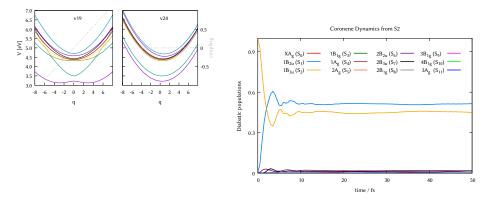
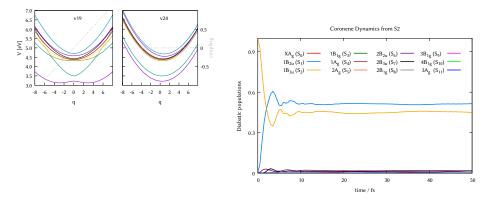



Image: Image:



Leading vibrations:

- Breathing: *v*₂₄, *v*₆₀, *v*₇₇
- Tilting: ν₁₉, ν₆₄, ν₇₉, ν₈₈

Image: A matrix

• CH stretching: ν_{108}

Leading vibrations:

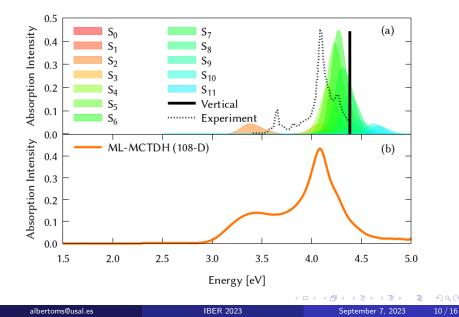

- Breathing: $\nu_{24}, \nu_{60}, \nu_{77}$
- Tilting: ν₁₉, ν₆₄, ν₇₉, ν₈₈

Image: A matrix

• CH stretching: ν_{108}

IBER 2023

Absorption spectrum of coronene

Remember we want to study GQDs...

It is the coronene a good reduced model to study larger systems?

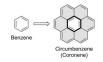


Image: Image:

э

Remember we want to study GQDs...

It is the coronene a good reduced model to study larger systems?

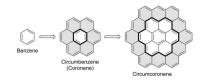
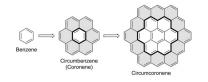
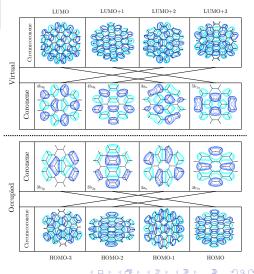
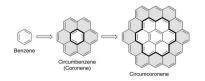



Image: Image:


Remember we want to study GQDs...

It is the coronene a good reduced model to study larger systems?

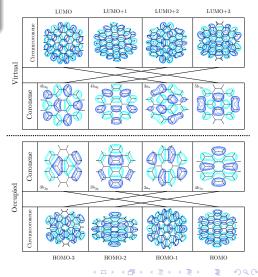
TD-DFT (B3LYP/6-31G**+) \longrightarrow


π^* MOs in coronene and circumcoronene:

IBER 2023

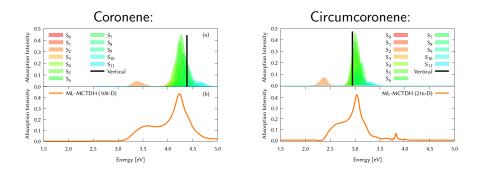
Remember we want to study GQDs...

It is the coronene a good reduced model to study larger systems?

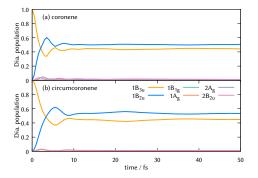

TD-DFT (B3LYP/6-31G**+) \longrightarrow

The MOs involved in the bright excited states in coronene: $2B_{2u}$ (S₆) and $2B_{3u}$ (S₇),

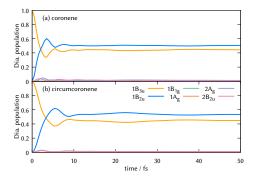
are the same in the bright excited states in circumcoronene:


 $2\mathsf{B}_{2\mathrm{u}}$ (S_3) and $2\mathsf{B}_{3\mathrm{u}}$ (S_4).

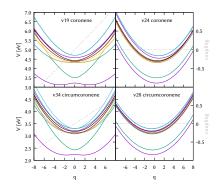
π^* MOs in coronene and circumcoronene:



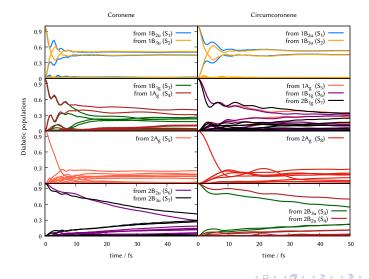
IBER 2023


Coronene vs Circumcoronene: Absorption spectra

э



- $\rightarrow~$ Same excited state decay
- $\rightarrow~$ Slower dynamics in circumcoronene


- $\rightarrow~$ Same excited state decay
- \rightarrow Slower dynamics in circumcoronene

 \rightarrow Same leading modes:

Coronene vs Circumcoronene

Excited state quantum dynamics from every state:

albertoms@usal.es

September 7, 2023

14 / 16

э

Main conclusions

- Excited state quantum dynamics of coronene:
- Breathing and tilting modes driving the dynamics
- Mixed states in D_{2h}
- Negligible contribution of triplet states

Main conclusions

- Excited state quantum dynamics of coronene:
- Breathing and tilting modes driving the dynamics
- Mixed states in D_{2h}
- Negligible contribution of triplet states
- Excited state quantum dynamics of circumcoronene:
- Same MOs involve in the bright electronic excited states
- Same modes responsible of the decay
- $\rightarrow\,$ Coronene is a good model to run ultrafast dynamics in polyaromatic hydrocarbons.

Molecular Dinamics (DINMOL) Research Group at University of Salamanca

- Pablo G. Jambrina
- Lola Gonzalez-Sanchez
- Sandra Gómez

Thank you for your attention!

16 / 16