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Motivation

▶ KS-DFT does no fully exploit the usage of the density
→ needs orbitals.

▶ In OF-DFT the kinetic energy cannot be computed exactly
→ we need accurate KEF.

▶ Finding an accurate KEF has proven to be a hard task.
Can we machine learn it?

▶ No proper regularization technique for KEF
→ either computationally expensive or not applicable for OF-DFT.
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Regularizing functional training
2 degrees of freedom in density functional fitting:
▶ Energy
▶ Density

Density functionals cannot be trained just matching energies:

L = E[(E − Eref)
2]+Lreg
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Regularizing functional training

▶ Ground-state electronic energy of an N-electron system:

E [n] = Ts [n] +

∫
vext(r)n(r)dr + J[n] + Exc [n]

▶ In KS-DFT: Ts [n] = − 1
2

∑
i ni ⟨ψi |∇2|ψi ⟩

▶ In OF-DFT: Ts [n] = −N 1
2 ⟨ψ|∇

2|ψ⟩+ Tp[n]

▶ Variational principle to find ground-state electronic energy and
density.

L[n] = E [n]−
∑
i

εi (⟨ψi |ψi ⟩ − 1) → |gj⟩ =
δL

δψj

|gj⟩ = 0 ⇒
[
−1

2
∇2 + veff

]
ψj = εjψj

* In an SCF calculation we look for the ψj that makes |gj⟩ = 0.
* In functional training we look for the hamiltonian (veff ) that makes
|gj⟩ = 0 with fixed ψj .
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Training density functionals

▶ Loss function:

L =E[(Ẽ [n]− Eref)
2
]

+E[⟨g |g⟩]

P. del Mazo-Sevillano, J. Hermann, arXiv:2306.17587, 2023.

▶ Functional:

F [nα, nβ] =

∫
±fθ

(
z[nα, nβ](r)

)
n(r)dr

{
+ ⇒ Pauli functional
− ⇒ XC functional

* fθ: Multilayer perceptron.
* z : Features computed from the electron density.

▶ Data:

* Accurate energies.
* Orbital coefficients obtained with other density functional.
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L =E[(Ẽ [n]− Eref)
2
]

+E[⟨g |g⟩]

P. del Mazo-Sevillano, J. Hermann, arXiv:2306.17587, 2023.

▶ Functional:

F [nα, nβ] =

∫
±fθ

(
z[nα, nβ](r)

)
n(r)dr

{
+ ⇒ Pauli functional
− ⇒ XC functional

* fθ: Multilayer perceptron.
* z : Features computed from the electron density.

▶ Data:
* Accurate energies.
* Orbital coefficients obtained with other density functional.



Training the Pauli functional — 1D hydrogen chain
Reference data: KS-DFT/LDA (n=2,4,6,8)

zi = log(G [n](x ;αi ) + 10−4)

G [n](x ;α) =
1√
2πα

∫ ∞

−∞
n(x ′) exp

(
− (x − x ′)2

2α

)
dx ′

▶ The most relevant aspect is the inclusion of non-local features.

▶ The trained functional is able to generalize over new chain
geometries.
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Training the Pauli and XC functional — Atoms
(H-Ne)
Reference data (Pauli): KS-DFT/LDA
Reference data (XC): CCSD(T)/cc-pVTZ energies and
KS-DFT/LDA-PW92 densities.

zσi = log(G [nσ](r ;αi ) + 10−4)

G [n](r ;α) =
1√
2πα

∫ ∞

0
n(r ′) exp

(
− (r − r ′)2

2α

)
dr ′



Conclusions

▶ A new method to regularize the training of density functionals is
proposed. It is based on the variational condition that the global
energy functional presents a minima for the ground electronic state
density.

▶ This regularization is directly applicable to the training of KE and
XC functionals.

▶ It is computationally cheap and stable.

▶ Future attempts to train the KEF will heavily depend on the
inclusion of non-local features.

▶ KEF is highly susceptible to overfitting on small datasets in contrast
to XC functional. We expect larger datasets will be needed for the
former functional to enable acquisition of sufficient physical
knowledge.
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