Absolute determination of the primary scintillation yield of pure krypton
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Abstract—A brief description of the results of joint analysis of data obtained in long-term measurements of
krypton samples differing in 7Kr content is presented. Low-background high-pressure proportional gas
counters were used as detectors. The comparative analysis of experimental data on single and double K-capture
provided the first estimate of the probability of production of a double K-shell vacancy in the process of K-shell

electron capture in ¥ Kr: Pex = [5.7 + 0.8 (stat.) £ 0.4 (syst .)| % 107°. A new result for the half-life of ®*Kr with
respect to the 2K(2v)-mode was also obtained: 77/, = [l .9:'.3:; (stat.) £ 0.3 (sysl.)] x 10%* years (90% CL).
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Introduction

‘A simulation toolkit for electroluminescence assessment in rare event experiments’
[C.A.B. Oliveira et al., 2011]
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Primary Scintillation
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Experimental Setup

O Absorption region: 5.0 cm

d Scintillation region: 0.9 cm

Q PMT with a MgF, window.

O 1.1 bar of krypton, purified by St707 SAES getters,
which were set to a stable temperature of about 150°C.

O Detector irradiated with X-rays from a >°Fe, 1°Cd and a
244Cm radioactive sources.

O PMT waveforms were digitized using a high sampling-rate
oscilloscope (10GS/s)
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Method — Waveform sampling and averaging

PMT waveform (5.9 keV x-rays)
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Q PMT waveforms are triggered on the rising edge of the secondary scintillation signal (S2)

O The amplitude of the primary scintillation signal (S1) is very low and may be indistinguishable from the electronic noise
O An average over several waveforms is performed to reduce the electronic noise to a low level

O Background events are discriminated to avoid additional contamination in the S1 region 16



Method — Waveform sampling and averaging

O Typical average waveform obtained for 5.9 keV X-rays (average of ~ 120k events)
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O Primary scintillation signal is now visible

O The tail on the right of S1results from the interaction of X-rays at different depths in the absorption region
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Method — PMT calibration

O A PMT calibration is needed to obtain the absolute values of S1and S2

Single photoelectron waveform Single photoelectron distribution

3 T T T T T T 180 T T T T T
25 . 160
. . 140
2+ Integration region .
-1 2
(-10 to 200 ns) 120
S 151 i
£ % 100
) Baseline offset i<
© 1 . . - S
=] (linear fit) Q
= O 80
£ ost |
60

"‘r

40

20 F

_1 1 1 1 1 1 1 1 1 1 0

-500 -400 -300 -200 -100 0 100 200 300 400 500 -10 0 B 10 20 30 40 ) 50 60 7(; - 80
Time [ns] Charge [mV.ns]
O Single photoelectron waveform obtained using a LED 0 Sum of 4 Gaussians (electronic noise, Tphe, 2phe and 3phe) to
O Linear fit to correct baseline offset fit the single photoelectron distribution

0 Long integration region to include wave reflections
18



Energy and pulse duration cuts

Q Integration of S2 scintillation pulses allows the
construction of the energy spectrum of the

radioactive sources used

0 Waveforms originated for different energies can be

selected

0 Slyield can be measured for different energies

S2 pulse duration
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O X-rays interacting inside the EL region must be

discriminated, as they do not contribute to Si

O S2 pulse duration is used to cut these events, as well as

background events with extremely long durations

|||||| I ||L|I||||IIII||||| .........
1 2.5 3

1.5 2 3.5 4

Pulse duration [us]

4.5 19

30



5.9 keV X-rays
\

Method — Corrected waveform |

——GE-corrected waveform
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Preliminary Results

X-ray energy W, -value
[keV] [eV]
5.9 82.9
14.3 82.1
21.6 76.1
22. /5.3
25.0 77.4

0 W, -values between 75.3 eV and 82.9 eV were obtained for different X-rays energies.

O Experimental errors in W, :10% (stat.) and 15% (sys.)
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Conclusions

O Absolute values between 75.3 eV and 82.9 eV were obtained for the w,.-value in

Kr gas for different X-rays energies.

3 w,.-value will be determined for a-particles and different X-rays energies.
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