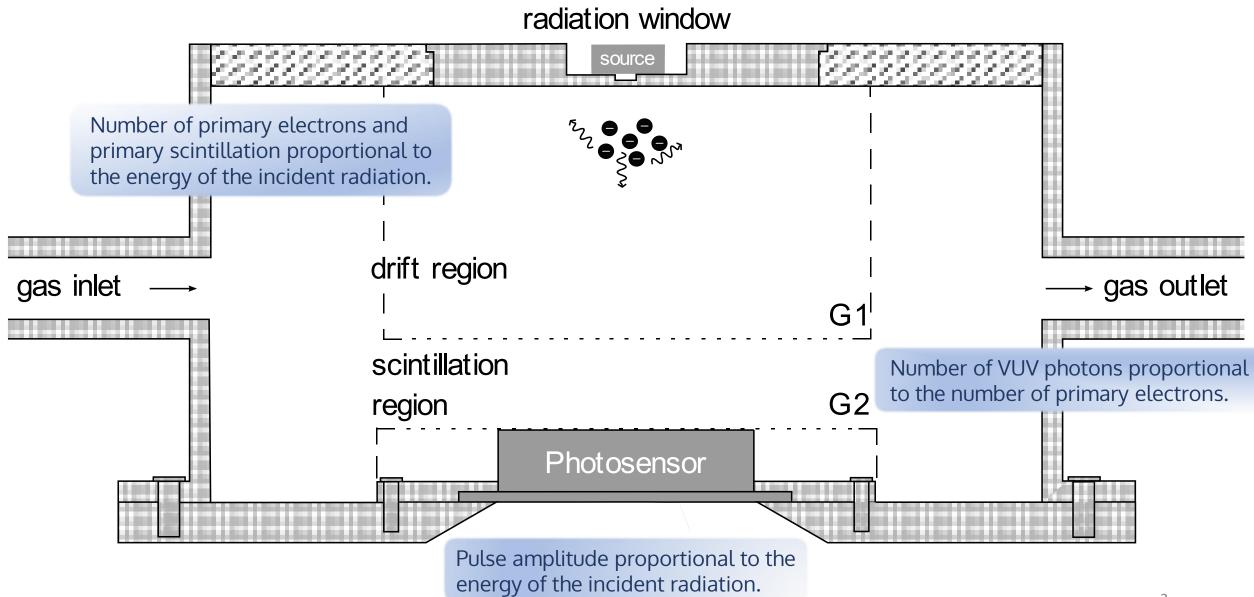
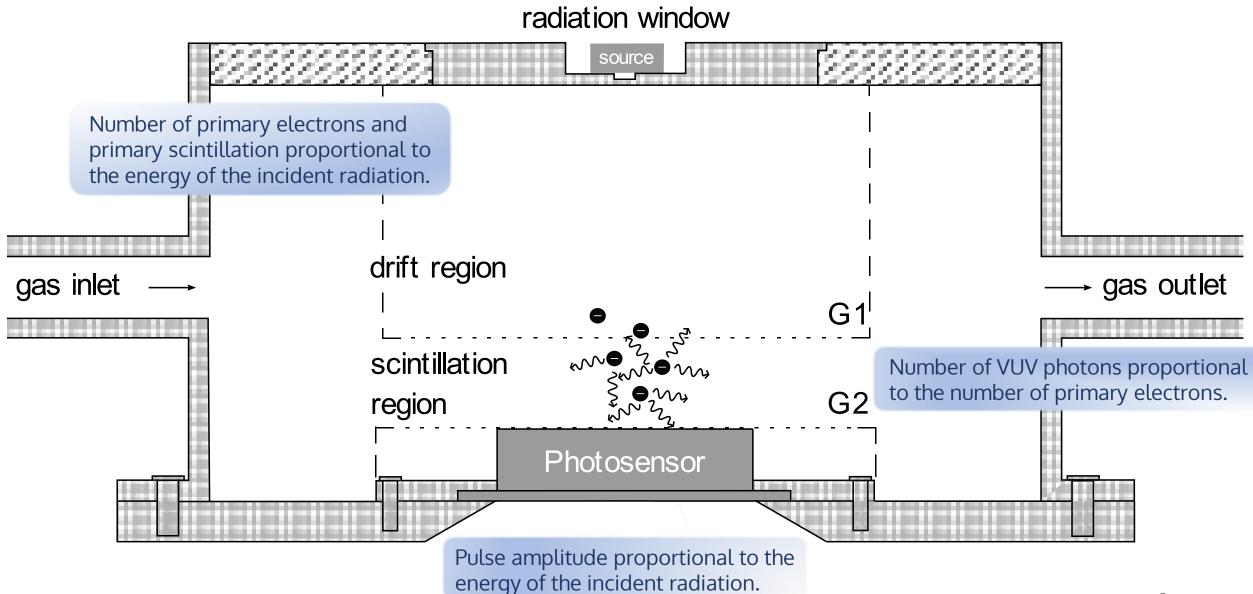
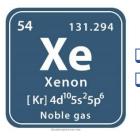
Absolute determination of the primary scintillation yield of pure krypton

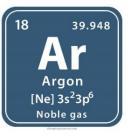
R.D.P. Mano¹, J.M.R. Teixeira¹, C.A.O. Henriques¹, F.D. Amaro¹, C.M.B. Monteiro¹


¹LIBPhys, Department of Physics, University of Coimbra, 3004-516, Coimbra, Portugal

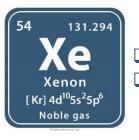
rdpmano@uc.pt


IBER 2023 XVII Iberian Joint Meeting on Atomic and Molecular Physics

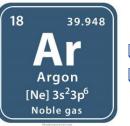

Gas Proportional Scintillation Counter


Gas Proportional Scintillation Counter

Noble Gases have high photoionization cross sections and high secondary scintillation yields

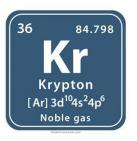


Higher density and atomic numberLower ionization and excitation energies

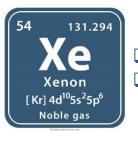


Higher natural abundancyLowest cost

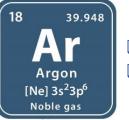
Noble Gases have high photoionization cross sections and high secondary scintillation yields



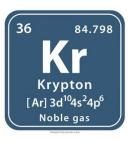
Higher density and atomic numberLower ionization and excitation energies



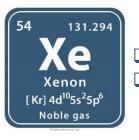
Higher natural abundancyLowest cost


What about Krypton?

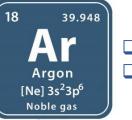
Noble Gases have high photoionization cross sections and high secondary scintillation yields



Higher density and atomic numberLower ionization and excitation energies

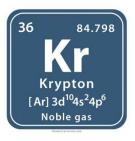

Higher natural abundancyLowest cost

What about Krypton?



□ Radioactive (85 Kr) → additional background

Noble Gases have high photoionization cross sections and high secondary scintillation yields



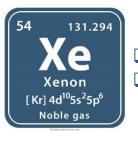
Higher density and atomic numberLower ionization and excitation energies

Higher natural abundancyLowest cost

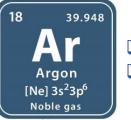
What about Krypton?

□ Radioactive (85 Kr) \rightarrow additional background

however...

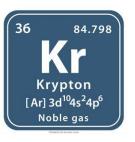

Results of In-Depth Analysis of Data Obtained in the Experimental Search for 2K(2v)-Capture in ⁷⁸Kr

Yu. M. Gavrilyuk^a, A. M. Gangapshev^a, V. V. Kazalov^a, *, V. V. Kuzminov^a, S. I. Panasenko^b, S. S. Ratkevich^b, D. A. Tekueva^a, and S. P. Yakimenko^a ^aInstitute for Nuclear Research, Russian Academy of Sciences, Moscow, 117312 Russia

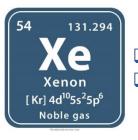

^bKarazin Kharkiv National University, Kharkiv, 61022 Ukraine *e-mail: vvk 1982@mail.ru

Abstract—A brief description of the results of joint analysis of data obtained in long-term measurements of krypton samples differing in ⁷⁸Kr content is presented. Low-background high-pressure proportional gas counters were used as detectors. The comparative analysis of experimental data on single and double *K*-capture provided the first estimate of the probability of production of a double *K*-shell vacancy in the process of *K*-shell electron capture in ⁸¹Kr: $P_{KK} = [5.7 \pm 0.8 \text{ (stat.)} \pm 0.4 \text{ (syst.)}] \times 10^{-5}$. A new result for the half-life of ⁷⁸Kr with respect to the 2K(2v)-mode was also obtained: $T_{1/2} = [1.9^{+1.3}_{-0.7} \text{ (stat.)} \pm 0.3 \text{ (syst.)}] \times 10^{22}$ years (90% CL).

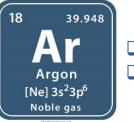
Noble Gases have high photoionization cross sections and high secondary scintillation yields



Higher density and atomic numberLower ionization and excitation energies

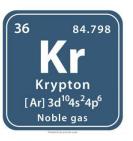

Higher natural abundancyLowest cost

What about Krypton?



- □ Radioactive (85 Kr) → additional background
- Less dense than Xenon
- More expensive than Argon

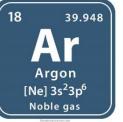
Noble Gases have high photoionization cross sections and high secondary scintillation yields



Higher density and atomic numberLower ionization and excitation energies

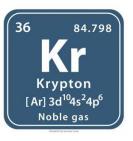
Higher natural abundancyLowest cost

What about Krypton?

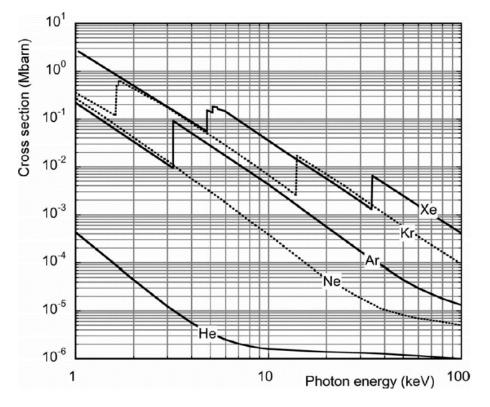


- □ Radioactive (85 Kr) \rightarrow additional background
- Less dense than Xenon
- More expensive than Argon
- Cheaper than Xenon
- Denser than Argon
- □ Higher absorption cross section for X-rays in the 14 to 34 keV range
- Better position resolution values for X-rays in the 14 to 34 keV range

Noble Gases have high photoionization cross sections and high secondary scintillation yields

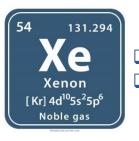


Higher density and atomic numberLower ionization and excitation energies

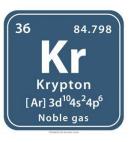


Higher natural abundancyLowest cost

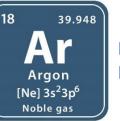
What about Krypton?



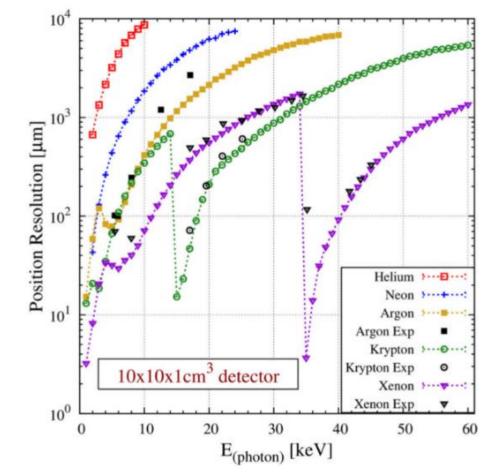
- □ Radioactive (85 Kr) \rightarrow additional background
- Less dense than Xenon
- More expensive than Argon
- Cheaper than Xenon
- Denser than Argon
- □ Higher absorption cross section for X-rays in the 14 to 34 keV range
- Better position resolution values for X-rays in the 14 to 34 keV range

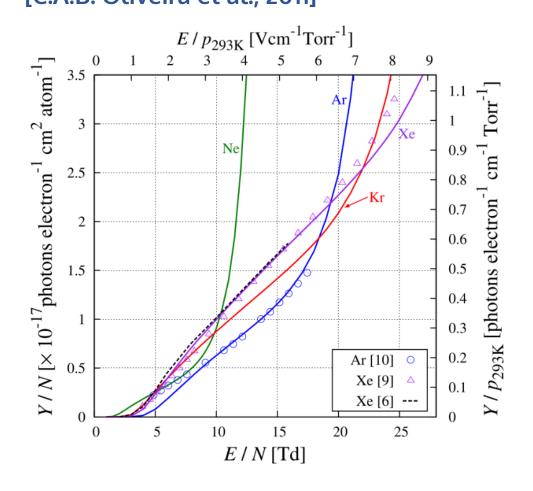

[F. Sauli. Gaseous Radiation Detectors: Fundamentals and Applications. Cambridge: Cambridge University Press, 2014.]

Noble Gases have high photoionization cross sections and high secondary scintillation yields



Higher density and atomic numberLower ionization and excitation energies

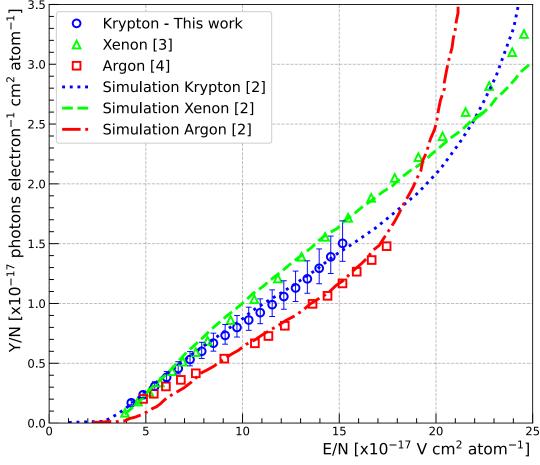

What about Krypton?


- □ Radioactive (85 Kr) \rightarrow additional background
- Less dense than Xenon
- More expensive than Argon
- Cheaper than Xenon
- Denser than Argon
- □ Higher absorption cross section for X-rays in the 14 to 34 keV range
- Better position resolution values for X-rays in the 14 to 34 keV range

Higher natural abundancyLowest cost

'A simulation toolkit for electroluminescence assessment in rare event experiments' [C.A.B. Oliveira et al., 2011]


- For Xe and Ar the secondary scintillation yield is already well established;
- Xenon is the gas that has the highest secondary scintillation gains in the linear region, followed by krypton, argon and neon;
- No experimental data to back up the secondary scintillation yield results obtained for krypton.


[6] F.P. Santos, et al., J. Phys. D. Appl. Phys. 27 (1994) 42.
[9] C.M.B. Monteiro, et al., J. Instrum. 2 (2007) P05001.
[10] C.M.B. Monteiro, et al., Phys. Lett. B 668 (2008) 167.

R.D.P. Mano, C.A.O. Henriques, F.D. Amaro, C.M.B. Monteiro,

Secondary scintillation yield in pure krypton,

Physics Letters B, Volume 824, 2022

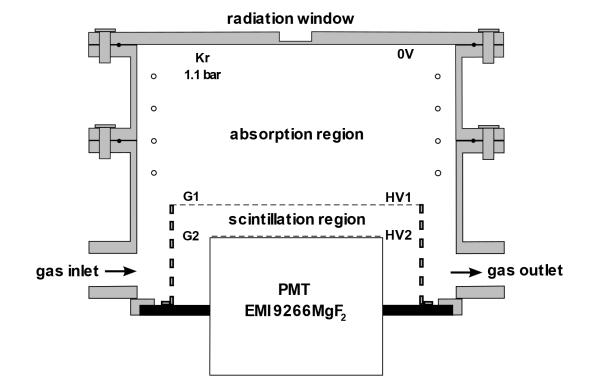
Primary Scintillation

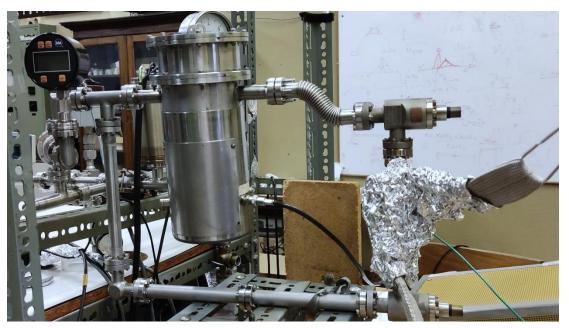
Experimental Setup

Method

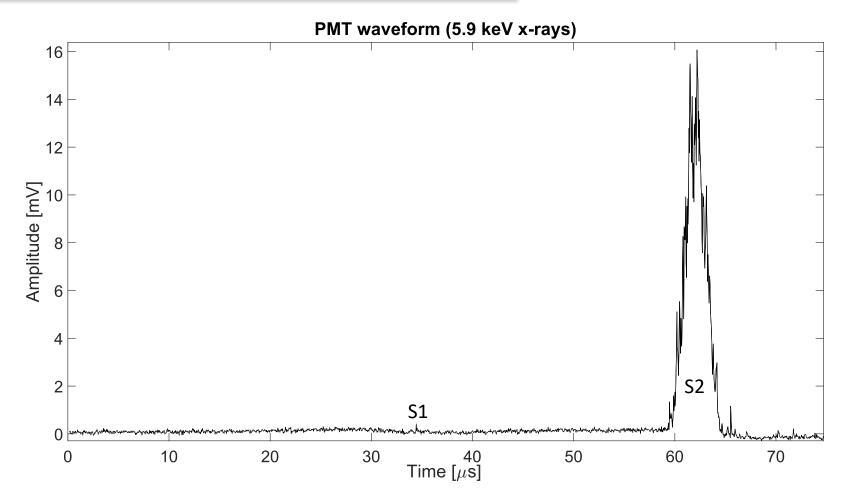
Preliminary Results

Experimental Setup


□ Absorption region: 5.0 cm

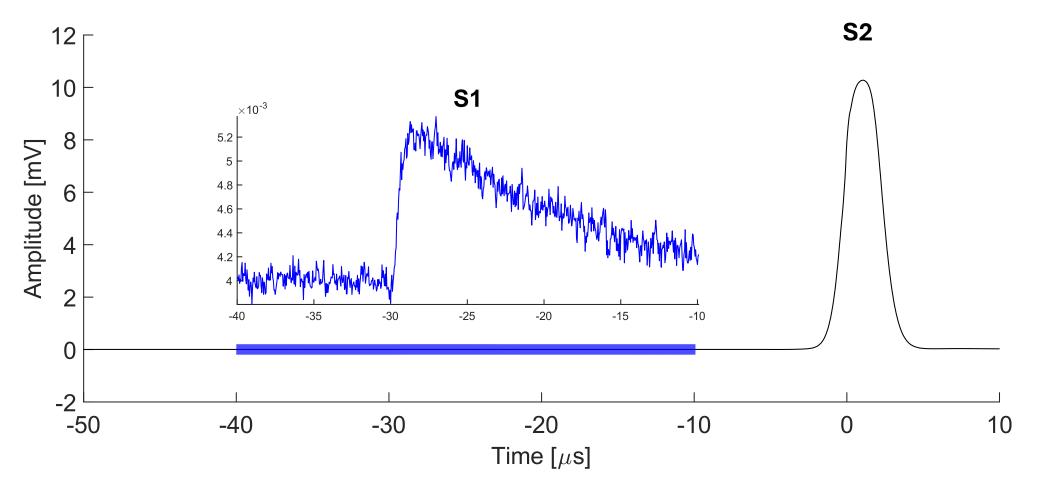

□ Scintillation region: 0.9 cm

D PMT with a MgF_2 window.


- □ 1.1 bar of krypton, purified by St707 SAES getters, which were set to a stable temperature of about 150°C.
- □ Detector irradiated with X-rays from a ⁵⁵Fe, ¹⁰⁹Cd and a ²⁴⁴Cm radioactive sources.

PMT waveforms were digitized using a high sampling-rate oscilloscope (10GS/s)

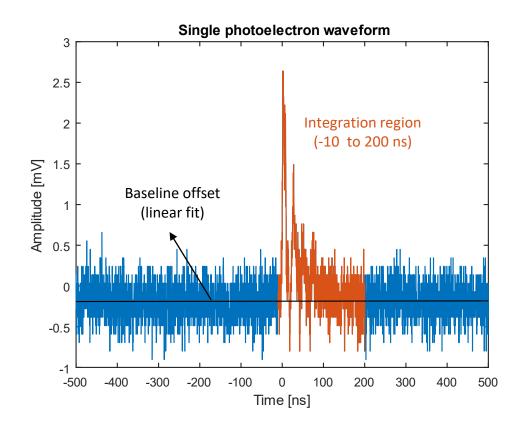
Method – Waveform sampling and averaging

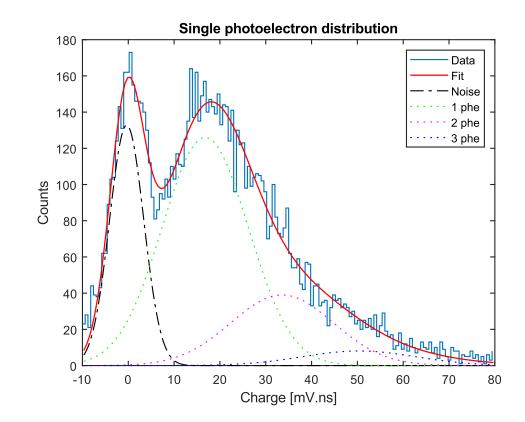


□ PMT waveforms are triggered on the rising edge of the **secondary scintillation signal (S2)**

- □ The amplitude of the primary scintillation signal (S1) is very low and may be indistinguishable from the electronic noise
- An average over several waveforms is performed to reduce the electronic noise to a low level
- **Background events are discriminated** to avoid additional contamination in the S1 region

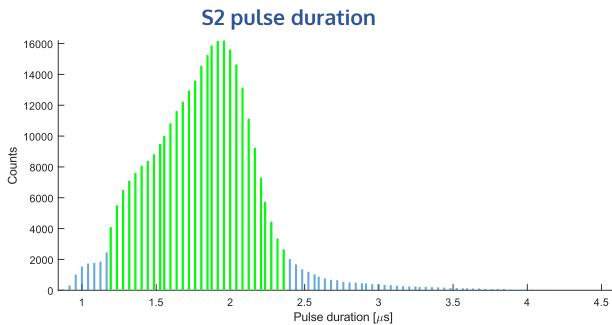
Method – Waveform sampling and averaging

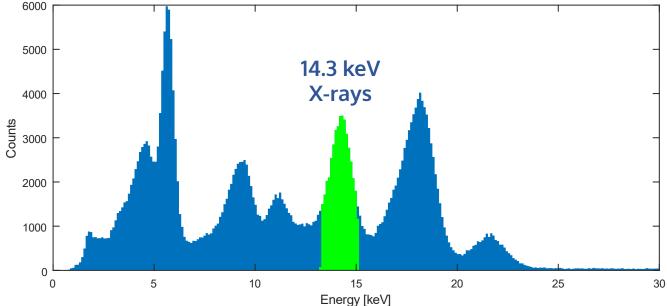

□ Typical average waveform obtained for **5.9 keV X-rays** (average of ~ 120k events)


□ Primary scintillation signal is now visible

□ The tail on the right of S1 results from the interaction of X-rays at different depths in the absorption region

□ A PMT calibration is needed to obtain the absolute values of S1 and S2

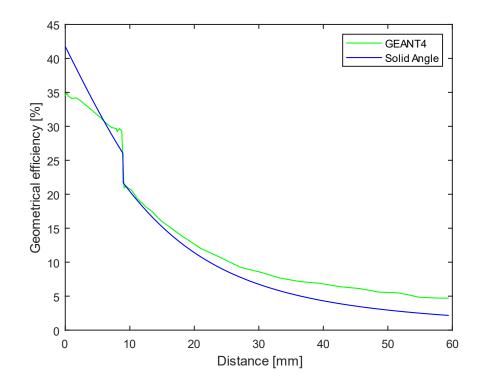

- □ Single photoelectron waveform obtained using a LED
- □ Linear fit to correct baseline offset
- □ Long integration region to include wave reflections



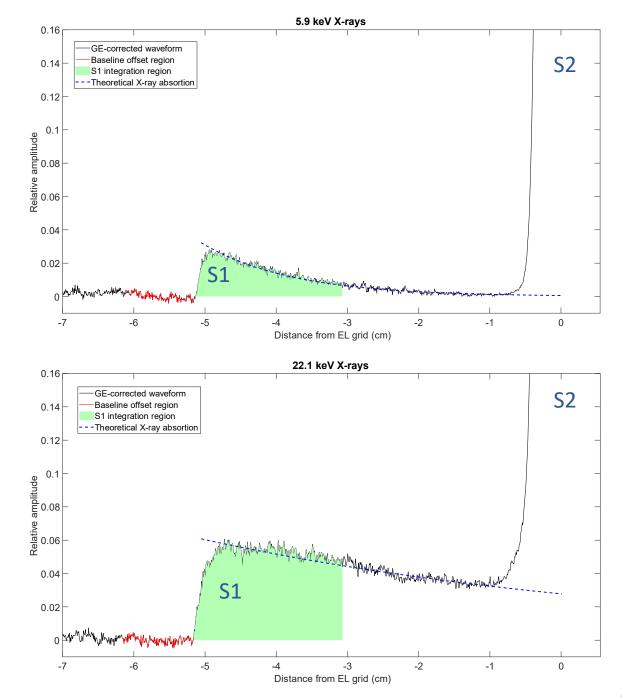
Sum of 4 Gaussians (electronic noise, 1phe, 2phe and 3phe) to fit the single photoelectron distribution

Energy and pulse duration cuts

- Integration of S2 scintillation pulses allows the construction of the energy spectrum of the radioactive sources used
- Waveforms originated for different energies can be selected
- □ S1 yield can be measured for different energies



- X-rays interacting inside the EL region must be discriminated, as they do not contribute to S1
- S2 pulse duration is used to cut these events, as well as background events with extremely long durations


²⁴⁴Cm energy spectrum

Method – Corrected waveform

Geometrical efficiency (GE) computed along the detector central axis using GEANT4

- Longitudinal position of X-ray interactions was determined using the electron drift velocity calculated
- □ Average waveform corrected using the computed GE
- Acceptable agreement between the corrected waveform and the theoretical X-ray absorption

X-ray energy [keV]	W _{sc} -value [eV]
5.9	82.9
14.3	82.1
21.6	76.1
22.1	75.3
25.0	77.4

□ W_{sc}-values between 75.3 eV and 82.9 eV were obtained for different X-rays energies.

Experimental errors in W_{sc}: 10% (stat.) and 15% (sys.)

□ Absolute values between 75.3 eV and 82.9 eV were obtained for the w_{sc}-value in Kr gas for different X-rays energies.

 \Box w_{sc}-value will be determined for α -particles and different X-rays energies.

Thank you for your attention

Acknowledgements

This work is funded by national funds through FCT–Fundação para a Ciência e a Tecnologia, I.P., in the framework of project UIDB/FIS/04559/2020 and UIDP/FIS/04559/2020.

UNIÃO EUROPEIA

Fundo Europeu de Desenvolvimento Regional FCT Fundação para a Ciência e a Tecnologia