Molecular structure elucidation and beyond with microwave rotational spectroscopy

Sérgio R. Domingos | Center for Physics of the University of Coimbra | Portugal

Hammer S. C. et al. *Nat. Chem. Biol.* (**2015**) 11, 121-126 Stary A. et al. *Biochem. Biophys. Res. Commun.* (**2007**) 361, 941-945

CFisUC

Hammer S. C. et al. Nat. Chem. Biol. (**2015**) 11, 121-126 Stary A. et al. Biochem. Biophys. Res. Commun. (**2007**) 361, 941-945

Phys. Chem. Chem. Phys. (2016) 18, 16682-16689

Phys. Chem. Chem. Phys. (2016) 18, 16682-16689

Multi-nozzle chirped-pulse FT microwave spectrometer

Rotational spectroscopy of chiral clusters of styrene oxide (C₈H₈O)_n

ARTICLE

https://doi.org/10.1038/s42004-021-00468-4 OPEN

Dynamic chiral self-recognition in aromatic dimers of styrene oxide revealed by rotational spectroscopy

Check for updates

Commun. Chem. 4 (32) (2021)

ARTICLE

https://doi.org/10.1038/s42004-021-00468-4 OPEN

Dynamic chiral self-recognition in aromatic dimers of styrene oxide revealed by rotational spectroscopy

Check for updates

Commun. Chem. 4 (32) (2021)

Helical chirality: where is the docking site?

Helical chirality: where is the docking site?

 $\Delta E = +0.45 \text{ kJ/mol}$

 $\Delta E=+0.56 \text{ kJ/mol}$

ΔE=0

"Water docking bias in [4]helicene" Angew. Chem. Int. Ed. 58, 1-7. (2019)

Helical chirality: where is the docking site?

"Water docking bias in [4]helicene" **Angew. Chem. Int. Ed.** 58, 1-7. (2019)

Helical chirality: where is the docking site.. If the ligand is aromatic?

Helical chirality: where is the docking site.. If the ligand is aromatic?

Predicted complexation pairs at the B3LYP-D3BJ/aug-cc-pVTZ level of theory.

Apparent bias in aggregation motifs observed. 4:1 for complexes predicted within 1 kJ/mol.

Clustering helicenes: is there break of symmetry?

Domingos et al. preprint (2023).

High resolution spectroscopy of Artificial Molecular Motors (AMM)

J. Conrad et al. Nature Chem. 4 (2012)

Structural Evolution of AMMs. Where we stand.

The rotational spectrum of the idle-mode of an AMM. $C_{27}H_{20}$

†

Trequency (UTZ)

Table 1: Experimentally determined parameters for the vibronic ground state of the motor identified in the microwave spectrum.^[a]

	Exp.		B3LYP-D3BJ ^[c]
A [MHz]	307.183437(46)	Г	308.633
B [MHz]	164.951398(47)		166.282
C [MHz]	122.506084(33)	otor	122.875
D_{l} [kHz]	0.001431 (90)	\mathbf{L}_{μ_b} 5 6 μ_a	_
d_{l} [kHz]	0.000271 (50)	4 7	_
$ \mu_a $ [D]	у		1.37
$ \mu_b $ [D]	у	2 1	0.99
$ \mu_c $ [D]	n	2 contraction	0.11
Ν	222	on line and line an	_
σ [kHz]	3.4		_
ĸ	-0.540		-0.532

[a] Rotational constants (A, B, C in MHz) and quartic centrifugal distortion constants (in kHz); type of spectrum observed (a-type, b-type, c-type) with y being observed and n being not observed; predicted dipole moments; number of lines used in the fit; standard error of the fit (in kHz); asymmetry parameter $\kappa = (2B-A-C)/(A-C)$. The experimental frequency accuracy is 25 kHz. [b] 6-311++G** basis set. [c] def2-TZVP basis set.

Structural Evolution of AMMs. Where we stand. Where we're going.

B3LYP-D3BJ^[c]

308.633

166.282

122.875

1.37

0.99

0.11

-0.532

Table 1: Experimentally determined parameters for the vibronic ground state of the motor identified in

rotor

stator

the microwave spectrum.^[a]

A [MHz]

B [MHz]

C [MHz]

 D_{l} [kHz]

 d_{l} [kHz]

 $|\mu_a|$ [D]

 $|\mu_b|$ [D]

 $|\mu_c|$ [D]

 σ [kHz]

Ν

 \mathcal{K}

Exp.

у

у

n

222 3.4

-0.540

307.183437(46)

164.951398(47)

122.506084(33)

0.001431(90)

0.000271(50)

AXLE ROTATION

[a] Rotational constants (A, B, C in MHz) and quartic centrifugal distortion constants (in kHz); type of spectrum observed (a-type, b-type, c-type) with y being observed and n being not observed; predicted dipole moments; number of lines used in the fit; standard error of the fit (in kHz); asymmetry parameter $\kappa = (2B-A-C)/(A-C)$. The experimental frequency accuracy is 25 kHz. [b] 6-311++G** basis set. [c] def2-TZVP basis set.

SRD, A. Cnossen, W.J. Buma, W.R. Browne, B.L. Feringa, M. Schnell **Angew. Chem. Int. Ed.** 56, 11209-11212. (2017)

Structural Evolution of AMMs. Follow up challenges?

 We can learn much on structure-function relations from rich, dense, conformationallysensitive broadband rotational spectra.

IBER 23 University of Coimbra, Portugal 06.09.23

 We can learn much on structure-function relations from rich, dense, conformationallysensitive broadband rotational spectra.

- We can learn much on structure-function relations from rich, dense, conformationallysensitive broadband rotational spectra.
- Pairing schemes of chiral molecules can be studied extensively, and much insight gained on the molecular recognition problem.

- We can learn much on structure-function relations from rich, dense, conformationallysensitive broadband rotational spectra.
- Pairing schemes of chiral molecules can be studied extensively, and much insight gained on the molecular recognition problem.
- Can we unlock rarer species though new sample delivery methods, bringing the promise of rotationally-resolved spectroscopy to other domains?

- We can learn much on structure-function relations from rich, dense, conformationallysensitive broadband rotational spectra.
- Pairing schemes of chiral molecules can be studied extensively, and much insight gained on the molecular recognition problem.
- Can we unlock rarer species though new sample delivery methods, bringing the promise of rotationally-resolved spectroscopy to other domains?
- Can we reliably extract dynamic information from rotational spectra, in particular from large and complex molecular species such as AMMs?

Spectroscopy & Molecular Physics Group @

Collaborators

Melanie Schnell Deutsches Elektronen-Synchrotron

Cristóbal Pérez University of Valladolid

Christian Merten Ruhr University Bochum

Narcis Avarvari Angers University

Mark D. Marshall Helen O. Leung Amherst Colleague MA

FC¹

SPP 1807

Dispersion

Fundação para a Ciência e a Tecnologia MINISTÉRIO DA CIÊNCIA. TECNOLOGIA E ENSINO SUPERIOR

groningen

Ben L. Feringa Wesley R. Browne University of Groningen

Wybren Jan Buma University of Amsterdam

Funding

European Research Council

Established by the European Commission

THE HAMBURG CENTRE

Forschungsgemeinschaft

Alexander von Humboldt

Stiftung/Foundation

1 2 9 0 UNIVERSIDADE D COIMBRA

