Molecular structure elucidation and beyond with microwave rotational spectroscopy

Sérgio R. Domingos | Center for Physics of the University of Coimbra | Portugal

Hammer S. C. et al. Nat. Chem. Biol. (2015) 11, 121-126
CFisUC

Hammer S. C. et al. Nat. Chem. Biol. (2015) 11, 121-126 Stary A. et al. Biochem. Biophys. Res. Commun. (2007) 361, 941-945
CFisUC

8 8
 IBER 23 University of Coimbra, Portugal 06.09.23

Spectrum

Structure
Phys. Chem. Chem. Phys. (2016) 18, 16682-16689

E IBER 23 University of Coimbra, Portugal 06.09.23

Dihedral $\phi_{4}\left({ }^{\circ}\right)(\mathrm{C} 6-\mathrm{C} 7-\mathrm{C8}-09)$
-120 -80 -40 00

Dihedral $\phi_{2}\left({ }^{\circ}\right)(C 4-C 5-C 6-C 7)$

๕ IBER 23 University of Coimbra, Portugal 06.09.23

EP IBER 23 University of Coimbra, Portugal 06.09.23

\&-f IBER 23 University of Coimbra, Portugal 06.09.23

\rightleftarrows IBER 23 University of Coimbra, Portugal 06.09.23

Multi-nozzle chirped-pulse FT microwave spectrometer

Commun. Chem. 4 (32) (2021)

Rotational spectroscopy of chiral clusters of styrene oxide $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}\right)_{n}$

\mathscr{F} IBER 23 University of Coimbra, Portugal 06.09.23

Rotational spectroscopy of chirall clusters of styrene oxide $\left(\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}\right)_{\mathrm{n}}$

ARTICLE

Dynamic chiral self-recognition in aromatic dimers

 of styrene oxide revealed by rotational spectroscopy

Assigned \longleftarrow Relaxes [3]RR
[5]RR
Assigned
[7]RR

Assigned
[2]RS

$+0.2$

Assigned \longleftarrow
[4]RS

 \longleftarrow

Relaxes
Weak
[9]RS

Heterochiral aggregates

Commun. Chem. 4 (32) (2021)

ARTICLE
Dynamic chiral self-recognition in aromatic dimers of styrene oxide revealed by rotational spectroscopy

Homochiral
RR

E IBER 23 University of Coimbra, Portugal 06.09.23

Helical chirality: where is the docking site?

Helical chirality: where is the docking site?

$\Delta \mathrm{E}=+0.45 \mathrm{~kJ} / \mathrm{mol}$

$\Delta \mathrm{E}=+0.56 \mathrm{~kJ} / \mathrm{mol}$

$\Delta \mathrm{E}=0$

\rightleftarrows IBER 23 University of Coimbra, Portugal 06.09.23

Helical chirality: where is the docking site?

Ef IBER 23 University of Coimbra, Portugal 06.09.23
Helical chirality: where is the docking site.. If the ligand is aromatic?

Helical chirality: where is the docking site. If the ligand is aromatic?

Predicted complexation pairs at the B3LYP-D3BJ/aug-cc-pVTZ level of theory.

Apparent bias in aggregation motifs observed.
4:1 for complexes predicted within $1 \mathrm{~kJ} / \mathrm{mol}$.

High resolution spectroscopy of Artificiall Molecullar Motors (AMM)

Ŝtacko et al. Science 356, 964-968 (2017)
(b)

J. Conrad et al. Nature Chem. 4 (2012)

Structural Evolution of AMMs. Where we stand.

The rotational spectrum of the idle-mode of an AMM. $\mathbf{C}_{27} \boldsymbol{H}_{20}$

Table 1: Experimentally determined parameters for the vibronic ground state of the motor identified in the microwave spectrum. ${ }^{[a]}$

[a] Rotational constants ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ in MHz) and quartic centrifugal distortion constants (in kHz) ; type of spectrum observed (a-type, b-type, c-type) with y being observed and n being not observed; predicted dipole moments; number of lines used in the fit; standard error of the fit (in kHz); asymmetry parameter $\kappa=(2 B-A-C) /(A-C)$. The experimental frequency accuracy is 25 kHz . [b] 6-311++G** basis set. [c] def2TZVP basis set.

SRD, A. Cnossen, W.J. Buma, W.R. Browne, B.L. Feringa, M. Schnell Angew. Chem. Int. Ed. 56, 11209-11212. (2017)

Structural Evolution of AMMs. Where we stand. Where we're going.

 The rotational spectrum of the idle-mode of an AMM. $\mathbf{C}_{27} \mathbf{H}_{20}$

Table 1: Experimentally determined parameters for the vibronic ground state of the motor identified in the microwave spectrum. ${ }^{[a]}$

[a] Rotational constants ($\mathrm{A}, \mathrm{B}, \mathrm{C}$ in MHz) and quartic centrifugal distortion constants (in kHz); type of spectrum observed (a-type, b-type, c-type) with y being observed and n being not observed; predicted dipole moments; number of lines used in the fit; standard error of the fit (in kHz); asymmetry parameter $\kappa=(2 B-A-C) /(A-C)$. The experimental frequency accuracy is 25 kHz . [b] 6-311++G** basis set. [c] def2-
 TZVP basis set.

SRD, A. Cnossen, W.J. Buma, W.R. Browne, B.L. Feringa, M. Schnell Angew. Chem. Int. Ed. 56, 11209-11212. (2017)

Structurall Evolution of AMMs. Follow up challenges?

AMM	Pulsed Valve
Population	
transfer	
pulse	

Isomerization
IR pulse

AXLE ROTATION

Summary | Future work | Take home message

- We can learn much on structure-function relations from rich, dense, conformationally= sensitive broadband rotational spectra.

Summary | Future worlk | Take home message

- We can learn much on structure-function relations from rich, dense, conformationally= sensitive broadband rotational spectra.

Summary | Future worlk | Take home message

- We can learn much on structure-function relations from rich, dense, conformationally= sensitive broadband rotational spectra.
- Pairing schemes of chiral molecules can be studied extensively, and much insight gained
 on the molecular recognition problem.

Summary | Future worlk | Take home message

- We can learn much on structure-function relations from rich, dense, conformationally = sensitive broadband rotational spectra.
- Pairing schemes of chiral molecules can be studied extensively, and much insight gained
 on the molecular recognition problem.
- Can we unlock rarer species though new sample delivery methods, bringing the promise of rotationally-resolved spectroscopy to other domains?

Summary | Future worlk | Take home message

- We can learn much on structure-function relations from rich, dense, conformationally= sensitive broadband rotational spectra.
- Pairing schemes of chiral molecules can be studied extensively, and much insight gained
 on the molecular recognition problem.
- Can we unlock rarer species though new sample delivery methods, bringing the promise of rotationally-resolved spectroscopy to other domains?
- Can we reliably extract dynamic information from rotational spectra, in particular from large and complex molecular species such as AMMs?

Spectroscopy \& Molecullar Physics Group @ CFisUC

Collaborators

Melanie Schnell
Deutsches Elektronen-Synchrotron

Cristóbal Pérez
University of Valladolid
Christian Merten
Ruhr University Bochum

Narcis Avarvari
Angers University

Funding

European Research Council
Established by the European Commission
Mark D. Marshall
Helen O. Leung
Amherst Colleague MA
Ben L. Feringa
Wesley R. Browne
University of Groningen
Wybren Jan Buma
University of Amsterdam
Deutsche
Forschungsgemeinschaft
Fundação para a Ciência e a Tecnologia

\&
 IBER 23 University of Coimbra, Portugal 06.09.23

2 (4) 90 Universidade COIMBRA

