

EPOL Status and First Technical Specifications

D. Barber, M. Benedikt, A. Blondel, A. Bogomyagkov, F. Carlier, E. Gianfelice-Wendt,
A. Faus-Golfe, M. Hofer, P. Janot, H. Jiang, <u>J. Keintzel</u>, I. Koop, M. Koratzinos, T. Lefevre,
A. Martens, N. Muchnoi, S. Nikitin, I. Nikolaev, K. Oide, T. Persson, T. Pieloni, P. Raimondi,
D. Sagan, D. Shatilov, R. Tomàs, J. Wenninger, G. Wilkinson, Y. Wu, and F. Zimmermann

1st FCC Beam Instrumentation Workshop 21st November 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

Introduction

Polarization and Centre-ofmass Energy Calibration at FCC-ee, **arXiv:1909.12245**

* with monochromatization

PA

- FCC-ee proposed Higgs and EW-factory
- Up to 4 Interaction Points (IPs): PA, PD, PG, PJ
- Different beam energies: 45.6, 80, 62.5*, 120, 182.5 GeV
- High precision particle physics experiments
 - Statistical precision 4 / 100 keV error on Z- / W-mass from average over 3 / 2 years of physics runs
 - Goal: systematic precision of 4 / 100 keV on Z- / W-mass
- Very first specifications and parameters discussed in workshop
- Summarized in document and first conclusions mid by 2023

Energy calibration and polarization working group *indico.cern.ch/category/8678*

FCC BI WORKSHOP 21 NOV 2022

A. Bogomyagkov, V. Caudan, E. Gianfelice-Wendt

Beam Energy and Spin Tune

• Beam energy is closely related to the spin tune $\boldsymbol{\nu}$

Precession of spin over one revolution in ideal machine with spin tune of about 0.25 Measurement of spin tune will yield the beam energy $\ _{\rightarrow}$ To be performed for the electron and the positron beam

 $E = mc^2 \left(\frac{\nu}{a} - 1\right)$

E ... energy m ... mass

c ... speed of light

v ... spin tune

a ... anomalous magnetic dipole moment

Spin tune measurement might not be exact beam energy measurement, e.g. shift due to vertical or longitudinal magnetic fields \rightarrow to be studied in detail

Various contributions on the average beam energy estimated

synchrotron oscillations	$\Delta E/E$	-2 10 ⁻¹⁴
Energy dependent momentum compaction	$\Delta E/E$	10-7
Solenoid compensation		2 10-11
Horizontal betatron oscillations	$\Delta E/E$	2.5 10 ⁻⁷
Horizontal correctors*)	$\Delta E/E$	2.5 10 ⁻⁷
Vertical betatron oscillations **)	$\Delta E/E$	2.5 10 ⁻⁷
Uncertainty in chromaticity correction $O(10^{-6}) \Delta E/E$		5 10 ⁻⁸
invariant mass shift due to beam potential	4 10 ⁻¹⁰	

F. Carlier, E. Gianfelice-Wendt, T. Pieloni, Y. Wu

Polarization and Spin Tune

- Lepton beams polarize naturally transversely over time \rightarrow Sokolov-Ternov-Effect
- Depolarization naturally from synchrotron radiation, resonances, etc.
- Maximum polarization at about 92.4 % in lepton storage rings

Strong unexpected resonance found for SITROS simulations

Baier-Katkov-Strakhovenko polarization rate

$$\tau_{bks}^{-1} = \frac{5\sqrt{3}}{8} \frac{\hbar r_e \gamma^5}{m_e C} \oint ds \frac{1 - \frac{2}{9} (\hat{n}_0(s) \cdot \hat{s})^2}{|\rho(s)|^3}$$

Polarization direction in ŷ for planar ring

• Resonances with transverse and longitudinal axis

 Q_x ... horizontal tune Q_y ... vertical tune Q_s ... synchrotron tune m_i , k ... integer a ... gyromagnetic moment y ... relativistic gamma

$$a\gamma + m_x Q_x + m_y Q_y + m_s Q_s =$$
Spin tune for Transverse planes Longitudinal plane Y. Wu: indico.cern.ch/event/1119730/

45 GeV Q_x=0.146, Q_y=0.218, Q_s=0.054, τ=1.7 h see 100

ay at Z without solenoid: 103.5 $a^*\gamma$

E. Gianfelice-Wendt,

k

indico.cern.ch/event/727555/contributions/3468285, 2019.

Error Sensitivity

- Depolarization strength at spin-orbit resonance is sensitive to the orbit
- After closed orbit correction, harmonic spin matching is needed to increase polarization
- Minimum 8 bumps arcs, each with 3 vertical correctors (strength and location under study)

FCC BI WORKSHOP 21 NOV 2022

Error Sensitivity

- Depolarization strength at spin-orbit resonance is sensitive to the orbit
- After closed orbit correction, harmonic spin matching is needed to increase polarization
- Minimum 8 bumps arcs, each with 3 vertical correctors (strength and location under study)

FCC BI WORKSHOP 21 NOV 2022

Optics Measurements

• Beam Position Monitors (BPMs) essential

• 2 techniques

BPMs either next to

- every quadrupole
- every sextupole
- interleaved quadrupole-sextupole element

-

Tuning studies will help deciding

Orbit response matrix

At beam energy 182.5 GeV and radiation losses/turn about 10 GeV \rightarrow Large energy variation of about ± 2 %, tapering applied Effect of SR losses on ORM to be explored

Turn-by-Turn Measurements

Procedure: Beam excitation \rightarrow harmonics analysis (Fourier Transform) \rightarrow optics analysis

Z-mode: 2300 damping time is slow enough to use single kicks for TbT measurements ttbar mode: 40 turns damping time and thus single kicks too fast for TbT measurements (use e.g. AC-dipole as in LHC, or transverse feedback with amplification as in SKEKB)

FCC BI WORKSHOP 21 NOV 2022

BPM Requirements

- Beam Position Monitors (BPMs) essential
- 2 techniques

Orbit response matrix Average over several turns

Turn-by-Turn Measurements Turn-by-turn measurements Bunch-by-bunch measurements Goal phase error below 1x10⁻³

5 µm BPM resolution

2 µm BPM resolution

Goal of relative phase advance error with respect to ideal model achievable with

Horizontal 5 µm BPM resolution

Vertical ~2 µm BPM resolution

Using more turns can reduce phase advance error further

FCC BI WORKSHOP 21 NOV 2022

BPM Requirements

• Beam Position Monitors (BPMs) essential

• 2 techniques

Orbit response matrix Average over several turns Turn-by-Turn Measurements Turn-by-turn measurements Bunch-by-bunch measurements Goal phase error below 1x10⁻³

Parameter		FCC-Z	FCC-ttbar
Bunch intensity [10 ¹¹]	Low-intensity pilot	~0.1	~0.1
	High-intensity non-colliding	2.43	2.37
	High-intensity colliding	2.43	2.37
Bunch length [cm]	Low-intensity pilot	< 0.38	< 1.57
	High-intensity non-colliding	0.38	1.57
	High-intensity colliding	1.32	2.21
Number of bunches [-]	Low-intensity pilot	~200	-
	High-intensity non-colliding	A few	-
	High-intensity colliding	16640	48

Stored at the same time

EPOL: ~5 energy calibrations with 2 pilots/h x 24h storage = ~200 low intensity pilot bunches = ~ 20×10^{11} stored particles

Optics measurements and corretions: Could correspond to measurements with e.g. ~ 20 bunches each with 10¹¹

Dispersion and Collision Offsets

• ECM shifts due to opposite sign dispersion \rightarrow obtained with BPMs around IP

 \rightarrow Requires about 1 µm precision for BPMs close to IP

For $\Delta D^* = 10 \ \mu m$, the CM error is ~1 MeV/nm, i.e., the uncertainty on / average separation must be below $u_0 < 0.1 \ nm$ to limit the systematic errors < 100 keV.

- Even closer to 0.01 nm for σ ~ 20 nm \rightarrow at the level of a % of the beam size.
- Luminosity or beam-beam (BB) deflection scan to determine collision offsets
- To disentangle dispersion and BB offset at IP \rightarrow non-colliding high-intensity bunches?

Wigglers I

- Very long polarization time in FCC-ee at Z-pole
- Wigglers improve polarization time significantly

Follow 3 three-block design from LEP

Parameter	FCC-ee	LEP
Number of units per beam	24	8
B_+ [T]	0.7	1.0
L ₊ [mm]	430	760
r	6	2.5
<i>d</i> [mm]	250	200
Crit. Energy of SR photons [keV]	968	1350

For Z-pole:

Polarization time decreases from 248 h to 12 h Energy spread increases from 17 MeV to 64 MeV

M. Hofer: indico.cern.ch/event/1080577/

CERN

Wigglers II

- Operational scenario:
 - Inject few (~200) low-intensity pilots
 - Use wigglers for ~5-10 % **transverse** polarization
 - Switch wigglers off
 - Inject all high-intensity bunches
 - Use depolarizer
 - Measure spin tune with polarimeter

0 longitudinal polarization required for colliding bunches since it biases physics experiments \rightarrow Goal: to be controlled to 10⁻⁵ LEP: RDP measurements were performed outside physics collisions; while at FCC-ee, measurements will be performed throughout

- However, dead-time at start of fill at Z energies, as we must wait for polarisation level to accumulated in pilot bunches, when wigglers are in operation
- No physics bunches circulating when wigglers are on (synchrotron radiation)
- Estimated time to reach ~10% polarization is ~100 minutes. Significant dead time, the overall impact of which will depend on length of fills.
- Question: are lower levels of polarisation adequate for RDP when current is higher? If so, maybe possible to reduce time of wiggler operation.

Resonant Depolarization

- Continous resonant depolarization (RDP) proceedure foreseen at the Z- and the WW- mode
- Depolarizer sweeps through frequencies ω_d
- Resonant condition $\Omega = n\omega_0 \pm \omega_d$
- Depolarization for dertimination of spin tune

Natural width of spine line due to radiative diffusion much larger than desired level of precision (Z: 200 keV and W: 1.4 MeV)

Solution: Use of **2 selective kickers simultaneously acting on 2 pilot** bunches and scanning in opposite directions

 $\rightarrow\,$ accuracy better than 10 keV

Depolarizer I

- Implemented as stripline that creates TEM wave propagating towards the beam
- Harmonic amplitude created by depolarizer

$$|w_k| = \frac{\nu Bl}{2\pi B\rho} |F^\nu| = |F^\nu| \frac{\nu \phi}{2\pi}$$

 $\nu \dots$ spin tune B ... amplitude of TEM wave I ... strip-line length $\nu \phi \dots$ spin rotation angle Spin response function

- Placed at location with large spin response function, e.g. 5 in the arcs, caveat: accessibility
- Depolarization rate proportional to $|w_k|^2 = \nu^2 |F^{\nu}|^2$

Depolarizer II

LHC transverse feedback system would provide adequate strength and bandwidth even with ¹/₄ of LHC strength

- Implemented as stripline that creates TEM wave propagating towards the beam
- Harmonic amplitude created by depolarizer

$$|w_k| = \frac{\nu Bl}{2\pi B\rho} |F^\nu| = |F^\nu| \frac{\nu \phi}{2\pi} \propto \frac{\nu U l_d |F^\nu|}{Ed}$$

- Scan rate 1 keV/s or 0.007 Hz/s
- About 20 mins required for frequency sweep with $w_k \sim 10^{-5}$ (rather weak)
- Alternatively with stronger, $w_k \sim 10^{-4}$, leads to adiabatic spin fip and resonance search time < 1 min; requires e.g. 3 times longer plates

I. Koop, S. Nikitin, I. Nikolaev, G. Wilkinson

Free Spin Precession (FSP) I

- Spin rotation with very strong depolarizer $W_{k} \sim 10^{-3}$
- Measure oscillation of spin between planes
- Obtain spin tune with Fourier Transformation
- Possibly faster than resonant depolarization

Does this require more / less / same level of polarisation as RDP ? How well must polarisation be measured by polarimeter ?

What are the systematics and intrinsic precision ?

How often should measurement be made, e.g. one to accompany every RDP measurement, or less frequently ?

I. Koop, S. Nikitin, I. Nikolaev, G. Wilkinson

Free Spin Precession (FSP) II

- Spin rotation with very strong depolarizer $W_{k} \sim 10^{-3}$
- Measure oscillation of spin between planes
- Obtain spin tune with Fourier Transformation
- Possibly faster than resonant depolarization

Is measurement feasible in W+W- regime, and if so what are requirements and what is precision ?

Polarimeter

- For now, most requirements driven by Z-pole requirements and presently studied in detail
- At least one polarimeter per beam required, goal: 1% statistical precision every second
- Used for RDP and FSP for pilot bunches
- Observing longitudinal polarization for colliding ones
- \rightarrow Integration close to one IP beneficial

parameter	pilots	colliding bunches
$f_{\rm rep.}$	$3 \mathrm{~kHz}$	30 kHz
\overline{U}	1 mJ	$10 \mathrm{x} 0.5 \mathrm{~mJ}$
σ_t	$5 \mathrm{\ ps}$	$5 \mathrm{\ ps}$
$\sigma_{x,y}$ [ps]	$300~\mu{ m m}$	$300~\mu{ m m}$
Р	$3 \mathrm{W}$	$150 \mathrm{W}$

Laser requirements Ytterbium mode-lock laser technology frequency doubled to provide green light at about 515 nm

A. Blondel, T. Persson, D. Shatilov

ECM and Boosts for Z-Mode

- PH: 0.1 GV, 400 MHz cavity
- \leq 0.62 MeV beamstrahlung losses per beam and IP (simulations)
- 40 MeV radiation losses per revolution
 One 8 h shift will give 5 keV precision

Sum of losses close to sum of absolute boosts

ΔΕСΜ Boost IP [keV] [MeV] PA - 7.851 10.665 PD - 10.108 - 7.931 0.570 PG - 30.883 PJ 0.844 31.439

CERN

Input From Experiments

- Electron and positron bunches experience mutual electric and magnetic fields
 - \rightarrow Accelerate (decelerate) bunches before (after) collision and increase crossing angle
- Reliable and frequent logging of all parameters

Change of crossing angle depending on bunch population

Requires stable beams and detector operation from nominal to rather low bunch intensities

Black: no beamstrahlung Red: + beamstrahlung Green: + angular resolution Blue: + photon emission Pink: + asymmetry between electron and positron energy Only asymmetric energies shift the center of the energy spectrum for dimuon events Measuring 10⁶ dimuon events yields precision of 10⁻³ **5 min measurements at FCC Zmode gives boost precision of 50 keV and one 8 h shift will give 5 keV** Statistics of 1 million dimuon events at Z-pole e+e- \rightarrow µ+µ- (γ) (γ)... Initial-State-Photon (ISR)

Investigations to measure IP dispersion using dimuons

Documentation

- Overleaf document presently being prepared and updated
- Milestones: mid-term report by mid 2023 and final version end of 2025

Many thanks to all contributing colleauges!

Preliminary draft 09:03 21 November 2022

21 November 2022

Energy calibration, polarization and monochromatization - Requirements on alignment, optics, lattice, beam instrumentation and detectors

D. Barber, A. Blondel, A. Bogomyagkov, F. Carlier, E. Gianfelice-Wendt,
A. Faus-Golfe, D. Gaskell, M. Hofer, P. Janot, H. Jiang, J. Keintzel,
I. Koop, T. Lefevre, A. Martens, N. Muchnoi, S. Nikitin, I. Nikolaev, K.
Oide, T. Persson, T. Pieloni, P. Raimondi, D. Sagan, D. Shatilov, R.
Tomas, J. Wenninger, G. Wilkinson, Y. Wu, F. Zimmermann, ...
CERN, CH-1211 Geneva, Switzerland

JACOUELINE KEINTZEL

Questions?

EPOL Status and First Technical Specifications

D. Barber, M. Benedikt, A. Blondel, A. Bogomyagkov, F. Carlier, E. Gianfelice-Wendt,
A. Faus-Golfe, M. Hofer, P. Janot, H. Jiang, <u>J. Keintzel</u>, I. Koop, M. Koratzinos, T. Lefevre,
A. Martens, N. Muchnoi, S. Nikitin, I. Nikolaev, K. Oide, T. Persson, T. Pieloni, P. Raimondi,
D. Sagan, D. Shatilov, R. Tomàs, J. Wenninger, G. Wilkinson, Y. Wu, and F. Zimmermann

1st FCC Beam Instrumentation Workshop 21st November 2022

FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

BPM Requirements

- Beam Position Monitors (BPMs) essential
- 2 techniques

Schematic possible button BPM for FCC-ee

Buttons typically rotated by 45° due to strong synchrotron radiation **Orbit response matrix**

Average over several turns

Turn-by-Turn Measurements

Turn-by-turn measurements Bunch-by-bunch measurements **Goal phase error below 1x10**-3

FCC BI WORKSHOP 21 NOV 2022