

Coherent Cherenkov diffraction radiation studies at CLEAR

gratefully acknowledging: Michael Benedikt, Candy Capelli, Nicolas Sebastien Chritin, Ashley Churchman, Can Davut, Morad Hamani, Lewis Hanson, Pavel Karataev, Kacper Lasocha, Thibaut Lefevre, Stefano Mazzoni, Collette Pakuza, Eugenio Senes,

the OP team at CLEAR

and Lionel Duvillaret from KATPEOS

Table of contents

FCC-ee bunch length diagnostics

(Coherent) Cherenkov Diffraction Radiation

Numerical models (CST) and experimental setup at CLEAR

Preliminary results

Outlook

FCC

FCC-ee bunch length diagnostics

Synchrotron radiation (SR) in LEP

Bunch length measurements using SR on streak camera

SR in FCC-ee:

Distance of ~100 m necessary to separate the photon beam from the electron or positron beam¹ and X-rays dominating the spectrum

Cherenkov Diffraction Radiation (ChDR) at FCC-ee

- Non-invasive
- · Simple geometries with small space requirements
- Photon emission at large and well-defined angle

Bunch length measurement in LEP²

¹ Abada, A., Abbrescia, M., AbdusSalam, S.S. et al. FCC-ee: The Lepton Collider. Eur. Phys. J. Spec. Top. 228, 261–623 (2019). https://doi.org/10.1140/epjst/e2019-900045-4

² A. J. Burns, H. Schmickler, Bunch length measurements in LEP, Proceedings DIPAC (1999) https://cds.cern.ch/record/398768

Cherenkov (Diffraction) Radiation

Cherenkov Radiation

FCC

Cherenkov Diffraction Radiation (ChDR)

I.M. Frank and I.E. Tamm. Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS, 14(3):109–114, 1937

Analytical calculations

 $\propto \gamma/h$

Cherenkov vs. Cherenkov Diffraction

 $\propto 1/h$

ChDR introduces turning points in the spectrum

Coherent and incoherent ChDR (FCC-ee)

7

Coherent ChDR (CLEAR)

Abs

1/105

0 ns

Component

Maximum (Sample) 0 V/m Maximum (Global) 10366e+07 V/m

ample

Numerical studies with CST

E-field, Median plane (yz-plane)

 $\varepsilon = 9, \theta_{Ch} = 70.5^{\circ}$

Electron bunch 5 ps Gaussian, 300 pC, 200 MeV

Radiatior Design

36 mm diameter Alumina rods brazed to DN 60 flange, vacuum tight curvature for Ø 80 mm beam pipe

CLEAR

○ FCC

Beam parameter (end of linac)	Value range
Energy	60 - 220 MeV
Bunch charge	0.01 - 0.5 nC
Normalized emittances	3 um for 0.05 nC per bunch 20 um for 0.4 nC per bunch (in both planes)
Bunch length	~100 um -1.2 mm
Relative energy spread	< 0.2 % rms (< 1 MeV FWHM)
Repetition rate	1 - 5 Hz (25 Hz with upgrade)
Number of micro-bunches in train	1 and more than 100
Micro-bunch spacing	1.5 GHz

EO probe from Kapteos

bandwidth of 1 - 10 GHz

Preliminary results at CLEAR

probe $\leftarrow \rightarrow$ radiator: 9 mm distance beam $\leftarrow \rightarrow$ radiator: 10 mm distance average over 2400 traces (4 minutes @ 10 Hz)

Preliminary results at CLEAR

beam $\leftarrow \rightarrow$ radiator: 20 mm distance average over 1200 traces, absolute value of negative peak

🔿 FCC

Preliminary results at CLEAR

FCC

Preliminary results at CLEAR

FCC

Preliminary results at CLEAR

Preliminary results at CLEAR

Conclusions

Coherent ChDR

FCC

First measurement of absolute value of e-field

- sets lower limit for e-field strength
- surface distribution on radiator

First quantified measurement of e-field polarization

CST suitable tool for numerical simulation of ChDR

ightarrow EO methods prove to be a versatile tool to investigate ChDR

 \rightarrow Coherent ChDR remains a promising candidate for FCC-ee diagnostics

Outlook

Coherent ChDR

Detailed analysis of the acquired data still to be done:

- jitter, arrival time, signal shape for different positions
- impact parameter scan in-air and in-vacuum
- probe distance from radiator

Refined CST simulations for actual measurement values

· benchmark simulations up to 10 GHz

New EO measurement setup being finalized

- modulation of chirped pulse and readout with spectrometer
- aim for improved temporal profile without the need of a fast oscilloscope

Incoherent ChDR

Continue experimental path for coherent ChDR

high energies required → North Area @ CERN (100 GeV)
→ ATF 2 @ KEK (2 GeV)

Thank you for your attention.

○ FCC

FCC

Analytical calculations

Dependency on impact parameter

Dependency on particle energy

K

Coherent ChDR

E-Field, Median plane (yz-plane)

Coherent ChDR

E-field, transverse plane (xy-plane tilted)

Electro Optical Spectral Decoding

Pictures: First electro-optical bunch length measurements at European XFEL, B. Steffen et al., Opt. Express 25, 10911-10924 (2017)