

CEPC Beam Instrumentation

Yanfeng Sui

On behalf CEPC Beam Instrumentation Team 1st FCCee Beam Instrumentation Workshop November 21 and 22, 2022 at CERN

- Introduction of CEPC
- CEPC beam instrumentation requirements
- CEPC beam instrumentation design towards TDR
- Summary

CEPC Storage ring Layout

CEPC as a Higgs Factory: ttbar, H, W, Z, followed by a SppC ~100TeV

CEPC High Luminosity Parameters

	ttbar	Higgs	W	Z			
Number of Ips		2					
Circumference [km]		100.	0				
SR power per beam [MW]		30					
Half crossing angle at IP [mrad]		16.5	i				
Bending radius [km]		10.7					
Energy [GeV]	180	120	80	45.5			
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037			
Piwinski angle	1.21	5.94	6.08	24.68			
Bunch number	35	249	1297	11951			
Bunch population [10^10]	20	14	13.5	14			
Beam current [mA]	3.3	16.7	84.1	803.5			
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43			
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9			
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	0.27/1.4			
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	13/42	6/35			
Bunch length (SR/total) [mm]	2.2/2.9	2.3/3.9	2.5/4.9	2.5/8.7			
Energy spread (SR/total) [%]	0.15/0.20	0.10/0.17	0.07/0.14	0.04/0.13			
Energy acceptance (DA/RF) [%]	2.3/2.6	1.6/2.2	1.2/2.5	1.3/1.7			
Beam-beam parameters (ksix/ksiy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127			
RF voltage [GV]	10	2.2	0.7	0.12			
RF frequency [MHz]	650	650	650	650			
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8			
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/			
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202			
Beam lifetime [min]	18	12.3	55	80			
Hour glass Factor	0.89	0.9	0.9	0.97			
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	115			

See.

CEPC Linac Layout

- Latest Baseline scheme (2022.6)
 - Energy: →30 GeV
 - C-band accelerating structure @TAS
 - − Higher gradient → Shorter linac tunnel length
 - Small aperture & Strong wakefield
- Layout
 - The tunnel is 1.8km

		A.S.	
Parameter	Symbol	Unit	Baseline
Energy	E_{e}/E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Bunch charge		nC	1.5 (3)
Energy spread	$\sigma_{\scriptscriptstyle E}$		1.5 × 10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5

The beam instrumentation in CEPC Linac

	Item	Method	Parameter	Amounts
	Beam position	Stripline BPM	Resolution : 30um	140
	Beam current	ICT	2.5%@1nC-10nC	42
Linac	Beam profile	YAG/OTR	Resolution: 30um	80
	Beam emittance	Q+PR	10%	3
	Beam energy & spread	AM+PR	0.1%	3
Damning	Average current	DCCT	Resolution :50uA@0.1mA- 30mA	1
ring	Beam position	Button BPM	Resolution : 20um @ 5mA TBT	40
	Tune measurement	Frequency sweeping	Resolution:0.001	1

The beam instrumentation in CEPC booster

	Item		Method	Parameter	Amounts
	Beam turn by position		Button electrode BPM	Measurement area (x × y) : ±20mm×±10mm Resolution: <0.02mm Measurement time of COD: <4 s	2408
	monitor	Bunch by bunch	Button electrode BPM	Measurementarea $(x \times y)$: $\pm 40 \text{mm} \times \pm 20 \text{mm}$ Resolution: 0.1 mm	
	Bunch	current	BCM	Measurement range: 10mA / per bunch Relatively precision: 1/4095	2
Average current	current	DCCT	Dynamic measurement range: 0.0~1.5A Resolution:50uA@0.6-8mA Linearity: 0.1 % Zero drift: <0.05mA	2	
Booster	Beam size		Double slit interferometer x ray pin hole	Resolution:0.2 µm	2
	Bunch length		Streak camera Two photon intensity interferometer	Resolution:1 ps	2
	Tune measurement		Frequency sweeping method	Resolution:0.001	2
			DDD	Resolution:0.001	
	Beam los	s monitor	optical fiber	Space resolution:0.6m	400
	Feedbac	k system	TFB	Damping time<=3ms	2
	Feedback system		LFB	Damping time<=35ms (50ms)	2

The beam instrumentation in CEPC ring

	Item		Method	Parameter	Amounts		
	Beam position	Closed orbit	Button electrode BPM	Measurement area (x × y) : ±20mm×±10mm Resolution: <0.6um Measurement time of COD: <4 s	3544		
	monitor	Bunch by bunch	Button electrode BPM	Measurementarea $(x \times y)$: $\pm 40 \text{mm} \times \pm 20 \text{mm}$ Resolution:0.1 mm			
	Bunch	current	ВСМ	Measurement range: 10mA / per bunch Relatively precision: 1/4095	2		
Storage	Average current	Average current DCCT		Dynamic measurement range: 0.0~1.5A Linearity: 0.1 % Zero drift: <0.05mA	2		
ring Beam size	n size	Double slit interferometer x ray pin hole	Resolution:0.2 µm	4			
	Bunch le	length	Streak camera Two photon intensity interferometer	Resolution:1ps@10ps	2		
	Tune mea	asurement	Frequency sweeping method	Resolution:0.001	2		
			DDD	Resolution:0.001			
	Beam loss monitor		PIN-diode	Dynamic range:120 dB Maximum counting rates≥10 MHz	5800		
	Foodboo	lz system	TFB	Damping time<=1ms	2+1		
	reeadack system		reedback system		LFB	Damping time<=12ms	2

CEPC beam instrumentation towards TDR

- Beam position monitor
- Beam feedback system
- Beam size and bunch length measurement
- Bunch by bunch measurement and its application
- Beam current measurement
- Beam loss monitor

•

BPMs number and distribution

Totol length of ESBS+FAS+PSPAS+SAS+TAS: 1800 m

	Numbers of BPM	Machine Size
BEPCII	165(19+15+66 × 2)	240 m
HEPS	~700(40+80+590)	1.4 km
CEPC	~6200	100 km
FCC-ee ^[1]	~6000	~92 km

Cost: about ¥100,000 / BPM (base on home-made electronic)

BPMs overview

• The total number of the BPMs has been increased compared with CDR because of the changing of lattice.

	LINAC	Damping ring	Booster	e+ ring	e- ring	Transfe r line	Total
CDR Button	1	40	1808	1450	1450	/	~4889
CDR Strip	140	/	/	/	/	/	
TDR Button	1	40	2408	1772	1772	/	~6133
TDR Strip	140	/	/	/	/	/	

Design principles:

- 1. LINAC stripline type , Ring button-type
- 2. 4 BPMs /2 π phase advanced (363 β oscillation period \rightarrow 445Htt)
- 3. 1 BPM /10-20 m in LINAC 4. Electronics in the tunnel ...

CEPC BPM design: stripline-type

Schematic of stripline BPM: (a) Front view; (b) Side view

CEPC BPM design: stripline-type

• **Basic Requirements:** The mechanical parameters (α, t, h, r_{in}) of the strip should make the characteristic impedance of the strip $Z_0 = 50 \Omega$

(d) Single electrode $\sqrt{Z_{sum}Z_{quad}} \approx Z_{dipole} \approx Z_{single} \approx 50 \Omega$

Strip impedance design

CST simulation and a time-domain reflectometer (TDR) results*

Electrode D

(a)

Electrode C

*J. He, Y. F. Sui et,al. Measurement Science and Technology 33 (2022) 115106, https://doi.org/10.1088/136 1-6501/ac8277

(a–b) impedance for different modes vs. h and α by CST; (c) measured by TDR(Tektronix DSA8200). Experimental results are in a good agreement with simulations (below 3%).

Stripline design considering

- $r_{\text{in}} \ge r_{\text{beam}}, t \ge 1.2 \text{ mm}, r_{\text{in}} + t + h \le A_1, t + h \le A_2 L_{\text{strip}} = \frac{2N-1}{4} \frac{c}{f_0}, N=0, 1, 2$
- r_{beam} is the radius of the beam stay-clear area, 1.2 mm is the minimum thickness of the strip when the longitudinal length is greater than 100 mm (enough mechanical strength), A₁ and A₂ are the mechanical size limits for the flange and the commercial feedthroughs, respectively.

After considering all the associated factors mentioned above, the parameters are determined.

Mechanical parameters of the CEPC stripline BPM

Location	$\mathbf{r}_{\mathbf{in}}$	t	h	α	θ	Z _{single}	L _{strip}	Z _{CST}
Unit	mm	mm	mm	degree	degree	Ω	mm	Ω
LINAC(FAS+SAS)	15	1.5	2.2	30	0	50.8	150	50.3 ± 0.5
LINAC(TAS)	10	1.2	0.6	30	0	49.9	150	50.4 ± 0.5

A button-type also could be used for LINAC, structure is simpler but signals are smaller than strip.

$$U=Z_{t} \times I_{bean} = \frac{r_{b}^{2}}{2bcC_{b}} \times \frac{j\omega RC_{b}}{1+j\omega RC_{b}} \times I_{beam}$$

- The BPM design always is in a dilemma: the bigger transfer impedance (Zt) means a better resolution but also a more serious beam instability
- Several tips to depress the wakefield without decrease signal too much:
- 1. Impedance optimization (to reduce the reflection)
- 2. Smaller gap (avoiding short)
- 3. To hide the sealed dielectric, Bell- shape (SIRIUS) or bigger t_b
- 4. A design without skirt
- **5**. A design of asymmetric structure
- 6. Dielectric with a smaller ε_r (To replace ceramics by glass)

Mechanical drawing and X-ray tomography of a button pickup

Three important parameters for button-type BPMs: radius r_b , height t_b and gap g_b .

CEPC BPM design: Button-type

• Design goal: To increase the signal and decrease the wakefield.

Button BPM design flow

CEPC BPM design: Button-type

Parameters of the CEPC button-type BPM for different mode

\leftarrow	Charge↩	Bunch length 🖾	Current peak ←	DC Current	650MHz↩
\leftarrow	'nC←	mm←⊐	A←	A←	dBm←
Higgs↩	20.8←	4.1←	607↩	0.208↩	-24.4
Z←⊐	22.4←	8.7↩	308⊲	0.974↩	-10.9
W←□	21.6	4.9←	527↩	0.216	-23.7←
ttbar↩	32.0↩	2.9←	1315←	0.320	-20.2

Study on home-made electronics

• The home-made BPM readout electronics are about the half cost and the same performance (resolution $<0.1 \ \mu$ m) compared with the commercial products.

The picture of electronics made by BI group

~90 sets of electronics running online now(BEPCII) ~700 sets will be used in the HEPS

Study on mechanical tolerance

The effect of button positioning accuracy and BPM pipe mechanical tolerance have been studied[5].

Transverse resistive wall instability - wang na

$$\tau^{-1} = \frac{I_0 v_{\beta}}{4\pi (E_k/e) v_{\beta}} \sum_{\mu=0}^{M-1} \sum_{p=-\infty}^{\infty} Z_1 \left((\mu + PM) \omega_0 + \omega_{\beta} \right)$$

• The worst case lowest energy and highest current, so Z mode is the most dangerous.

	ttbar	Higgs	W	Z		
Number of Ips	2					
Circumference [km]	100.0					
SR power per beam [MW]		30				
Half crossing angle at IP [mrad]		16.	5			
Bending radius [km]	10.7					
Energy [GeV]	180	120	80	45.5		
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037		
Piwinski angle	1.21	5.94	6.08	24.68		
Bunch number	35	249	1297	11951		
Bunch population [10^10]	20	14	13.5	14		
Beam current [mA]	3.3	16.7	84.1	803.5		

30 MWInstability growth time [ms]1.9 (~6 turns)Radiation damping [ms]850Bunch by bunch feedback [ms]1.0 (~3 turns)

Growth of the most dangerous mode vs. damping factors

CEPC beam parameters of storage ring

The power of transverse feedback

$$\frac{1}{\tau_{FB}} = \frac{f_{rf}\sqrt{\beta_m\beta_k}}{2\cdot h\cdot E/e} \cdot G$$

TFB CEPC ring (CDR)		
Parameter	Value	
E	4.55E+10	
R	1.55E+05	
Beta-k	2.25E+02	
Beta-m	2.25E+02	
А	2.00E-04	
Т	3.30E-04	
tao	1.60E-03	
Р	8.98E+02	

$$P = \frac{1}{2} \cdot \frac{\Delta V_{FB}^2}{R_K}$$

TFB CEPC Ring (30MW)			
Parameter	Value		
E	4.55E+10		
R	1.55E+05		
Beta-k	2.25E+02		
Beta-m	2.25E+02		
А	2.00E-04		
Т	3.30E-04		
tao	1.00E-03		
Р	2.30E+03		

Conceptual solutions of TFB feedback

- Narrow-band feedback + bunch by bunch feedback
- Consider narrow-band feedback, in addition to bunch-bybunch ones, for specific instabilities such as resistive wall coupled bunch. Mode No. 19650 & 19651

Conceptual solutions

 Multi-feedback systems for one direction. The double feedback technique was implemented successfully at BEPCII. The result shows that the damping times almost equal to the two feedback systems add up.

卷第3期 核 技 术 年3月 NUCLEAR TECHNIQUES		Vol.42, No.3 March 2015
BEPCI	逐束团双反馈系统运	行试验研究
蓝清宠	^{1,2} 尹 頔 ¹ 岳军会 ^{1,2} 麻惠洲 ¹ 何 侈	ę'赵敬霞'
	曹建社1.2 随艳峰1.2	
	1(中国科学院高能物理研究所 北京 10004	9)
	2(中国科学院大学 北京 100049)	
摘要 逐束团反馈控	则是抑制束流不稳定性最好的方法,未来的环形]	E负电子对撞机(Circular Electron
Positron Collider, CEPC	等超大型装置的环周长为100 km,束流不稳定增长	时间为毫秒量级,这要求束流振荡
能在十几圈甚至几圈内	被抑制,意味着反馈系统提供的阻尼时间要很短,传	统的数字反馈系统显然难以实现。
一些缩短阻尼时间的方	法相继被提出,其中之一是在储存环中采用若干套束	流反馈系统作用于同一束流上,通
过阻尼效果的叠加以多	成少总系统阻尼时间。本文工作主要利用北京正负	电子对撞机二期(Beijing Electron
Positron Collider II, BEF	CII)同步模式外环上两个条带 kicker 的有利条件,开	展双反馈系统带束实验研究,一套
是自行研制的逐束团数	字横向反馈系统,另一套是Dimtel公司生产的商用逐	束团数字反馈系统,分别测量各系
统以及双系统的阻尼时	间。实验测得商用系统的阻尼时间是0.93 ms,自研)	反馈系统的阻尼时间为2.98 ms,双
反馈系统的阻尼时间为	0.70 ms,验证双反馈系统能够有效缩短阻尼时间。	
关键词 双反馈系统,	阻尼时间, 東流振荡, 线性拟合	
中图分类号 TL506		
DOI: 10.11889/j.0253-3	19.2019.hjs.42.030401	
Resear	ch of the double feedback system opera	ting in BEPCII
LAN Qinghong ¹	¹ YIN Di ¹ YUE Junhui ¹² MA Huizhou ¹ H	E Jun ¹ ZHAO Jingxia ¹
	CAO Jianshe ^{1,2} SUI Yanfeng ^{1,2}	
1(In	titute of High Energy Physics, Chinese Academy of Sciences, Beijin	ng 100049, China)
	2(University of Chinese Academy of Sciences, Beijing 100049	, China)
Abstract [Backgroun	d] Digital bunch-by-bunch feedback control is the best	way to control bunch instability. It
will be applied to the st	per collider to suppress the beam oscillation within a	dozen or even several cycles. The
damping time of circular	electron positron collider (CEPC) and FCC-ee (Future	Circle Collider e ⁻ e ⁺) is very short,
but it is impossible to rea	lize through using traditional digital feedback system. []	Purpose] This study aims to cure the
coupled-bunch instability	by using a dual-feedback control system to reduce the	damping time for BEPCII (Beijing

图 7 商用反馈系统阻尼时间 (a) 振荡衰减逐圈信息、(b) 数据拟合曲线 Fig.7 The damping time measurement of commercial feedback system (a) Turn-by-turn information of beam oscillation, (b) Fitting curve of data

根据以上数据计算:

$$\frac{1}{\tau_1} + \frac{1}{\tau_2} = 1.26 \text{ ms}^{-1} \approx \frac{1}{\tau_3} = 1.33 \text{ ms}^{-1}$$

最后算得双反馈系统阻尼率1.33 ms⁻¹基本是两 套反馈系统(仅水平方向)同时运行的阻尼率的叠加 1.26 ms⁻¹。图9是根据本次实验获取的各系统作用

The damping time of two TFBs

Conceptual solutions

 Multi-feedback systems were also tested at DAFNE. The damping times of the two feedback systems add up about linearly within the measurement error (10-20%)

• DAFNE, year 2008

- <u>New e+ Transverse Horizontal Feedback</u>
- The damping times of the two feedback's add up linearly
- Damping time measured:
- ~100 ms-1 (1 FBKs) → fb damps in 30 revolution periods (~10 us)
- ~200 ms-1 (2 FBKs) → fb damps in 15 revolution periods (~ 5 us)
- The power of the H FBK has been doubled

TFB Kicker design (main ring)

The stripline type kickers are used for transverse feedback.

Frequency / MHz

The power of longitudinal feedback

1	$\frac{f_{rf}\alpha}{G}$				
$\overline{ au}_F$	$_{B} = \frac{1}{2\nu_{s}E/e}$				
CEPC LFB (CDR)					
Parameters	Value				
f	6.50E+08				
alpha	1.11E-05				
mus	2.80E-02				
deltaphi	1.70E-03				
Tao(s)	2.00E-01				
E	4.55E+10				
$Rk(\Omega)$	2600				
V(V)	3.00E+03				
P(W)	1.73E+03				

 $P = \frac{1}{2} \cdot \frac{\Delta V_{FB}^2}{R_K}$

CEPC LFB (30MW-12ms)				
Parameters	Value			
f	6.50E+08			
alpha	1.48E-05			
mus	3.50E-02			
deltaphi	1.70E-03			
Tao(s)	1.20E-02			
E	4.55E+10			
$Rk(\Omega)$	2600			
V(V)	4.69E+04			
P(W)	4.23E+05			

CEPC TDR Collider Ring Cavity HOM CBI – Zhai Jiyuan

R/Q (Ω)

65.20

1.29 279.82

420.05

R/Q (Ω)

84.80

54.15

832.23

681.15

R/Q (Ω)

28.17

0.82 157.00

291.07

f (GHz)

1.17

1.38

0.84

0.91

f (GHz)

1.17

1.43

0.82

0.93

f (GHz)

1.09

1.32

0.79

0.90

	ttbarnew 5-cellold 2-cellcommoncommoncavitycavity		Higgs	w	Z by-pass separate cavity	
30 MW SR per beam. Consider only SR damping for HOM Q_L requirement. Cavity HOM spread not included.			common cavity	separate cavity		
Cell number / cavity	5	2	2	2	1	
Beam energy [GeV]	180.0	180.0	120.0	80.0	45.5	
Beam current per beam [mA]	3.4	3.4	16.7	84.0	802.6	
Revolution time [µs]	333.6	333.6	333.6	333.6	333.6	
Momentum compaction	7.1E-06	7.1E-06	7.1E-06	1.4E-05	1.4E-05	
Synchrotron tune	0.08	0.08	0.05	0.06	0.04	

Cavity number on line per beam	240	240	240	120	30
Average beta-x/y in RF region [m]	30	30	30	30	30
Longitudinal impedance threshold per cavity [ohm*MHz]	3.58E+11	3.58E+11	9.62E+09	9.05E+08	2.27E+07
Transverse impedance threshold per cavity [ohm/m]	1.88E+08	1.88E+08	7.48E+06	1.18E+06	5.12E+04
Cavity higher order mode	Required QL				
TM011	7.2E+06	9.4E+06	2.5E+05	2.4E+04	1.5E+03
TM020	9.3E+06	4.0E+08	1.1E+07	1.0E+06	4.2E+04
TE111	4.5E+05	1.3E+06	5.3E+04	8.4E+03	6.5E+02
TM110	5.5E+05	9.0E+05	3.6E+04	5.6E+03	3.5E+02

signed 650 MHz 2-cell cavity HOM coupler Q_L can meet Higgs and W damping requirement.

1-cell cavity similar to BEPCII can meet 30/50 MW Z HOM damping requirement. No beam feedback is needed even for 50 MW.

Low lumi Z with 2-cell cavities may need beam feedback depending on the operation beam current.

LFB Kicker design(main ring)

5

The waveguide loaded pillbox cavities are for the longitudinal direction.

Beam size measurement

CONCEPTUAL DESIGN FOR SR MONITOR IN THE FCC BEAM EMITTANCE (SIZE) DIAGNOSTIC

T. Mitsuhashi, K. Oide, KEK, Tsukuba, Japan F. Zimmermann, CERN, Geneva, Switzerland

X-RAY INTERFEROMETRY

A simple configuration for Young type double slit interferometer for beam size measurement in FCC-ee is shown in Fig. 5.

Figure 5: Young type double slit X-ray interferometer.

11/22/2022

X ray energy: 12keV Light spot size: x 40e-6m y 5e-6m Slits: Distance: d=200µm Width: a=8µm Distance from source to slit: R=100m Distance between observation point to slit 75m

Beam size measurement

- Other alternatives
 - Laser wire scanner
 - Based on Compton scattering using high power lasers
 - Based high power fiber laser to measure small beam size

Bunch length measurement

- Bunch by bunch measurement system to monitor the bunch length and its lengthening.
- Resolution about 1ps(10% of bunch length), streak camera based on visible light will be used.
- Visible SR beam line should be necessary.
- Heat deposit onto the SR extraction mirror is not so larger than existing SR machine, so we can use mirror design in SR facilities.(from T. Mitsuhashi)

Bunch by bunch measurement

- Bunch by bunch electronics are used to bunch current monitor, bunch by bunch BPM, beam trip monitor, bunch by bunch feedback and so on.
- The accelerator system involves many subsystems, and various conditions are mixed together, so, it is difficult to get to the real cause for beam trip. It is necessary for CEPC to develop bunch by bunch electronics for studying the beam trip.
- To optimize the beam-beam tune shift and to control the stability of individual bunches. This requirement makes it necessary to measure the beam current bunch-by-bunch.

Bunch by bunch electronics FPGA Ethernet CPU ADC1 PHY fadc 500MHz > PC В A В UART ADC2 fadc 500MHz С ADC3 D С ZYNQ fadc 500MHz QSPI D ADC4 Linux fadc 500MHz SD card fpoess 50 DI 1Hz Clock Ref. fan-out Clock DDR3 1GB DDR3 1GB Trigger ¥

11/22/2022

Buffer of bunch by bunch raw ADC data 36

Bunch by bunch electronics

Sampling clock: 500MHz,free running clock or externally clock locked with beam signal

DFE

37

Bunch by bunch electronics

- The bunch by bunch electronics was test in BEPCII.
- The bunch current and bunch position were measured by

12 mA

Bunch Current Monitor System

The 91st bunch position were traced in 500 turns

The bunch current were measured by electronics

Beam trip diagnosis

- High beam current can cause the beam instability and make devices unstable, thus easily lead to the beam trip. Beam trip seriously affects the efficiency of the machine, also may cause damage to the hardware system.
- Many accelerator all over the world has established a powerful beam trip diagnostic system, such as LHC, PEP-II, RHIC, TLS and so on.

Beam trip research in BEPCII

\rightarrow Beam trip events

- \rightarrow more than 300 beam trip events had been collected and analysis
- \rightarrow Many contrast experiment

\rightarrow Beam trip analysis by bunch-by-bunch system

- \rightarrow Time domain and frequency domain
- \rightarrow Bunch-by-bunch and turn-by-tune
- \rightarrow Tune in three dimensions

\rightarrow Some trip events become clear

- \rightarrow RF trip
- \rightarrow Magnet power instabilities
- \rightarrow Beam instabilities

Summary

- CEPC beam instrumentation are facing many technical challenges.
- Lessons learned from HEPS construction and BEPCII operations will be helpful for CEPC beam instrumentation design. Benefits are from key technologies R&D and CIPC members collaborations.
- More efforts should be paid to the system detail design in the future.

Thanks for your attention !