PETRA IV Beam Diagnostics

Gero Kube Geneva, 22.11.2022

Outline

- introduction / PETRA IV
- diagnostics overview
- BPM system
- bunch current measurements
- emittance diagnostics

HELMHOLTZ

Deutsches Elektronen Synchrotron (DESY)

Areal View (at present)

PETRA @ DESY

History

- 1988 2007: pre-accelerator PETRA II for HERA (p @ 40 GeV, e @12 GeV)
- since 2007: dedicated 3rd generation light source PETRA III, commissioned in 2009 TDR: DESY 2004-035

 \rightarrow 14 beamlines (15 experimental stations) operating in parallel

• from 2014: staged extension project W. Drube *et al.*, 2016 https://doi.org/10.1063/1.4952814

 \rightarrow up to 12 additional beamlines (presently not all of them in operation)

work on PETRA IV project at present: CDR: DOI: 10.3204/PUBDB-2019-03613 new Hall ring-based diffraction limited light source FLASH Ch. Schroer *et al.*, J. Synchrotron Rad. 25 (2018) 1277 European XFEL 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 CDF **Nriting TDR TDR** Shutdown PETRA III Start PETRA IV PETRA IV

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 – Gero Kube

Paul P. Ewald

Diffraction Limited Storage Ring

Principle Ideas

• natural emittance scaling

 $\varepsilon_x \propto \gamma^2 \theta^3 \Gamma$

 $\gamma = \frac{E}{m_0 c^2}$ Lorentz factor θ : bend. magnet angular deflection

 Γ : magn. lattice design of storage ring

- emittance reduction
 - reduction of beam energy
 - \rightarrow E defines radiation spectrum:

 $\hbar\omega_c\approx 0.665 E^2 B$

- \circ reduction of deflection angle θ per bend
 - \rightarrow from double bend achromat (2)
 - to multi-bend achromat (5,6,7,9,...)
 - → MAX-IV, ESRF-EBS, SIRIUS
 - → APS-U, DLS, PETRA IV, ...

PETRA IV

Layout and Parameters

PETRA IV.

- Hybrid 6-Bend Achromat (H6BA) lattice
 - o natural emittance: $\epsilon \approx 43$ pm.rad
 - \rightarrow use of damping wigglers: ϵ = 20 pm.rad

- operational modes (baseline design)
 - o brightness mode: 1920 bu. ($\Delta t = 4ns$) in 200 mA
 - timing mode: 80 bu. ($\Delta t = 96ns$) in 80 mA

• general machine layout

I. Agapov et al., submitted to Phys. Rev. Accel. Beams

- extensions (under discussion)
 - \circ 3840 bu. (Δt = 2ns) operation (each bucket filled)
 - \circ 40 bu. (Δt = 192ns) in 80 mA \rightarrow ≈ 10¹¹ particles / bunch

Page 6

Engineering Challenges DLS Design

R.T. Neuenschwander et al., Proc. IPAC'15, Richmond (VA), USA, TUXC2, p. 1308

- basic idea \rightarrow dispersion function plays important role in determining equilibrium emittance
 - has to be kept focused to small values in dipoles
 - \rightarrow strong focusing quadrupoles between dipoles
 - \rightarrow strong sextupoles to compensate for chromatic aberrations
- strong sextupoles \rightarrow introduce nonlinear effects (beam dynamics)
 - o reduction of dynamic aperture and clearance for injection
 - \rightarrow novel injection schemes (?)
- vacuum sytem
 - small beam pipe aperture
 - \rightarrow reduced conductance of vacuum system
 - \rightarrow internal NEG coating

- strong magnetic fields
 - bore radius has to shrink
 - \rightarrow reduce vacuum chamber aperture
- resistive wall impedance becomes issue
 - o may require new materials
 - \rightarrow higher electrical conductivity

Engineering Challenges (2) DLS Design

R.T. Neuenschwander et al., Proc. IPAC'15, Richmond (VA), USA, TUXC2, p. 1308

- strong magnetic field gradients •
 - large orbit amplification factors
 - \rightarrow orbit amplitude extremely sensitive to magnet alignment errors

large orbit amplification factors & small beam sizes •

- stringent tolerance requirements for magnet alignment + vibration amplitudes
 - \rightarrow tight tolerances for floor / girder vibrations
 - \rightarrow massive beamline girders
- high requirements for orbit stability •
 - pushing technology of 0
 - \rightarrow beam diagnostics
 - \rightarrow fast feedback systems

Instrumentation for PETRA IV

Systems provided by Beam Diagnostics Group

Information about Machine Parameters

- Beam Position Monitor (BPM) system
 - o beam orbit, input to FOFB system
- beam current measurements
 - o DC current, bunch current
- profile / emittance diagnostics
 - $\circ~\epsilon_{x,y}$, $~\Delta p/p,~\sigma_t$
- screen monitors
 - o transfer lines, injection and extraction
- parasitic bunch measurement
 - \circ bunch purity (\rightarrow time resolved measurements)
- High Frequency Movement Monitor (HF-Momo)
 - monitor movement of BPM blocks

Safety Aspects

- Beam Loss Monitor (BLM) system
- temperature measurement system
- Machine Protection System (MPS)
- online dosimetry

System provided by other Groups

- Fast Orbit Feedback (FOFB) system
- Multi Bunch Feedback (MBFB) system
 - 1.5 GHz stripline monitor design
- X-ray BPMs

Beam Position Monitor (BPM) System for PETRA IV Requirements

Performance (Electronics)

•	resolution on single bunch / turn	(0.5 mA / bunch)	< 10 µm
•	resolution on closed orbit	(200 mA in 1600 bunches @ 1 kHz BW)	< 100 nm (rms)
•	beam current dependence	(60 dB range, centered beam)	± 2 µm
•	long term stability	(measured over 6 days, temperature span ±1°C within a stabilized rack)	< 1 µm

First Turn Steering Tolerances

(Mechanics & Electronics)

< 500 µm

- manufacturing (pickup, feedthroughs, ...)
- alignment
- electrical offset

margin of 150 µm for each

BPM System for PETRA IV Mechanics

Actual Status

- worked out matched feedthrough design
 - o glass ceramics with $\varepsilon_r = 4.1$
- design of standard cell BPM / ID-BPM
 - round Ø 20mm / elliptical 22mm x 13mm
- order for batch of feedthroughs was sent out
 - critical: NEG activation temperature and temperature resistance of glass ceramics
 - $\rightarrow\,$ has to be tested in LAB
 - o alternative design (MAX-IV) under investigation
- tolerance study performed: S = 124 μm

well below requested limit of $150 \ \mu m$

S. Strokov et al., Proc. IBIC 2022, Krakow (Poland) TUP13.

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 – Gero Kube

Page 11

Page 12

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 – Gero Kube

BPM System for PETRA IV BPM Electronics: DESY Strategy

Drawback Libera Brilliance+

- long term stabilization starts at RF front-end
- about 10 years old technical platform

DESY Lab Strategy: MTCA.4 as technical platform

Development Project with Industrial Partner

- prototype development of MTCA.4 based BPM system
- long term stabilization scheme including cable paths
- functional prototype at end of TDR phase \rightarrow fully equipped crate ready for tests at PETRA III

Long Term Strategy

• industrial partner brings in ability to perform mass production & QA for PETRA IV

obsolence of components

BPM System for PETRA IV

Long-Term Drift Compensation

long term stabilization scheme including cable paths

- pilot tone compensation
- external crossbar switching

performance studies at PETRA III

long-term drift study

G. Kube et al., Proc. IBIC 2022, Krakow (Poland) WEP08.

continuous mode

timing mode

F. Schmidt-Föhre et al., Proc. IBIC 2021, Pohang (Korea) MOPP36.

40 bunches @ 100 mA

well within specifications < 1 µm

Page 14

BPM Tests at PETRA III

Additional Measurements

Closed Orbit Resolution

Single Bunch (Single Turn) Resolution

Beam Current Dependency (SA)

BPM System for PETRA IV

System Parts - Readout Electronics

Actual Status

- RTM evaluation ongoing
- switching module production (Libera XBS FE) ongoing
- FPGA/SW implementation ongoing
- two fully populated MTCA crate in operation at I-Tech
 - \circ 2x 6 AMC boards → each for 12 BPMs
- basic checks with equipped crates done
 - PLL locking, timestamps, signal acquisition (ADC, TbT, FA, SA)
- one MTCA crate already delivered to DESY
 - o installation performed last week in PETRA III environment

plan: start with prototype tests at PETRA III next week

Plans and Operational Experience

PETRA IV Beam Current Monitors

- DC current measurement: water cooled ceramic gap + commercial in-air NPCT (Bergoz)
- bunch current measurement: modified in-flange FCT design
 - FCT requirements (beyond CDR specifications)
 - \rightarrow 2 ns bunch resolution: high bandwidth \rightarrow large ceramic gap
 - \rightarrow 40 bunch operation: critical transient heating \rightarrow small ceramic gap
 - common design with company Bergoz

Operational Experience from PETRA III

- 2 damaged in-flange FCTs (timing mode operation: ~10¹¹ particles / bunch) \rightarrow interpretation: transient effects
- power deposition in thermally isolated core ($P_{loss} = 48 W$) \rightarrow temperatures between 100°C and 200°C possible
- monitor improvements: replacement of magnet core, better air cooling, temperature sensors...

new monitors operate since years in PETRA III without problems

Modifications and Tests

Remedies

e

- outcoupling geometry \rightarrow reduction of induced power by ~ factor 2
- FCTs with larger beam pipe cross section $\rightarrow \emptyset$ 40mm instead of 20mm

benchmarking of simulations

1 FCT ordered (Ø 60mm) for tests @ PETRA III

Diagnostic Section in PETRA III

compressed air

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 – Gero Kube

FCT tests

- \circ bandwidth
- transient heating impact
 - \rightarrow temperature sensor at core
- NPCT tests
 - o recently started

Bandwidth

• test at PETRA III: 10 bunches, 2ns bunch spacing

meets specifications

PETRAIV.

Transient Heating Impact

- environmental influence constant
 - constant air flow with 1.25 bar for core cooling
- measurement for different bunch patterns
 - 40 bunches / 100 mA: 139°C
 - 80 bunches / 100 mA: 91°C
 - 480 bunches / 120 mA: 51°C

small vacuum leakage
(after < 1 month of operation)</pre>

FCT- Wakefield and Thermal Simulations

Design FCT-CF6'-60.4_e3-40-UHV-LWL, 60 mm Beam Pipe

• Induced power

$\mathbf{P} = \mathbf{I}^2 \times \mathbf{t} \times \mathbf{k}_{\text{loss}} / \mathbf{Nb},$

with

- I: total beam current
- t: revolution time
- k_{loss}: wake-loss factor
- N_b: number of bunches

Timing Second mode mode Total beam current, mA 100 100 Number of bunches 40 80 Bunch length 44 ps (13.2 mm) Wake-loss factor 2.2×10⁻² V/pC Rev time, µsec 7.68 µsec Induced heating power, W 21 W 42 W

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 – Gero Kube

Thermal load simulation with induced heating power

of 42 W (no cooling)

- ambient temperature: 20°C
- fixed temperature: 20°C at edges of beam pipe
- stainless steel: thermal conductivity 15 W/m/K
- iron core: thermal conductivity 79.5 W/m/K

outlet

Thermal Simulations: Fan applied to Cavity with Iron Core

Flow Rate 0.3 m³/h of Air with 20°C Temperature - no Heat Losses by Radiation

inlet

• Fan is installed on the right Side of FCT, Outlet on the left Diameter of Inlet Window: 3 mm

T_{max} @ iron core: 156° C

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 – Gero Kube

Thermal Simulations: Fan applied to Cavity with Iron Core

Flow Rate 0.3 m³/h of Air with 20°C Temperature - no Heat Losses by Radiation

• Fan is installed on the right Side of FCT, Outlet on the left. Diameter of Inlet Window: 3 mm

	Timing mode	Second mode
Total beam current, mA	100	100
Number of bunches	40	80
Bunch length	44 ps (1	.3.2 mm)
Wake-loss factor	2.2×10	⁻² V/pC
Rev time, µsec	7.68	µsec
Induced heating power, W	42 W	21 W

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 - Gero Kube

Staus

- FCT core temperature too high for timing mode operation at PETRA III
 - \circ 40 bunches at 100 mA, beam pipe diameter Ø 60 mm
 - magnet core specification $T_{max} ≤ 150$ °C
- monitor was removed \rightarrow in contact with Bergoz: repair / improvements

Outlook PETRA IV

- FCT operation considerations for (new) 40 bunch mode
 - 40 bunches at 80 mA, beam pipe diameter Ø 40 mm
 - \rightarrow monitor most probably will be destroyed in this operation mode
- remedies
 - o forget about 40 bunch operation
 - $\circ~$ place monitor at location with larger cross section
 - \circ alternative monitor concepts \rightarrow optical measurement, stripline monitor

discussion to increase air flow (Bergoz: up to 3 bar could be possible)

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 - Gero Kube

General Considerations

Emittance Diagnostics

Performance Requirements

- horizontal / vertical emittances
 - \circ brightness mode, I_{bunch} = 0.1 mA
- horizontal / vertical resolution
- emittance measurement
 - o measurement of beam size
 - \circ expected beam sizes $\sigma_x = 7.7 \mu m$, $\sigma_y = 2.1 \mu m$

Emittance & relative Momentum Spread

• 2 parameters to be measured:

$$\sigma = \sqrt{\varepsilon \cdot \beta + \left(D \cdot \frac{\Delta p}{p}\right)^2} \qquad \Longrightarrow \qquad \begin{array}{c} 2 \text{ in } \\ me \end{array}$$

2 independent measurements:

$$\varepsilon = \frac{\sigma_2^2 - \left(\frac{D_2}{D_1}\right)^2 \sigma_1^2}{\beta_2 - \left(\frac{D_2}{D_1}\right)^2 \beta_1} \qquad \frac{\Delta p}{p} = \left[\frac{\sigma_2^2 - \left(\frac{\beta_2}{\beta_1}\right) \sigma_1^2}{D_2^2 - \left(\frac{\beta_2}{\beta_1}\right) D_1^2}\right]^{1/2}$$

 $\rightarrow \Delta \sigma = 0.2 \ \mu m$

goal: $\Delta \sigma = 0.1 \, \mu m$

10 pm rad / 05 pm rad

18 pm.rad / 2 pm.rad

with

1.0 pm.rad / 0.5 pm.rad

Δσ

 $\frac{-\varepsilon}{2\varepsilon_0}$

Page 24

Emittance Diagnostics

Conceptual Idea: high sensitivity on few micron beam sizes

• SR interferometer (diffractometer) \rightarrow visible light

SR Extraction

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 - Gero Kube

• SR based beam imaging \rightarrow X-rays

rms opening angle (visible SR light)

$$\Psi_{\rm y} = 0.4488 \left(\frac{\lambda}{\rho}\right)^{1/3} \sim 1 \,\mathrm{mrad}$$

→ unperturbed visible light extraction

not possible

Emittance Diagnostics

X-Ray based Beam Size Measurements

2 Diagnostic Beamlines

- canted ID section (±2.5 mrad) with 2x 3-pole wiggler
- each beamline equipped with
 - \circ pinhole imaging (XPC): σ = 10 µm ... 500 µm
 - ο Fresnel diffractometry (XFD): $\sigma = 0.9 \ \mu m \dots 18 \ \mu m$
 - (station for bunch purity diagnostics)

Fresnel Diffractometry (PSF dominated Imaging)

• principle: pinhole operated in Fresnel regime

DESY. | 1st FCCee Beam Instrumentation Workshop | 22.11.2022 - Gero Kube

Summary

- overview of PETRA IV project
- brief introduction to diagnostic systems
 - BPM system → concept of external crossbar switching works well
 - \circ bunch current measurements \rightarrow transient heating is critical for FCTs in modern light sources
 - \circ emittance diagnostics \rightarrow X-Ray based beam size measurements for large circumference machines
- thank you for your attention

Contact

DESY. Deutsches	Gero Kube
Elektronen-Synchrotron	WP 2.05 – Beam Diagnostics
	gero.kube@desy.de
www.desv.de	+49 40 8998 3077