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1Initial stage for heavy-ion collisions
▶ Heavy-ion collision ↔ multi-stage process with each stage 7→ effective theory

▶ Initial stage using Color Glass Condensate 7→ EFT for high energy QCD

Figure from S. Schlichting talk @ Initial Stages 2016 [Equilibration in weak coupling approaches]



2Classical colored fields

▶ High energy nucleus → many gluons ⇔
high occupation numbers for gluon fields
⇒ classical colored fields

Figure from F. Salazar’s talk @ INT program
[Probing QCD at High Energy and Density with Jets]

▶ Classical Yang-Mills field equations

(
Dµ Fµν

)[
Aµ

]
= Jν

covariant derivative

field strength tensor

gluons gauge field

color current of nucleus

▶ MV model for color charges 7→ Jµ

▶ Color electromagnetic fields ≡ Glasma
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3Not just any field...

Any field Colored field Lattice field

Fields images generated using DALL·E 2 OpenAI
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4...but a very particular color field

Monet field Van Gogh field Klimt field

Fields paintings generated using DALL·E 2 OpenAI



5Features of the Glasma fields

▶ Strongly coupled ⇒ non-linear regime,
out-of-equilibrium classical colored fields

▶ Gluon saturation built in: the saturation
momentum Qs → the only physical
parameter, here Qs = 2GeV

▶ Fields become dilute after δτ ≃ Q−1
s

▶ Fields arrange themselves in correlation
domains of transverse size δxT ≃ Q−1

s

▶ Anisotropic field configurations
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6Motivation

▶ Question: What is the effect of initial stage on the early-produced partons ?

Glasma fields hard probes

▶ Prerequisite: Glasma fields numerically solved using real-time lattice gauge theory

▶ Task: Develop a colored particle-in-cell solver for particles in Glasma background fields
Inspired by the colored particle-in-cell method for solving the equations of motion of particles interacting

with Yang-Mills fields

▶ Goal: Systematic study the impact of the Glasma stage on heavy quarks and jets
Quantifiable by evaluating momentum broadening δp2 and transport coefficients q̂ for jets and κ for heavy

quarks in the Glasma



6Motivation

▶ Question: What is the effect of initial stage on the early-produced partons ?

Glasma fields hard probes

▶ Prerequisite: Glasma fields numerically solved using real-time lattice gauge theory

▶ Task: Develop a colored particle-in-cell solver for particles in Glasma background fields
Inspired by the colored particle-in-cell method for solving the equations of motion of particles interacting

with Yang-Mills fields

▶ Goal: Systematic study the impact of the Glasma stage on heavy quarks and jets
Quantifiable by evaluating momentum broadening δp2 and transport coefficients q̂ for jets and κ for heavy

quarks in the Glasma



6Motivation

▶ Question: What is the effect of initial stage on the early-produced partons ?

Glasma fields hard probes

▶ Prerequisite: Glasma fields numerically solved using real-time lattice gauge theory

▶ Task: Develop a colored particle-in-cell solver for particles in Glasma background fields
Inspired by the colored particle-in-cell method for solving the equations of motion of particles interacting

with Yang-Mills fields

▶ Goal: Systematic study the impact of the Glasma stage on heavy quarks and jets
Quantifiable by evaluating momentum broadening δp2 and transport coefficients q̂ for jets and κ for heavy

quarks in the Glasma



6Motivation

▶ Question: What is the effect of initial stage on the early-produced partons ?

Glasma fields hard probes

▶ Prerequisite: Glasma fields numerically solved using real-time lattice gauge theory

▶ Task: Develop a colored particle-in-cell solver for particles in Glasma background fields
Inspired by the colored particle-in-cell method for solving the equations of motion of particles interacting

with Yang-Mills fields

▶ Goal: Systematic study the impact of the Glasma stage on heavy quarks and jets
Quantifiable by evaluating momentum broadening δp2 and transport coefficients q̂ for jets and κ for heavy

quarks in the Glasma



7Literature breadcrumbs

M. Ruggieri et al. [arXiv:1805.09617]
Heavy quarks probing the Glasma in p-Pb collisions

2018

Jet momentum broadening in the pre-equilibrium Glasma2020

Heavy quark diffusion in an overoccupied gluon plasma2020

Transport of hard probes through glasma2022

Momentum broadening of heavy quarks and jets in the Glasma2022

▶ Heavy quarks in Glasma

▶ Diffusion, momentum broadening,
nuclear modification factor
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7Literature breadcrumbs

Heavy quarks probing the Glasma in p-Pb collisions2018

A. Ipp et al. [arXiv:2009.14206]
Jet momentum broadening in the pre-equilibrium Glasma

2020

Heavy quark diffusion in an overoccupied gluon plasma2020

Transport of hard probes through glasma2022

Momentum broadening of heavy quarks and jets in the Glasma2022

▶ Glasma solved on the lattice

▶ Momentum broadening and q̂ for
light-like jets
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7Literature breadcrumbs

Heavy quarks probing the Glasma in p-Pb collisions2018

Jet momentum broadening in the pre-equilibrium Glasma2020

K. Boguslavski et al. [arXiv:2005.02418]
Heavy quark diffusion in an overoccupied gluon plasma

2020

Transport of hard probes through glasma2022

Momentum broadening of heavy quarks and jets in the Glasma2022

▶ Yang-Mills fields on the lattice

▶ Momentum broadening and κ for
static heavy quarks
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7Literature breadcrumbs

Heavy quarks probing the Glasma in p-Pb collisions2018

Jet momentum broadening in the pre-equilibrium Glasma2020

Heavy quark diffusion in an overoccupied gluon plasma2020

M. Carrington et al. [arXiv:2202.00357]
Transport of hard probes through glasma

2022

Momentum broadening of heavy quarks and jets in the Glasma2022

▶ Glasma in τ -expansion, hard probes
transport using Fokker-Planck

▶ Jet quenching q̂ in Glasma
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7Literature breadcrumbs

Heavy quarks probing the Glasma in p-Pb collisions2018

Jet momentum broadening in the pre-equilibrium Glasma2020

Heavy quark diffusion in an overoccupied gluon plasma2020

Transport of hard probes through glasma2022

D. Avramescu et al. [arXiv:2208.04781]
Momentum broadening of heavy quarks and jets in the Glasma

2022

▶ Glasma and full particle dynamics
solved on the lattice

▶ Realistic heavy quarks and jets



8Glasma on the lattice
▶ Boost-invariant equations of motion

1

τ
Di∂τA

i + igτAη∂τA
η = 0

1

τ
∂ττ∂τA

i − igτ2AηDiA
η −DjFji = 0

1

τ2
∂ττ

2∂τA
η −Di(DiA

η) = 0

▶ Glasma initial conditions

Ai(τ, x⃗⊥)
∣∣∣
τ=0

= Ai
1(x⃗⊥) +Ai

2(x⃗⊥)

Aη(τ, x⃗⊥)
∣∣∣
τ=0

=
ig

2
[Ai

1(x⃗⊥), A
i
2(x⃗⊥)]

▶ Wilson lines on the lattice ↔ gauge links
Wx,µ = exp{igaAµ(x)}

▶ Wilson loops on lattice ↔ plaquettes
Wx,µν ≡ Wx,µWx+µ,νW

†
x+µ,µW

†
x,ν

▶ Glasma lattice implementation with
plaquettes only in the transverse plane



8Glasma on the lattice
▶ Boost-invariant equations of motion

1

τ
Di∂τA

i + igτAη∂τA
η = 0

1

τ
∂ττ∂τA

i − igτ2AηDiA
η −DjFji = 0

1

τ2
∂ττ

2∂τA
η −Di(DiA

η) = 0

▶ Glasma initial conditions

Ai(τ, x⃗⊥)
∣∣∣
τ=0

= Ai
1(x⃗⊥) +Ai

2(x⃗⊥)

Aη(τ, x⃗⊥)
∣∣∣
τ=0

=
ig

2
[Ai

1(x⃗⊥), A
i
2(x⃗⊥)]

▶ Wilson lines on the lattice ↔ gauge links
Wx,µ = exp{igaAµ(x)}

▶ Wilson loops on lattice ↔ plaquettes
Wx,µν ≡ Wx,µWx+µ,νW

†
x+µ,µW

†
x,ν

▶ Glasma lattice implementation with
plaquettes only in the transverse plane



9Particle solver

▶ Wong’s equations ↔ classical equations of motion for particles (xµ, pµ, Q) evolving in
Yang-Mills fields Aµ

m
dxµ

dτ
= pµ, m

Dpµ

dτ
= g

1

TR
Tr

{
QFµν [Aµ]

}
pν , m

dQ

dτ
= −ig[Aµ, Q] pµ

coordinate momentum

massproper time coupling constant

color charge gauge field

where TR = 1/2 for quarks in the fundamental representation and D/dτ is the covariant derivative in

curvilinear coordinates



10Glasma spaghetti and noodles

▶ Glasma spaghetti trajectories ▶ Glasma noodles momenta evolution



11Color rotation on the lattice

x(τn−1)

NGP(τn−1)

NGP(τn)
Ux̂

fields at τn−1

x(τn)

NGP(τn)

fields at τn

Uη̂

x

η

y

▶ Lattice rotation of color charge inspired by the
colored particle-in-cell method

Q(τn) = U(τn−1, τn)Q(τn−1)U†(τn−1, τn)

with the Wilson line constructed as

U(τn−1, τn) = Uxn−1,x̂ · Uxn−1,η̂

Transverse gauge link

Rapidity gauge link

▶ Symplectic solver which assures Q ∈ SU(N) and

conservation of Casimir invariants
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12Quantifying the effect of Glasma

▶ Momentum broadening ↔ measure for the accumulated momentum of a probe in Glasma

δp2µ(τ) ≡ p2µ(τ)− p2µ(τform)

▶ Derivative of momentum broadening ↔ instantaneous transport coefficient

κL,T (τ) ≡
d

dτ
⟨δp2L,T (τ)⟩

▶ Anisotropy transfer anisotropic Glasma 7→ hard probes

heavy quark anisotropy ≡ ⟨δp2L⟩
⟨δp2T ⟩
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13Heavy quark momentum broadening

▶ Longitudinal and transverse
momentum broadening for
beauty quarks with initial pT

▶ Heavy quark anisotropy

▶ Dynamical quarks → finite
mass, initial pT ∈ [0, 10]GeV

▶ Static quarks → infinitely
massive ⇒ ⟨δp2⟩ ∝ ⟨EE ⟩

▶ Deviations from static quark
scenario, full dynamics matters

▶ Charm quarks are lighter than
beauty but are formed later
when the fields are dilute
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14Heavy quarks in Glasma flux tubes

Proper time evolution of the energy density from a Glasma correlation domain



14Heavy quarks in Glasma flux tubes

Trajectories of heavy quarks produced at the center of a Glasma flux tube



15Conclusions

Summary

▶ Developed a numerical solver for
probes in Glasma

▶ Used this solver to investigate
momentum broadening, transport
coefficients and anisotropy of heavy
quarks and jets in Glasma

▶ Studied the effect of finite formation
time, mass and initial transverse
momentum

Future studies

▶ Investigate how Glasma field
correlators affect the momentum
broadenings of hard probes

▶ Compute other observables: angular
correlations of QQ pairs

▶ Include energy loss mechanisms of
partons in Glasma (backreaction,
bremsstrahlung)

▶ Extend the study to 3+1D Glasma
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