

Baryon number violation and neutron oscillations

Baryon number violation and neutron oscillations

Anca Tureanu

Department of Physics University of Helsinki

Particle Physics Day Helsinki, 24 November 2022

Sakharov's baryogenesis conditions

Baryon number violation and neutron oscillations Anca Turean

- **)** Baryon number violation ($\Delta B
 eq 0$)
- C and CP symmetry violation
- Departure from thermal equilibrium

Sakharov (1967)

assuming "total CPT invariance of the (expanding) Universe"

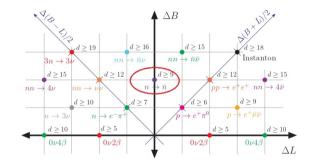
Sakharov's baryogenesis conditions

Baryon number violation and neutron oscillations

- Baryon number violation ($\Delta B
 eq 0$)
- C and CP symmetry violation
- Opposition of the second se

Sakharov (1967)

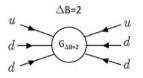
assuming "total CPT invariance of the (expanding) Universe"


Standard Model:

- B and L are automatically conserved in (renormalizable) couplings
- B L conserved also by non-perturbative effects

Beyond the Standard Model: $\Delta(B - L) \neq 0$

Baryon number violation and neutron oscillations Landscape of baryon and lepton number violation


adapted from J. Heeck and V. Takhistov, PRD 101, 015005 (2020), 1910.07647 [hep-ph].

Some representative processes and the minimal mass dimension d of the underlying EFT operator

Neutron-antineutron oscillations

Baryon number violation and neutron oscillations Anca Tureanu

- Six-fermion effective operator $\frac{1}{M^5}(udd)(udd)$, M > 1 TeV
- Effective renormalized $\Delta B = 2$ quadratic Lagrangian for Dirac field n(x):

$$\mathcal{L} = \overline{n}(x)i\gamma^{\mu}\partial_{\mu}n(x) - m\overline{n}(x)n(x) - \epsilon[n^{T}(x)Cn(x) + \overline{n}(x)C\overline{n}^{T}(x)]$$

$$\epsilon = \langle \textit{n}|(\textit{udd})(\textit{udd})|\textit{n}
angle \sim rac{\Lambda_{QCD}^6}{M^5} = rac{1}{ au_{nar{n}}}$$

• nn oscillations distabilize the nuclei

$$(A,Z)
ightarrow (A-1,ar{n},Z)
ightarrow (A-2,Z/Z-1) + {
m pions}$$

Baryon number violation and neutron oscillations Present experimental status:

 ILL (Grenoble): free neutron oscillations – the cleanest experimental and theoretical environment to perform the search

 $au_{nar{n}}$ > 2.7 years (8.7 imes 10⁷ s)

```
Baldo-Ceolin et al., ILL (1994)
```

New experiment at ESS promises a sensitivity in oscillation probability up to three orders of magnitude greater than ILL (some proposals go up to 5 orders!).

• Super-Kamiokande: *n* \bar{n} oscillation in ¹⁶O

 $au_{n\bar{n}} >$ 8.6 years

Abe et al., Super-Kamiokande collab. (2011)

• Sudbury Neutrino Observatory: nn oscillation in deuterium

 $\tau_{n\bar{n}} >$ 4.1 years

Aharmim et al., SNO collab. (2017)

$N\bar{N}$ oscillations: short chronology

Baryon number violation and neutron oscillations Anca Tureanu "CP-noninvariance and baryon asymmetry of the Universe"

Kuzmin (1970)

"Neutron Oscillations and the Existence of Massive Neutral Leptons"

Kuo and Love (1980)

"B - L nonconservation and neutron oscillation"

Chang and Chang (1980)

"Phenomenology of neutron oscillation"

Marshak and Mohapatra (1980)

Some more recent models:

• Models with large (TeV scale) extra dimensions

Dvali, Gabadadze (2002) Nussinov and Shrock (2002)

• Unified model $SU(2)_L \times SU(2)_R \times SU(4)_c$ with TeV scale seesaw

Babu, Dev and Mohapatra (2009)

• SO(10) GUT scale seesaw with TeV scalars

Babu and Mohapatra (2012)

Estimates of oscillation time: $\tau_{n\bar{n}} = 3 - 30\ 000\ years$

Beyond the Ordinary World: Mirror World

Baryon number violation and neutron oscillations

$$\left(SU(3)_{\textit{c}} imes SU(2)_{\textit{L}} imes U(1)_{\textit{Y}}
ight) imes \left(SU(3)_{\textit{c}}' imes SU(2)_{\textit{L}}' imes U(1)_{\textit{Y}}'
ight)$$

- Identical field contents (with opposite chirality) and Lagrangians
- Interactions between the O and M sectors by \mathcal{L}_{mix} (portals)

$$\mathcal{L}_{\textit{tot}} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{\textit{mix}}$$

• Mirror worlds can be many...

Dvali, Savicki and Vikman (2009)

Mirror World as dark matter and LIGO unexpected events

Baryon number violation and neutron oscillations Anca Tureanu

- \bullet Mirror world reheating temperature lower (constraints from Big Bang Nucleosynthesis): T'/T < 0.64
- Mirror world can explain all dark matter: $\Omega'_b/\Omega_b \approx 5$
- Stars are composed mainly of He, are more massive and evolve faster
- Number of stars: $N'(m) \sim 5 \times N(m)$
- Number of BH: $N_{BH}^\prime \sim 10 \times N_{BH}$

for a review on mirror world, see Berezhiani (2005)

Mirror world could provide explanation for LIGO puzzles

Merger objects:	BH-BH	NS-NS	BH-NS	BH-Mass gap
Number of events:	84	2	2	2

- Observed Merger Rates higher than theoretical predictions;
- Only one NS-NS observed event has electromagnetic counterpart
- Mass gap (BH or NS?) events observed

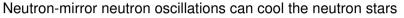
LIGO signals can come from the Mirror World!

Beradze and Gogberashvili (2019, 2021)

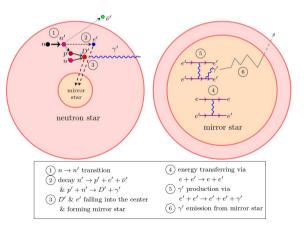
Neutron-mirror neutron oscillations

Baryon number violation and neutron oscillations Anca Tureanu

Berezhiani and Bento (2005)


 $n - \bar{n}$ oscillations: $\Delta B = 2$

 $n - \bar{n}'$, n - n' oscillations: $\Delta B = 1$, $\Delta B' = 1$


- \mathcal{L}_{mix} : Dirac or Majorana-type mass terms
- The nn' oscillations can speed up in magnetic fields
- Current experimental limits: $\tau_{nn'}, \tau_{n\bar{n}'} > 50 \ s$

Baryon number violation and neutron oscillations

Goldman, Mohapatra, Nussinov and Zhang (2022)

$$\epsilon_{nn'} < 10^{-17} eV$$

$$\epsilon^2 \gg 10^{-27},$$

 ϵ is a minute charge of e'

• Most general effective Lagrangian with $\Delta B = 2$ for neutrons:

violation and neutron oscillations Anca Tureanu

Barvon

number

$$\mathcal{L} = \bar{n}(x)i\gamma^{\mu}\partial_{\mu}n(x) - m\bar{n}(x)n(x) - \frac{i}{2}\epsilon_{1}[e^{i\alpha}\bar{n}^{T}(x)Cn(x) - e^{-i\alpha}\bar{n}(x)C\bar{n}^{T}(x)] - \frac{i}{2}\epsilon_{5}[n^{T}(x)C\gamma_{5}n(x) + \bar{n}(x)\gamma_{5}C\bar{n}^{T}(x)],$$

where *n* is Dirac field and *real* parameters *m*, ϵ_1 , ϵ_5 and α

- The Lagrangian violates C, P, CP
- Claim: Neutron-antineutron oscillations violate CP: two of Sakharov's conditions are fulfilled!

• Observable CP violation \equiv different transition probabilities:

 $P(neutron \rightarrow antineutron) \neq P(antineutron \rightarrow neutron)$

• In spite of the intrinsic CP violation in the Lagrangian, the transition probabilities are the same:

 $P(neutron \rightarrow antineutron) = P(antineutron \rightarrow neutron)$

- Transfer CP violating chiral U(1) phase to parity violating mass term: $im'\bar{n}\gamma_5 n$
- Intrinsic CP violation may be observed as contribution to EDM of neutron

Fujikawa and AT (2015, 2019)

• In chiral components,

$$-2\mathcal{L}_{mass} = \left(egin{array}{cc} \overline{n_R} & n_L^T(x)C \end{array}
ight) \left(egin{array}{cc} M_R^\dagger & M_D \ M_D & M_L \end{array}
ight) \left(egin{array}{cc} C \overline{n_R}^T \ n_L \end{array}
ight) + h.c.$$

diagonalized using mixing matrix

$$U = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & e^{i\beta} \end{pmatrix}, \quad \beta - \text{Majorana phase}$$

Fujikawa and AT (2021)

- Consider simultaneously nn and nn', nn' oscillations
 - 4×4 mixing matrix
 - 3 Dirac phases, 3 Majorana phases

CP violation in neutron oscillations can be achieved

Kupiainen and AT (in preparation)