
Particle physics day Helsinki, Nov. 24, 2022

Timo Enqvist

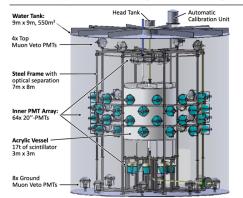
University of Jyväskylä

Introduction - Osiris

Pre-detector for JUNO

- monitors the purity of the liquid during the filling phase
- ► EPJC 81 (2021) 973 : The design and sensitivity of JUNO's scintillator radiopurity pre-detector Osiris
- Liquid scintillator detector (LAB)
 - mass 20 tons
 - cylinder shape; length and diameter 3 m
 - ► light yield ~ 10⁴ photons/MeV

Water buffer

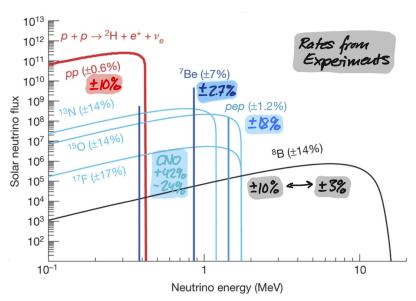

- cylinder shape; length and diameter 9 m
- ▶ 66 20-inch PMTs (QE \simeq 30%)

Physics topics

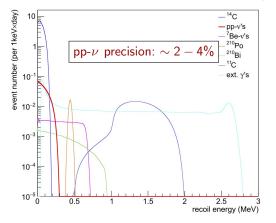
- What could be done with Osiris after JUNO filling has been completed?
- Detector upgrade needed (for any physics studies)
 - utilizing the JUNO liquid handling and purification facility possible
- ► Two ideas so far
 - a precision measurement of solar pp-neutrinos
 - neutrino oscillation θ_{12} (comparing ν and $\bar{\nu}$ mixing angles)
 - solar luminosity constraint (precise comparison with the Standard Solar Model)
 - ▶ first design study performed: EPJC 82 (2022) 779
 - ▶ double- β decay
 - two-neutrino double- β decay, for example: $^{78}\mathrm{Kr}, ^{106}\mathrm{Cd},$ or $^{124}\mathrm{Xe}$ (i.e., β^+ modes)
 - $\triangleright \beta^+$ mode not well known
 - to improve nuclear structure information
 - work in progress ...

Introduction - Osiris upgrade

Detector property	OSIRIS	Serappis	Unit
Effective photo coverage	9%	≤75%	
Photo electron yield Y_{pe}	275	≤2,000	p.e./MeV
Energy resolution (σ)	6%	$\sim 2.2\%$	at 1 MeV
Position resolution (σ)	13 cm	\sim 5 cm	at 1 MeV
External background rate	6Bq	\leq 2.3 mBq	



 $\begin{array}{c} \text{increasing number of PMTs,} \\ \text{or } \underline{\text{adding reflective cones}} \\ \text{to } \overline{\text{the existing PMTs}} \\ \end{array}$


additional shielding of 25 cm of steel

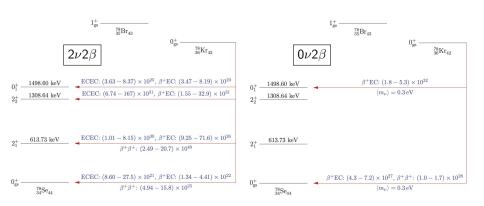
For solar neutrinos: concentration of $^{14}\mathrm{C}$ in the liquid scintillator: $\sim 10^{-18} \implies \sim 10^{-20}$

Physics topics - solar neutrinos in Stardard Solar Model

Results of simulations for solar neutrinos - EPJC 82 (2022) 779

Contribution	Rate (d^{-1})
pp neutrinos	12.5
⁷ Be neutrinos	4.5
¹⁴ C	1360
²¹⁰ Po	1.6
$^{210}\mathrm{Bi}$	1.6
¹¹ C	13.3
external γ's	35

- ▶ pp- and ⁷Be-neutrinos and ²¹⁰Bi: Borexino rate assumed
- ightharpoonup ¹⁴C: concentration ¹⁴C/¹²C = 10⁻²⁰ assumed (Borexino: 2 × 10⁻¹⁸)
- ▶ external background: with additional 25 cm steel shielding assumed

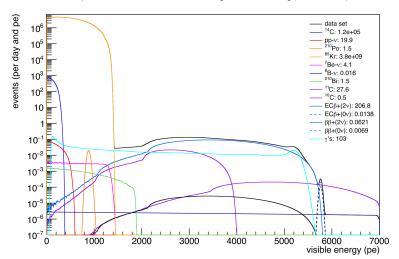

Physics topics – double- β decay

- $ightharpoonup 0\nu2\beta$ decay has not yet been observed
- ▶ For β^- mode, $2\nu 2\beta$ decay is known for ~ 12 isotopes
- ► For β^+ mode (ECEC, EC β^+ , $\beta^+\beta^+$), $2\nu2\beta$ decay reported only for one isotope, ¹²⁴Xe (ECEC mode)
- ▶ Observation of $2\nu2\beta$ decays provide a way to improve the nuclear structure information (nuclear matrix elements) for $0\nu2\beta$ decays

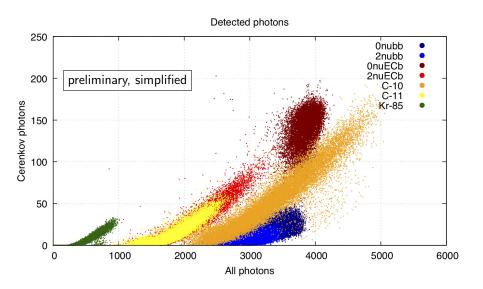
$$\frac{1}{T_{1/2}^{2\nu}} = G_{2\nu}(Q_{\beta\beta}, Z) \cdot |M_{2\nu}|^2$$

- ► A more detailed study ongoing for isotopes $^{78}\mathrm{Kr}$, $^{106}\mathrm{Cd}$, and $^{126}\mathrm{Xe}$ ($2\nu\mathsf{EC}\beta^+$) with upgraded Osiris
 - separation of Cherenkov and scintillation light, background conditions
 - ► test isotope loading (~3% of LS weight)

Double- β decay – isotope $^{78}{
m Kr}$



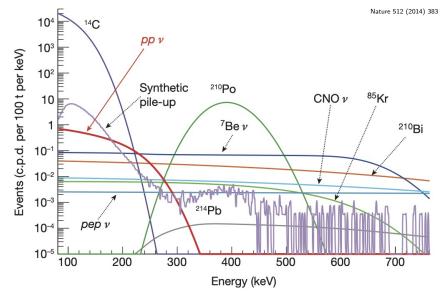
▶ J. Suhonen, PRC 87 (2013) 034318


$$\beta^{+}EC: 1.34 - 4.41 \times 10^{22} \text{ years}$$

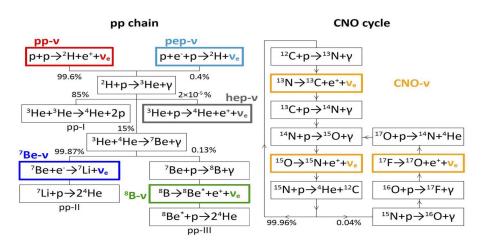
Double- β decay — isotope $^{78}{
m Kr}$, energy spectrum

npe/MeV: 2000 - FV rad 1.4m - Shielding 1.2m - 3% loading (95% enriched)

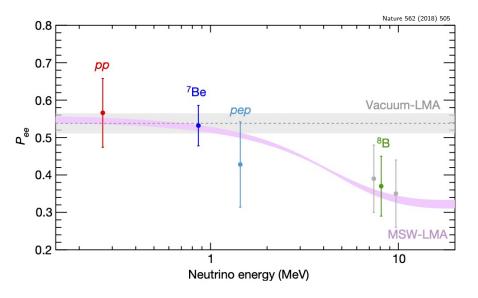
Double- β decay – isotope $^{78}{\rm Kr}$, Cherenkov and scintillation separation



Conclusions


- Osiris
 - JUNO pre-detector for monitoring liquid scintillator purity, available for other uses after JUNO filling is completed
 - possible to upgrade with relatively low costs (better photon coverage and thicker shielding, possible low-¹⁴C scintillator)
 - utilization of JUNO purification facility possible
- Possible physics topics of the upgrade
 - ightharpoonup precise solar pp- ν measurement
 - ⇒ luminocity constraint test
 - \implies mixing angle θ_{12} (for ν and $\bar{\nu}$)
 - ▶ double- β decay measurement of $^{78}{\rm Kr}$ for $2\nu{\rm EC}\beta$ (isotopes $^{106}{\rm Cd}$ and $^{124}{\rm Xe}$ also possible)
 - $\implies \beta^+$ mode not well known
 - ⇒ better nuclear structure information
 - ⇒ developing methods for Cherenkov and scintillation light separation

Backup slides


Borexino – solar pp- ν measurement

Solar proton-proton chain and CNO cycle

Electron neutrino survival probability

pp neutrino results

779 Page 10 of 12

Table 4 Dependence of the relative pp flux uncertainty measured by Serappis, δ_{pp} , on (a) the ¹⁴C content of the scintillator, (b) the photo electron yield, (c) the measuring time T, and (d) the level of internal ²¹⁰Bi background. All other parameters are kept according to the default scenario. For row (e), $R = 10^{-22}$, $Y_{pe} = 2000$ pe/MeV and T = 3000 d

is assumed while studying the impact of external constraints on the $^{14}\mathrm{C}$ and γ rates. Row (f) studies the dependence of the result on an external constraint on the Weinberg angle θ_W . All values quoted are median sensitivities

Eur. Phys. J. C

(a)	R(14C)	Borex	10^{-18}	10^{-19}	10^{-20}	10^{-21}	10-22
	δ_{pp}	5.6%	5.0%	4.2%	3.4%	2.8%	2.5%
(b)	Y_{pe} [pe/MeV]	250	500	750	1,000	1,500	2,000
	δ_{pp}	4.3%	4.1%	3.7%	3.6%	3.4%	3.3%
(c)	T [d]	500	1000	1500	2000	2500	3000
	δ_{pp}	6.1%	4.2%	3.4%	3.0%	2.7%	2.5%
(d)	²¹⁰ Bi [/(dt)]	10^{-2}	0.16	0.5	1	5	10
	δ_{pp}	3.4%	3.4%	3.6%	3.8%	4.9%	5.8%
(e)	$\sigma(^{14}C, \gamma)$	1	0.1	0.05	0.02	0.01	10^{-3}
	δ_{pp}	1.9%	1.8%	1.7%	1.5%	1.3%	1.2%
(f)	$\sigma(\theta_W)$	0.07%	0.1%	1%	5%	10%	100%
	δ_{pp}	3.4%	3.4%	3.5%	3.6%	3.8%	13%

Bolded values indicate the default scenario described in Sect. 5.1

(2022) 82:779