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An inhomogeneous universe

Cosmological principle:
On large enough length
scales the universe is
homogeneous and
isotropic.

This breaks down at the
about 100 Mpc.

How does this a↵ect the
metric of the spacetime?

How does this a↵ect
observable cosmological
parameters?

Source: Millenium Simulation, (Springel et al. 2005)
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Extracting cosmological parameters

Most observations are
received via
electromagnetic
radiation.

An important example:
The luminosity distance
-redshift relation.

Inhomogeneities can be
treated using various
approximations...

...but we are entering
the era of precision
cosmology.
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What now?

Questions:

How do inhomogeneities at di↵erent scales and geometries a↵ect the
observed luminosity distances and redshifts?

How do common approximation methods compare to a full relativistic
calculation?

How hard can it be?

1. Solve the metric from the Einstein equations.

2. Calculate the observed redshifts and luminosity distances by tracing
light rays in this background metric.

3. Comparison with observations and other methods, constraints on the
inhomogeneities.
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Solving the Einstein equations

The Einstein equations

Rµ⌫ �
1

2
gµ⌫R = 8⇡Tµ⌫

in their usual form cannot be
solved on a computer.

The equations must be
expressed as an initial value
problem. The most common
approach is the ADM-formalism.

Stability issues force various
transformations of equations
known as the BSSN-formalism.

5 / 14



Solving the Einstein equations

ds2 = �dt2 + e4��̄ijdx
idx j
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Initial conditions

Obtained by solving the
linearized constraint equations
at z = 100.

Su�cient resolution can be
achieved by demanding cubic
lattice symmetries.

For now, we assume energy
content is just cold dark matter.
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Solving the trajectories of light rays

The light trajectories and
redshift are solved from the
geodesic equation.

Luminosity distance and
apparent magnitude:

DL :=

r
L

4⇡F

m = M + 5 log10
DL

Mpc
+ 25

Luminosity distances can be
calculated by considering
congruences of nearby geodesics.
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Solving the trajectories of light rays

dx i
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= (k0)�1k i

kµrµk
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An example calculation

Sinusoidal
configuration
with the length
scale ⇡ 100 Mpc

End density
contrast ⇡ 10 %,
almost linear
evolution.

Work in progress,
take any numbers
with a grain of
salt.
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An example calculation
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What is to come?

Literature so far has studied mostly very symmetric models, such as
LTB-models. Do the results di↵er for less symmetric spacetimes?

The e↵ects of at the scale of 100 Mpc appear small. What about
larger structures?

How much dark energy changes the picture? Initial estimates can be
obtained using ⇤LTB-models.

What are the e↵ects on the CMB-dipole?
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Backup slides
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ADM-formalism

@t�ij = �2↵Kij + Di�j + Dj�i ,

@tKij = �DiDj↵+ ↵(Rij � 2KikK
k
j + KKij)� 8⇡↵(Sij �
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2
�ij(S � ⇢̃))

+ �kDkKij + KikDj�
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k ,

R + K 2 � KijK
ij = 16⇡⇢̃,

Dj(K
ij � � ijK ) = 8⇡S i .
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BSSN-formalism

Discretizations of the ADM-equations are numerically unstable due to
mixed second derivatives in the Ricci tensor.

The solution is to cancel the problem terms by adding zero in the
form of a suitable multiple of the constraint equations. This involves
introducing an auxiliary field �̄i = �̄jk �̄ijk .

In addtion, stability is improved by conformally transforming the
metric.

3 / 5



BSSN-formalism

@t� = �1

6
↵K +

1

6
@i�

i + �k@k�

@tK = �D2↵+ ↵(Āij Ā
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Linearized initial conditions

Choose K = constant and Āij = 0 at the initial time. This satisfies
the momentum constraint. Also choose hij = 0 at the initial timeslice.

The Hamiltonian constraint in the synchronous gauge:

r2 =

✓
1

12
K 2 � 2⇡⇢

◆
 5,

where  = e�.

Expanding linearly around the flat FLRW-background results in

r2 = �3

4
ȧ2�

Consider a sinusoidal density perturbation � / sin(2⇡x/L). The
resulting metric perturbation is � / L2 sin(2⇡x/L).
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