About myself

- My name is Patin Inkaew
- My hometown is Bangkok, Thailand

Stanford University

About myself

- I graduated from Stanford University, California
 - B.S. in Physics, with minor in Mathematics and East Asian Studies (Japanese)
 - M.S. in Computer science with specialization in AI / ML

Talk to me about

- Amateur Astronomy / Photography
- DIY / maker project
- Japanese food/ snack / pop culture
- Sport: swimming, badminton

PHYSICS PROJECTS EXPERIENCE

SCALLOPS: Simulation of Crystal Amplification of Laser Light and Optical Pulse Shaping

- Novel Petawatt laser, improved laser safety
- Simulation framework in Python
- Frantz-Nodvik equation, Short-Time Fourier Transform (STFT)

PHYSICS PROJECTS EXPERIENCE

Design of Cryogenic System for Prototype LArTPC (Liquid Argon Time Projection Chamber)

- New testing prototype for DUNE experiment
- CAD design, Vacuum, Pumping, and Cooling system
- ML-based particle tracking system and calorimetry

MACHINE LEARNING PROJECTS EXPERIENCE

Exploring a full joint observability game with Markov decision processes

- optimal policy for Liar's Dice modelled as Multi-agent MDP and POMDP (Partially Observable MDP)
- work on POMDP, comparing different policies based on probability/risk estimation

MDP

POMDP

SIMULATION OF 1000 GAMES

Player 1	Player 2	Player 1 wins	Player 2 wins
(L, DN)	(T, DN)	0.495	0.505
(L, DN)	(N, DC)	0.482	0.518
(T, DN)	(N, DC)	0.479	0.521

10 GAMES AGAINST HUMAN PLAYERS

Player 1	Player 2	Player 1 wins	Player 2 wins
Human	(L, DN)	0.5	0.5
Human	(T, DN)	0.3	0.7
Human	(N, DC)	0.3	0.7

MACHINE LEARNING PROJECTS EXPERIENCE

Text-guided Image Generation with Diffusion Models and CLIP

diffusion / score-based deep generative models for contrastive-assist conditional image synthesis

Exploring image captioning with the Perceiver

end-to-end transformer-based encoder-decoder architecture

Training CNN to Denoise Images Corrupted by Mixed Poisson-Gaussian Noise Without Ground Truth Data

training with unbiased risk estimator, transfer learning in astrophysical images

Split:train GT:two dogs on pavement moving toward each other . Predict:a black dog and a tri - colored dog playing with each other on the road .

MACHINE LEARNING PROJECTS EXPERIENCE

Physics-based scoring function for drug discovery

- numpy and pytorch physics-based scoring function to accelerate ML applications in drug discovery
- 3D protein structure as a 3D point cloud and graph
- learn geometric deep learning and equivariant network
- learn representation learning

 G_1

Pictures

Stockholm, Sweden

Narvik, Norway

Pictures

Reine, Norway

Pictures

From Oodi

Suomenlinna

SMARTHEP Program

real-time analysis for science and industry

- CERN + Computer Science & Industry
- Real-Time Analysis (RTA)
- Machine learning and Real-Time Analysis for Higgs boson measurements and fleet safety
 - University of Helsinki (here)
 - Secondments: CERN (Switzerland), Verizon Connect (Italy)

Startup Project

- US-ATLAS Mini Course on Jet
- basic ROOT (Plotting, Fitting, File IO)
 - <u>ROOT Primer</u>: good starting point
 - <u>ROOT training</u>: basic and summer student courses
- Columnar Analysis with Coffea
 - Uproot, Awkward Array, Coffea
 - HATS@LPC has many tutorials, recordings
 - Coffea deprecated <u>histogram</u> for dedicated package (<u>migration guide</u>)
 - Coffea will move to use <u>Vector</u> in Version 0.8 (Vector works with awkward)
 - Compare offline and online Jets
 - Offline Jets have more sophisticated reconstruction methods
 - Online Jets have more statistics

Some plots

Comparison of Jet pt

Comparison between offline and HLT Jet

DeltaR matching (<0.2)

Dataset: JMENanoRun3_v2p1_Run2022D-PromptReco-v2/JetMET

Offline pT(offline)/pT(HLT) in eta/pt-bins - Right: Offline = CHS

HLT

$OffHLT corrected_ptresponse_pT_000040_to_000045_eta_00_000_to_00_087$