

Projektiistai

Helsinki Institute of Physics

11th October, 2022

INTRODUCTION

- INITIAL CP5 Issues
- UNIVERSALII IN TTBAR EVENTS?
- Evidence Outside ttbar Events
- Evidence From the CPX Papei
- CONCLUSION
- BACKUP

- General information on profile likelihood top quark mass measurements
- Exact topic and abstract yet to be formulated
- See https://www.hip.fi/seminars/
- Thesis defense:
 - 22nd November at 1 PM in Chemicum hall A 129
 - More information and Karonkka invitations to be sent later
- Future work plans:
 - (3D CT imaging) Algorithm Specialist position offered at Planmeca
 - Starting date 1st November
 - Yet unconfirmed, but if funding and bureaucracy allows, planning on continuing on the top mass project and Mikael's supervision on a subsidiary 10% contract
- Point of focus in the rest of these slides: FSR tuning in CP5

INITIAL CF ISSUES

- UNIVERSALIT IN TTBAR EVENTS?
- EVIDENCE OUTSIDE TTBAR EVENTS
- EVIDENCE FROM THE CPX PAPE
- CONCLUSIC
- BACKUP

Starting Point

- We are working with the semileptonic UL17-18 m_t analysis
- Point of interest: the Legacy 2016 m_t analysis (PAS and paper draft available)
- From the figure on the left:
 - A significant pull is found only for the qFSR nuisance (around -1.5 $\rightarrow \alpha_S$ up)
 - Different behavior found for the bFSR nuisance (around $+0.3 \rightarrow \alpha_S$ down)

PROJEKTIISTAI

What about UL17(-18)?

- Universalit in ttbar Events?
- Evidence Outside ttbar Events
- EVIDENCE FROM THE CPX PAPE
- Backup

CMS

- Event yields have not converged between Data and MC, which is well shown in the number of jets spectrum and in the χ^2 spectrum of the kinematic fit (10% too much MC events in the good fit / low χ^2 region)
- This could be a symptom of a significant pull in some of the systematics

FSR Scale Down Variations for UL17

INTRODUCTION

INITIAL CP ISSUES

Universali' in ttbar Events?

Evidence Outside ttbar Events

EVIDENCE FROM THE CPX PAPE

PACIZUD

- Above: FSR scale variations $\frac{1}{2}$ and $\frac{1}{4}$ (i.e. α_S^{FSR} up)
- It seems possible that the Data-MC mismatch is explained by FSR: a better match with Data is reached between the $-\sigma$ and -2σ variations

FURTHER VARIATION IDEAS

- Initial CP5 Issues
- Universalit in ttbar Events?
- Evidence Outside ttbar Events
- Evidence From the CPX Pape
- CONCLUSION
- BACKUP

- The FSR scale variations are abstract, so we could experiment with explicit variations in Pythia8 settings
 - One variant of interest is FSR CMW scaling on (suggested by Markus Seidel)
 - According to these slides, increasing α_S^{FSR} by 0.009 has a similar impact
 - In the case of CP5, this means $\alpha_S^{FSR} = 0.118 \rightarrow 0.127$
- The majority of the selected events belong to semileptonic ttbar signal samples, so varying these suffices:
 - The main ttbar (semileptonic) samples have around 300M events, which was infeasible for us
 - \rightarrow but for χ^2 and the number of jets a smaller number suffices!
 - We decide to go with 4M events (2-3 fb⁻¹) on UL17, and (hence UL18 is excluded in the figures above and below see Backup for UL18 figures)
 - Datasets produced by **Mikael**
- Results given on the next slide

UL17: CMW on and $\alpha_S^{FSR} = 0.127$

INTRODUCTION

INITIAL CP3 ISSUES

- Universali: in ttbar Events?
- Evidence Outside ttbar Events
- EVIDENCE FROM THE CPX PAPE
- BACKUP

• Both with CMW scaling on and at $\alpha_S^{FSR} = 0.127$, Data and Simulation almost agree within the statistical limits

UNIVERSALITY IN TTBAR EVENTS?

- INITIAL CP5 ISSUES
- UNIVERSALIT IN TTBAR EVENTS?
- Evidence Outside Ttbar Events
- EVIDENCE FROM THE CPX PAPE
- CONCLUSION
- BACKUP

- We have so far observed potential FSR issues in the semileptonic m_t analysis:
 - It seems that α_S^{FSR} should be significantly higher than in CP5
 - Even if there are small differences in the Legacy16 and UL17-18 analyses, these share the same cuts and the same kinematic fitting framework
 - \rightarrow the issues could be an artifact of our analysis chain
- Can we find evidence that the issues are more universal?
- Let's start by looking at other ttbar analyses!

Run2 Jet Mass Analysis I

- INITIAL CP5 Issues
- UNIVERSALIT' IN TTBAR EVENTS?
- Evidence Outside ttbar Events
- Evidence From the CPX Papei
- Conclusio
- BACKUP

- The measurement of the jet mass distribution and top quark mass in hadronic boosted top decays provides a phenomenal study of FSR:
 - Here, the P8M1 (non-ttbar) and P8M2T4 (ttbar) tunes are used for 2016 and CP5 for 2017-2018
- A great tension is observed between CP5 and the previous generation tunes
 - In terms of the weight-based FSR nuisances, Data is found to match:
 - A -0.07 FSR nuisance value for P8M1/P8M2T4
 - A -1.59 FSR nuisance value for CP5
 - For CP5 the offset is non-negligible and suggests the need for a higher α_S^{FSR} , compatibly with the other results
- On the next slide, the distributions of τ_{32} (N-subjettiness metrics) are presented for the different tunes vs. Data
 - These distributions have proved to be sensitive to FSR

Run2 Jet Mass Analysis II

2016 (left) with $\pm \sigma$ variations, 2017-2018 (right) with $\pm 2\sigma$ variations

10/24

Resonance studies for m_W

- INITIAL CP5 ISSUES
- UNIVERSALITY IN TTBAR EVENTS?
- Evidence Outside ttbar Events
- Evidence From the CPX Pape
- CONCLUSION
- BACKUP

- A standalone study compared m_W resonances in ttbar events between P8M2T4 and CP5
- On the LHE/ME level (left) the tunes agree
- On the parton level **after FSR (middle)** an inter-tune discrepancy appears
- The discrepancy is mitigated by applying the FSR $-\sigma$ weight variation (right)
- A more robust analysis could be performed with GenJets for the two rightmost plots, but the results should be similar

EVIDENCE OUTSIDE TTBAR EVENTS

- INITIAL CP5 Issues
- Universality in ttbar Events?
- Evidence Outside ttbar Events
- Evidence From the CPX Papei
- CONCLUSION
- BACKUP

- So far we have found multiple pieces of evidence in ttbar production
- But can we find evidence outside ttbar events?
 - If not, a ttbar-specific sub-tune such as P8M2T4 would suffice for CP5
 - If yes, the issues seem to go onto a deeper level with CP5

Our ZtoQQ Study

- INITIAL CP3 Issues
- UNIVERSALITY IN TTBAR EVENTS?
- Evidence Outside ttbar Events
- Evidence From the CPX Pape
- CONCLUSION
- Backup

- Test planned together by **Mikael**, **Mikko** and me:
 - Idea: the P8M1 tune (and its variants, e.g. P8M2T4) has generally shown a good agreement between Data and simulation
 - Does it agree with CP5 and/or CP5 variations (on FSR)?
 - For the variations, use CMW scaling on and $\alpha_S^{FSR} = 0.127$, as earlier
 - \rightarrow Perform a GEN-only study on GenJets (execution by Mikael)
 - In a GEN-level tune comparison we can safely focus on channels which would be difficult to measure against Data
 - \rightarrow Choose **ZtoQQ: a non-ttbar topology**, where we can inspect the Z resonance shape, constructed from GenJets
 - Settings taken from: /ZJetsToQQ_HT400to600_qc19_4j_TuneCUETP8M1_13TeV-madgraphMLMpythia8/RunIISummer16MiniAODv3-PUMoriond17_94X_mcRun2_asymptotic_v3-v1/MINIAODSIM
 - Sufficient statistics were reached at around 1M events (results on the next slide)
- Further ideas: make a pure **ZtoBB** variant of the study to show, whether or not the FSR mismatch is similar to b jets and light quark jets

Our ZTOQQ STUDY: Z RESONANCE

INTRODUCTION

- INITIAL CP-ISSUES
- UNIVERSALIT IN TTBAR EVENTS?

Evidence Outside ttbar Events

Evidence From the CPX Pape

Conclusio

BACKUP

• With CMW scaling on or with the increment $\alpha_S^{FSR} = 0.118 \rightarrow 0.127$ CP5 agrees notably better with P8M1 on the resonance shape and position

B-FRAGMENTATION IN CP5 I

- Most evidence only available for generic FSR; what about qFSR vs. bFSR?
 - CP5 bFragmentation study shows a discrepancy that may be linked to bFSR
 - A quick reminder:
 - Bowler-Lund fragmentation function is used with $r_b = 0.855$ both in CP5 and P8M*:

$$f(z) = z^{-(1+r_b \, b \, m_b^2)} (1-z)^a \exp(-bm_T^2/z) \tag{1}$$

- For b quarks a and b are fixed, but $\mathbf{r}_{\mathbf{b}}$ can be fit against LEP data
- Monash $(P8M^*)$ tune results:
 - LHC data suggests that $r_b = 0.858 \pm 0.049$
 - From the LEP fit $r_b = 0.895^{+0.184}_{-0.108}$, i.e. the central value is fairly close to the tune default
- For CP5 $r_b = 1.056^{+0.196}_{-0.200}$ from the LEP fit:
 - I.e. $-\sigma$ variation is at $r_{b} = 0.856$, practically equal to the CP5 default
 - This is visualized on the next slide

B-Fragmentation in CP5 II

INTRODUCTION

INITIAL CP5 ISSUES

Universalit in ttbar Events?

Evidence Outside ttbar Events

EVIDENCE FROM THE CPX PAPE

- Conclusio
- BACKUP

- Visualization: **CP5 default** (green line) almost **agrees with the LEP** $-\sigma$ **variation** (blue dash-dot line)
- The CP5 default x_B distributions would move left, closer to LEP central value with a greater (b quark) $\alpha_{\rm S}^{\rm FSR}$; see the slide next slide!

WERSTY OF HELSING

B-FRAGMENTATION IN CP5 III

INTRODUCTION

- INITIAL CP5 ISSUES
- UNIVERSALIT IN TTBAR EVENTS?
- Evidence Outside ttbar Events
- Evidence From the CPX Papei
- Conclusio
- Backup

• A greater α_S^{FSR} moves the x_B distributions to the left (radHi in the Delphi/Opal/SLD plots below; thanks for the link to Markus Seidel!)

THE CPX PAPER REFERENCE: FSR

INTRODUCTION

- INITIAL CP3 ISSUES
- Universality in ttbar Events?
- Evidence Outside ttbar Events
- Evidence From the CPX Paper
- Conclusio
- BACKUP

CMS

- In the newest version (2) of the CPX flavor tune paper, FSR variations and the CMW scaling on setting are tested on the CP5 tune
- Especially interesting: the separation between two groomed subjets (ΔR_g) in ttbar events (Fig. 20)
- The (plain α_S) FSR up variation agrees best with Data
- CMW rescaling correction also in the correct direction but slightly overshoots

INTRODUCTION

- For the tune variants CP3/4/5 the PDF, α_S and α_S running are modified
 - Most importantly, $\alpha_S^{FSR} = 0.118$ in CP5 (ref. 0.1365 in P8M1)
 - If this change is the origin of FSR issues, one could expect that the same issues arise in all FSR flavors:
 - Occam's razor: The CP5 BFragmentation discrepancies could be explained in the simplest manner by the same issues existing both in bFSR and qFSR
 - The Legacy 2016 m_t analysis states that only qFSR (not bFSR) is displaced
 - Important: correlating qFSR with bFSR adds $+0.43 \, \text{GeV}$ to m_t
 - With what we have so far seen in the same measurement for UL17-18, the measurement is very sensitive to qFSR through the m_W resonance, but it might not be equally good at distinguishing bFSR
 - Most importantly, the bFSR nuisance and m_t variations display similar behavior
 - In a profile likelihood fit this can lead to the fit preferring shifting m_t (no Gaussian constraint) over the bFSR nuisance (with a Gaussian constraint)
 - \rightarrow Further tests (e.g. in the ZtoBB topology) necessary to understand the qFSR-bFSR relationship better

Universalit in ttbar Events?

Evidence Outside Ttbar Events

EVIDENCE FROM THE CPX PAPE

CONCLUSION

BACKUP

- INITIAL CP5 Issues
- Universality in ttbar Events?
- Evidence Outside ttbar Events
- EVIDENCE FROM THE CPX PAPER
- CONCLUSION
- Backup

- Initially, much of the evidence was found in the ttbar topology
 - However, also other event topologies seem to be affected
 - The need for a greater FSR α_S value is indicated
- A majority of the evidence cannot distinguish which FSR flavors are affected
 - There is currently evidence both for and against both bFSR and qFSR being affected
 - If the underlying culprit are the generator settings, full FSR being affected would seem like the more likely scenario

BACKUP

INTRODUCTION

INITIAL CP: ISSUES

UNIVERSALIT IN TTBAR EVENTS?

EVIDENCE OUTSIDE TTBAR EVENTS

EVIDENCE FROM THE CPX PAPE

CONCLUSION

BACKUP

THE CPX PAPER REFERENCE: REMARKS

INTRODUCTION

- INITIAL CP5 Issues
- Universality in ttbar Events?
- Evidence Outside ttbar Events
- Evidence From the CPX Pape
- CONCLUSIO
- BACKUP

- Below, some further comments on the CPX paper
- Philosophically the CPX tunes are UE Tunes, which only fit UE parameters

 - At 13 TeV, for CP3/4/5 both TransMin and TransMax end up preferring charged particle density over p_T sum density, which is underestimated (Fig. 5) causing trouble for jet calibration (issue does not exist for CP2, see Fig. 4)

• A potentially fundamental issue for ISR/FSR α_S value choices:

- The new choice $\alpha_S = 0.118$ is theoretically motivated, but lacks a priori checks
- Checks are only performed *a posteriori* with the found CP5 tune parameters
- That is, the CP5 parameters are first fit at $\alpha_S = 0.118$, and then a separate consistency fit is performed for α_S with the CP5 parameters fixed (Appendix A)
- This check does not answer, whether the α_S choice is the best one *a priori*
- For studies dependent on jet modeling it would be better to focus simultaneously on the UE and FSR parameters, while tuning is performed
- One could add further FSR checks, e.g. on the LEP BFragmentation Data

PROJEKTIISTAI

UL18 EVENT YIELDS

- Event yields have not converged between Data and MC, which is well shown in the number of jets spectrum and in the χ^2 spectrum of the kinematic fit (10%) too much MC events in the good fit / low χ^2 region)
- Issues similar as in UL17

FSR Scale Down Variations for UL18

INTRODUCTION

INITIAL CP ISSUES

- Universali: in ttbar Events?
- Evidence Outside ttbar Events
- EVIDENCE FROM THE CPX PAPE
- Discussion
- Backup

- Above: FSR scale variations $\frac{1}{2}$ and $\frac{1}{4}$ (i.e. α_S^{FSR} up)
- It seems possible that the Data-MC mismatch is (also for UL18) explained by FSR: a better match with Data is reached between the $-\sigma$ and -2σ variations

