Statistical Analysis (II)

Sadhana Dash

November 7, 2022

Outline

Sampling Distributions Central Limit Theorem Parameter Estimation (Point and Interval)

The Sampling Distributions:

Random Sample: The random variables X_1 , $X_2 \cdots X_n$, are a random sample of size n if all the X_i s are independent random variables and every X_i has the same probability distribution.

Statistic: A statistic can be any function of the observations in a random sample.

Sampling Distribution: The probability distribution of a statistic is called a sampling distribution.

The sample Mean

Let a random sample of size n be taken from a normal population with mean, μ and variance σ^2 .

Each observation in the considered sample, say, $X_1, X_2, ..., X_n$, is a normally and independently distributed random variable.

The sample mean is given by

$$\overline{X} = \frac{X_1 + X_2 \cdots X_n}{n} \tag{1}$$

We know that the linear functions of independent, normally distributed random variables are also normally distributed. Therefore, the distribution of sample mean will have a normal distribution.

The mean of such a distribution would be

$$E[\overline{X}] = \mu_{\overline{X}} = \frac{\mu_1 + \mu_2 \cdots \mu_n}{n} = \mu \tag{2}$$

The variance would be

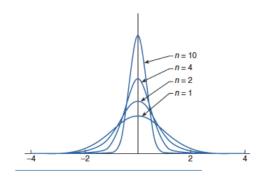
$$Var[\overline{X}] = \sigma_{\overline{X}}^2 = \frac{\sigma_1^2 + \sigma_2^2 \cdots \sigma_n^2}{n^2} = \frac{\sigma^2}{n}$$
 (3)

The expected value of the sample mean is the population mean, μ whereas its variance is 1/n times the population variance.

4 / 16

Sadhana Dash Statistical Analysis (II) November 7, 2022

Distribution of sample mean from a normal population for different sample sizes.



The Central Limit Theorem:

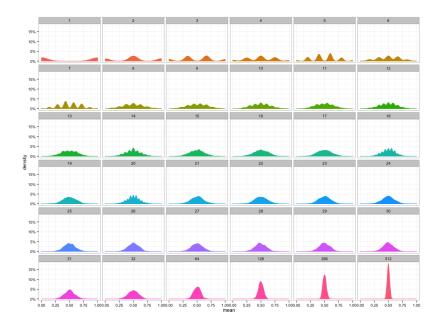
If X_1, X_2, \cdots , X_n be a sequence of independent and identically distributed random variables each having mean, μ and finite variance, σ^2 , then for large n, the distribution of $X_1 + X_2 + \cdots + X_n$ is approximately normal with mean $n\mu$ and variance $n\sigma^2$.

It follows from the the Central Limit Theorem, CLT $\frac{X_1+X_2+...+X_n-n\mu}{\sigma\sqrt{n}}$

is approximately a standard normal random variable.

<u>O</u>R

$$\frac{\overline{\overline{X}} - \mu}{\sigma / \sqrt{n}} \sim Z \text{ (for } n \to \infty)$$



The Point Estimation:

If X is a random variable with probability distribution f(x), characterized by the unknown parameter θ and if $X_1, X_2, ..., X_n$ is a random sample of size n from X , the statistic

 $\hat{\Theta} = h(X_1, X_2, \dots, X_n)$ used to estimate the best possible value of θ is called a **point estimator** of θ .

After the sample has been selected, $\hat{\Theta}$ takes on a particular numerical value $\hat{\theta}$.

 $\hat{\theta}$ is called the point estimate of θ .

A **point estimate** of a population parameter θ is a single numerical value , commonly denoted as $\hat{\theta}$ of a statistic $\hat{\Theta}$.

The statistic $\hat{\Theta}$ is called the point estimator.

The Mean Squared Error of an Estimator

The mean squared error of an estimator $\hat{\Theta}$, of the parameter θ , MSE($\hat{\Theta}$) is defined as

$$\mathsf{MSE}(\ \hat{\Theta}) = \mathsf{E}[(\hat{\Theta} - \theta)^2]$$

It can be shown that

$$\mathsf{MSE}(\ \hat{\Theta}) = \mathsf{E}[(\hat{\Theta} - \theta)^2] = \mathsf{E}[\ \hat{\Theta} - \mathsf{E}(\hat{\Theta})]^2 + [\theta - E(\hat{\Theta})]^2$$

$$= Var(\hat{\Theta}) + (bias)^2$$

For unbiased estimators, $MSE(\hat{\Theta})$ is equal to variance of $\hat{\Theta}$

Standard Error

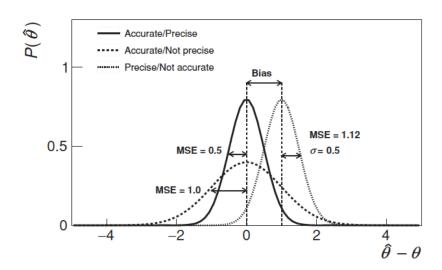
The standard error of an estimator $\hat{\Theta}$ is its standard deviation given by

$$\sigma_{\hat{\Theta}} = \sqrt{Var(\hat{\Theta})}$$
 .

If the standard error involves unknown parameters that can be estimated, one has to substitute those values into $\sigma_{\hat{\Box}}$

The error is then called an estimated standard error, denoted by $\hat{\sigma}_{\hat{\Theta}}$.

Sadhana Dash Statistical Analysis (II)



The sample variance, S^2 is given by

$$\mathsf{S}^2 = \frac{\sum\limits_{i=1}^{n} (\mathsf{X}_i - \overline{\mathsf{X}})^2}{(\mathsf{n} - 1)} \tag{4}$$

We know that

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = (\sum_{i=1}^{n} x_i^2) - n\bar{x}^2$$

From equation
$$(7)$$
,

$$(n-1)S^2 = (\sum_{i=1}^n X_i^2) - n\overline{X}^2$$

$$(n-1)E[S^{2}] = nE[X_{1}^{2}] - nE[\overline{X}^{2}]$$

$$= nVar(X_{1}) + n(E[X_{1}])^{2} - nVar(\overline{X}) - n(E[\overline{X}])^{2}$$

$$= n\sigma^{2} + n\mu^{2} - n(\frac{\sigma^{2}}{n}) - n\mu^{2}$$

$$=(n-1)\sigma^2$$

Thus,

$$E[S^2] = \sigma^2$$

The Method of Maximum Likelihood

Let us suppose that X is a random variable with probability distribution $f(x; \theta)$, where θ is a single unknown parameter.

Let $X_1, X_2, ..., X_n$ be a random sample of size n.

Then the likelihood function of the sample is defined as

$$L(x_1, x_2, ..., x_n | \theta) = f(x_1; \theta) f(x_2; \theta) ... f(x_n; \theta)$$

The maximum likelihood estimator of θ is the value of θ that maximizes the likelihood function L(θ).

The M L E of Exponential Parameter

Let X be an Exponential random variable with parameter λ .

The probability density function is

$$f(x;\lambda) = \lambda e^{-\lambda x}$$

The likelihood function of the random sample of size n is

$$L(\lambda) = \prod_{i=1}^{n} \lambda e^{-\lambda x_i}$$
$$= \lambda^n e^{-\lambda \sum_{i=1}^{n} x_i}$$

The log-likelihood function is

$$lnL(\lambda) = nln(\lambda) - \lambda \sum_{i=1}^{n} x_i$$

$$\frac{dlnL(\lambda)}{d\lambda} = (n/\lambda) - \sum_{i=1}^{n} x_i$$

Equating to zero

$$\hat{\lambda} = n/(\sum_{i=1}^{n} x_i)$$

The Confidence Interval:

An interval estimate for a population parameter is called a confidence interval.

We can find an interval (or range) of values that contains the actual unknown population parameter.

We can estimate lower L and upper U values between which the population parameter falls:

$$L < \theta < U$$

$$P(L \le \mu \le U) = 1 - \alpha$$
 , where $0 \le \alpha \le 1$

1 - α is called the confidence coefficient.

The typical confidence coefficients are 0.90, 0.95, and 0.99, with corresponding confidence levels 90%, 95%, and 99%, respectively. The greater the confidence level, the more confident we can be that the confidence interval contains the actual population parameter.

Confidence Interval on the mean of a normal population (variance known)

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a normal distribution with unknown mean μ and known variance σ^2 .

We know that the sample mean, \overline{X} is normally distributed with mean μ and variance, σ^2/n .

We can always construct a Z-statistic , $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$.

A **confidence interval estimate** for μ is an interval of the form $l \leq \mu \leq u$, where the endpoints l and u are computed from the sample data.

Let L and U be the random variables which correspond to lower and upper limits, we define

$$P(L \le \mu \le U) = 1 - \alpha$$
 , where $0 \le \alpha \le 1$

Since $\frac{\overline{X}-\mu}{\sigma/\sqrt{n}}$ has a standard normal distribution, we can write

P
$$\left(-z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2}\right) = 1 - \alpha$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

15 / 16

Continued:

P
$$\left(-z_{\alpha/2} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2} \right) = 1 - \alpha$$

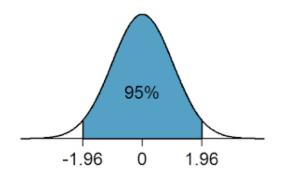
P $\left(\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \right) = 1 - \alpha$

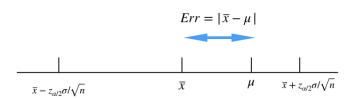
If \overline{x} is the sample mean of a random sample of size n from a normal population with known variance σ^2 , a $100(1 - \alpha)\%$ confidence interval on μ is given by

$$\overline{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \le \mu \le \overline{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

where $z_{\alpha/2}$ is the upper 100 $(\alpha/2)$ percentage point of the standard normal distribution.

Interpretation : If an infinite number of random samples are collected and a 100(1 - α)% confidence interval for μ is computed from each sample, 100(1 - α)% of these intervals will contain the true value of μ .





Choice of sample size:

Length of confidence interval:

The length of a confidence interval is a measure of the precision of estimation . It is given by

$$2 \times z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$$

One can define the error, $Err = |\overline{x} - \mu|$

The error is less than or equal to $z_{\alpha/2}\frac{\sigma}{\sqrt{n}}$ with confidence $100(1-\alpha)$. If \overline{x} is used as an estimate of μ , we can be $100(1-\alpha)\%$ confident that the error will not exceed a specified amount Err when the sample size is $n=(\frac{z_{\alpha/2}\sigma}{Frr})^2$

We can observe that

- As the desired length of the confidence interval decreases, the required sample size n increases for a fixed value of and specified confidence.
- As σ increases, the required sample size n increases for a fixed desired length and specified confidence.
- As the level of confidence increases, the required sample size n increases for fixed desired length and standard deviation.