Detectors in High Energy Physics Experiments

Basanta K. Nandi IIT Bombay

Detectors

1. Collision: Yes/No?

2. Vertex

3. Luminosity

$$E\frac{d^3\sigma}{dp^3} = \frac{1}{L} \frac{1}{2\pi p_T} \frac{d^2N}{dp_T dy}$$

4. Centrality

$$\eta = -\ln(\tan(\theta/2))$$

Helps in extracting weak decays

Physics Objective

Particle Physics:

Heavy Ion Physics:

Need to know energy and position of both the gammas to construct the Higgs particle

Need to know both momentum and particle identification

Bottom Line

To catch all the particles (identified) with good energy, momentum and position resolution

Design of the experiment

- Catch all the particles
 - \gt 4 π detector coverage
- Momentum of the particle
 - Magnetic Field

Tracking Chamber

Inner tracker: low p_T

Outer tracker: high p_T

Design of the experiment

Identify Hadrons

- Time of flight measurement
 - Need a detector to detect t = 0
 - Need a detector to detect t after a certain distance

(high timing resolution to go to high p_T)

> TPC,

Design of the experiment

Identify Leptons

➤ e : RICH, EMCAL, TRD

 $\triangleright \mu$: Muon spectrometer

Photons

Electromagnetic Calorimeter

Hadronic Energy

Hadronic Calorimeter

Momentum measurement

Tracking Chamber

If you put together, the experiment becomes so complicated that you can not believe it !!!

A MODERN HIGH ENERGY PHYSICS EXPERIMENT:

- Go to higher and higher energies
 - Large number of particles produced in a given interaction
- ❖ Look for Rarer processes work at very high luminosities
 - Multiple interactions in a single event

TO COPE SUCH COMPLEX REQUIREMENT:

- Use a very large and composite detector system
 - Tracking devices, Calorimeters
- To separate interactions and particles in a given Interaction – Make readout finer
 - Large number of readout channels

Ionization

Mean number of ion-electron pair:

$$N \neq \frac{Energy \ loss}{Ionization \ Pot.}$$
 $N = \frac{Energy \ loss}{30 \ eV}$

For example, for a 3 keV particle, an average of $\frac{3000}{30} = 100$ ion-electron pair

- Pulse signal on the electrode is formed by induction due to the movement of the ions and electrons to respective electrodes. Not by the actual collection of charges
- > For simplicity, take cylindrical proportional counter

The electric field, and potential can be written as

$$E(r) = \frac{CV_0}{2\pi\epsilon} \frac{1}{r} \qquad C = \frac{2\pi\epsilon}{\ln(b/a)}$$

$$C = \frac{2\pi\epsilon}{\ln(b/a)}$$

$$\varphi(r) = -\frac{CV_0}{2\pi\epsilon} \ln\left(\frac{r}{a}\right)$$

The potential energy of the charge, $W = q\varphi(r)$

If the charge moves a distance dr, then the change in potential energy is

$$dW = q \frac{d\varphi(r)}{dr} dr$$

For a cylindrical capacitor, the electrostatic energy stored $W = \frac{1}{2}lCV_0^2$

$$dW = lCV_0 dV = q \frac{d\varphi(r)}{dr} dr$$
 $\Rightarrow dV = \frac{q}{lCV_0} \frac{d\varphi(r)}{dr} dr$

The potential can be written as

$$\varphi(r) = -\frac{CV_0}{2\pi\epsilon} \ln\left(\frac{r}{a}\right) \Rightarrow \frac{d\varphi(r)}{dr} = -\frac{CV_0}{2\pi\epsilon} \frac{a}{r}$$

> We have $dV = \frac{q}{lCV_0} \frac{d\varphi(r)}{dr} dr$

Assume that an ionizing event has occurred and that multiplication takes place at a distance r' from the anode. The total induced voltage from the electrons

$$V^{-} = \frac{-q}{lCV_0} \int_{a+r'}^{a} \frac{d\varphi(r)}{dr} dr = \frac{-q}{2\pi\epsilon} \ln\left(\frac{a+r'}{a}\right)$$

Similarly from the positive ions

$$V^{+} = \frac{q}{lCV_{0}} \int_{a+r'}^{b} \frac{d\varphi(r)}{dr} dr = \frac{-q}{2\pi\epsilon} \ln\left(\frac{b}{a+r'}\right)$$

Ratio of the contribution

$$\frac{V^{-}}{V^{+}} = \frac{\ln\left(\frac{a+r'}{a}\right)}{\ln\left(\frac{b}{a+r'}\right)}$$

Total potential is the sum of these two

$$V = V^{-} + V^{+}$$

$$= \frac{-q}{2\pi\epsilon l} \left[\ln \frac{a+r'}{a} + \ln \frac{b}{a+r'} \right]$$

$$= \frac{-q}{2\pi\epsilon l} \ln \frac{b}{a} = \frac{-q}{lC}$$

The multiplication region is limited to a distance of a few wire radii. For example, $a=10\mu m, b=10mm, r'=1\mu m, V^-<1\%V^+$

pulse shape

The discharge (slightly) lowers the anode potential.

After the discharge the potential of the anode is restored by the high voltage power supply.

Multi Wire Proportional Counter

pulse shape

The discharge (slightly) lowers the anode potential.

After the discharge the potential of the anode is restored by the high voltage power supply.

Drift Chamber

Time Projection Chamber

Inner Tracking System

Detector	Technolog y	Purpose	Coverage	Position
ITS-SPD	Si-Pixel	Tracking Vertex	$ \eta < 2$ $ \eta < 1.4$	r = 3.9cm $r = 7.6cm$
ITS-SDD	Si-Drift	Tracking PID	$ \eta < 0.9$	r = 15cm $r = 23.9cm$
ITS-SSD	Si-Pad	Tracking PID	$ \eta < 1$	r = 38cm $r = 43cm$

- Tracking
- \triangleright Primary vertex resolution $< 100 \mu m$
- Reconstruct the secondary vertex
- ➤ Particle identification below 200 *MeV/c*
- Reconstruct particles traveling through the dead region of TPC

Time Projection Chamber

- Main tracking detector
- Momentum measurement

$$0.1 \frac{GeV}{c} < p_T < 100 \frac{GeV}{c}$$

- Particle identification
- Vertex measurement
- Coverage: $|\eta| < 0.9, \phi = 100\%$
- Position: 85 cm to 247 cm

Transition Radiation Detector

- Consists of 522 detectors
- Arranged in 18 sectors in azimuth
- Each of 5 stacks in longitudinal direction
- > 6 layers per stack.
- Diameter of the TRD cylinder ~ 7 m
- Length 7 m.
- ► Location: r = 290 cm 368 cm
- Readout channels 1.15 million
- Sampling the signal in 20 time bins.
- ➤ The active gas is a xenon-CO₂ mixture.
- Used for electron identification above 1 GeV/c, Tracking
- > Pseudo-rapidity coverage: $|\eta| < 0.8$

Transition Radiation Detector

Transition Radiation Detector

Time of Flight

- Multigap Resistive Plate Chambers (MRPCs)
- double-stack design: two stacks of five gas gaps.
- Basic unit active area 120 × 7.4 cm2
- consists of 1593 MRPC strips
- subdivided into 18 azimuthal sectors.
- 152928 total readout channels.
- cylindrical array (~ 141 m² of active area)
- Position: $r = 370 \, cm 399 \, cm$
- \triangleright Pseudorapidity: $|\eta| < 0.9$

- Timing resolution was measured to be better than 50 ps.
- ➤ Provides charged-particle PID in the intermediate momentum range (below 2.5 GeV/c for pions and kaons, and up to 4 GeV/c for protons)
- > Also used as trigger for cosmic ray events and ultraperipheral collisions.

❖ EMCAL

- Shashlik-type lead-scintillator sampling calorimeter
- > Consists of 4416 individual modules
- > Each of the modules is composed by 4 optically isolated towers
- ➤ Total number of towers -17664
- ➤ The optical readout of each tower is provided using wavelength shifting fibers coupled to an Avalanche Photo Diode (APD).
- \triangleright Position: $r = 430 \ cm 455 \ cm$
- \triangleright Pseudorapidity: $|\eta| < 0.7$
- ightharpoonup Azimuth: $80^{0} < \phi < 187^{0}$

PHOton Spectrometer (PHOS)

- Based on PbWO₄ (or PWO)
- Consists of 12544 channels
- ➤ Position: $r = 460 \ cm 478 \ cm$
- > Pseudorapidity: $|\eta| < 0.12$
- \blacktriangleright Azimuthal angle: $220^{0} < \phi < 320^{0}$
- Provides L0 and L1 levels to CTP to select events with high-energy photons.

Charged Particle Veto (CPV)

- Based on MWPC
- Placed on top of PHOS
- ➤ Material budget is less than 5% X0. Gas Ar: 80%, CO2: 20%
- > Pseudorapidity: $|\eta| < 0.12$
- \triangleright Azimuthal angle: $220^{0} < \phi < 320^{0}$
- Provides charged particles information

High Momentum PID (HMPID)

- Consists of 7 RICH counters
- \triangleright Position: r = 490 cm
- > Pseudorapidity: $|\eta| < 0.6$
- \triangleright Azimuthal angle: $1^0 < \phi < 59^0$

- ightharpoonup Inclusive measurement of identified hadrons at $p_T > 1 GeV/c$
- Enable $\frac{\pi}{K}$ and K/p, on a track-by-track basis, up to 3 GeV/c and 5 GeV/c, respectively
- \triangleright Identification of light nuclei and anti-nuclei $(d, t, 3He, \alpha)$ at high p_T

Muon Forward Tracker

- High resolution Si-tracking detector installed in front of the Muon Spectrometer
- Consists of two half-cones containing five detection half-disks
- ➤ Placed along the beams axis between -460 mm and -768 mm away from the IP
- \triangleright Covers the pseudorapidity domain $-3.6 < \eta < -2.5$

Muon Spectrometer

ΧУ

ху

Tracking chambers

Absorber

Main Components:

Trigger chambers

Filter

- an absorber to filter the background
- a set of tracking chambers before, inside and after the magnet
- a set of trigger chambers.
 - Absorber: Carbon + Concrete
 - Tracking Chambers:
 Cathode Pad/strip chambers
 Spatial resolution: < 100μm
 - Trigger: RPCSpatial resolution: < 10mm
 - Timing resolution ~ 2 ns (to identify bunch crossing)

► Pseudorapidity: $2.5 \le \eta \le 4$

Magnet

Zero Degree Calorimeter

- > Two identical sets of calorimeters located on both sides of IP
- Located 112.5 meters away from IP.
- ➤ Each set consists of a neutron (ZN) and a proton (ZP) calorimeter.
- > The ZN is placed at zero degree with respect to the LHC axis,
- ➤ The ZP is positioned externally to the outgoing beam pipe.
- > The spectator protons are separated from the ion beams by the dipole magnet

V0 Detector

- Central Trigger Processor
- Generates decision for ALICE based detector signals and information about LHC filing scheme
- Hardware Level Trigger (Low Level Trigger):
 - Level-0 (L0): 0.9 μs after the collision using V0, T0, EMCal, PHOS
 - Level-1 (L1): 6.5 μs after L0 evaluating L0 accepted events

L0 and L1 trigger are sent to all detectors with a latency of 300 ns enable buffering of data by detector FEE

- Level-2 (L2): decision is made after $100 \ \mu s$ and triggers sending of event data to DAQ and HLT (High Level Trigger)
- Input Information:
 - Signal from detectors: Inform the CTP that event has happened
 - LHC filling scheme: Used by CTP to suppress the background

