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1. QCD Thermodynamics



QCD Lagrangian

For conditions accessible in heavy ion collisions (HICs), the QCD 

coupling is large, standard perturbative techniques fail.  



Lattice QCD approach
Direct determination of equilibrium properties of QCD medium by numerical evaluation 

of the  QCD path integrals

Starting point, the vacuum-to-vacuum transition amplitude in the Feynman path integral 

formulation: 

The partition function of a grand canonical ensemble of quarks, antiquarks and gluons in 


thermal equilibrium is obtained by  with range of : 0 to  where T is the temperature 


of the system. Further, for consistency, the classical gluon fields need to obey periodicity while 

the fermion fields anti-periodicity in 

t → iτ τ β =
1
T

τ



Lattice QCD approach
Path integral for the thermal equilibrium ensemble average  of an observable  ⟨Ô⟩ Ô

The QCD Lagrangian being bilinear in the quark fields allow for an analytical evaluation: 

In LQCD, this path integral is evaluated numerically by discretising space and time into 

 lattice points. This method works well as long as the fermionic determinant is 


positive which is the case for zero baryon chemical potential, . At non-zero , we 

have the sign problem and only recently there has been significant progress in this direction.

N3
s Nτ

μB μB



Lattice QCD approach
Basic thermodynamic quantities from the partition function:

One approach to circumvent the sign problem is by incorporating Taylor expansion, for example, in 2+1 flavor: 



Lattice QCD approach
Basic thermodynamic quantities from the partition function:

Ref: 1504.05274



High temperature limit

At high enough temperatures, m / T , where m is the quark mass. Massless QCD becomes 

good approximation. Further, asymptotic freedom implies quarks and gluons become progressively 

non-interacting. For the conditions accessible to HICs, massless limit of QCD with 3 flavours is 

relevant. The pressure in this limit:

→ 0

Q.1: Starting from BE (gluons) and FD (quarks) distribution (see next slide), obtain the above pressure 

        (count dof correctly)

Q.2: Find similar expressions for other thermodynamic quantities: energy density, entropy 

density, number density, speed of sound. 



Low temperature limit

At low temperature, color confinement takes over and quarks and gluons are confined in colorless 

hadrons. Thus, baryons and mesons become relevant degrees of freedom in this region and a non-
interacting gas of hadrons and all resonances- the hadron resonance gas (HRG) model provides a 

good approximation:

Q.3: Find expressions for the thermodynamic quantities: pressure, energy density, entropy 

density, number density, specific heat capacity. 



QCD Phase Diagram

Ref: 1504.05274

QCD has 3 conserved charges, namely baryon,

electric and strangeness charges apart from 

energy. In the Grand-Canonical ensemble there 

are four corresponding Lagrange undetermined 

multipliers: namely T and the 3 chemical 

potentials: 


Hence most general QCD phase diagram is 4 

dimensional with T,  as the axes


In HICs, the initial conditions of the incoming 

nuclei are such:

 Net Strangeness = 0

 Net Baryon / Net Electric = 2.5


This results in T-  as the free parameters

(assuming complete mixing)

  

μB, μQ, μS

μB, μQ, μS

μB



QCD Phase Diagram

Ref: 1504.05274

Chiral crossover temperature 

in (2+1) flavor physical QCD: 

  



QCD Phase Diagram

Ref: 1504.05274

Chiral crossover temperature 

in (2+1) flavor physical QCD: 

  

Curvature of the Chiral crossover temperature 

in (2+1) flavor physical QCD: 

  


NOTE: this result is for real ; approaches with imaginary 

get a factor of 2 larger curvature

μB μB

QCD CEP: ?



QCD Phase Diagram

Ref: 1504.05274

Chiral crossover temperature 

in (2+1) flavor physical QCD: 

  

Curvature of the Chiral crossover temperature 

in (2+1) flavor physical QCD: 

  


NOTE: this result is for real ; approaches with imaginary 

get a factor of 2 larger curvature

μB μB

QCD CEP: ?



Color liberation

Ref: 1504.05274

The observation of simultaneous 

liberation of color degrees of freedom as 

well as chiral transition is non-trivial and 

not well understood! Historically, this has 

been a long standing issue.

Q.4: Show that in HRG, the following 

are zero:            and
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2. Contact with experiments via 
phase space integrated observables:  

I. Mean hadron yields



Mean hadron yields: Establish freeze out

Ref: arXiv: 0511071

NOTE:  

1. The yields rise rapidly for small , 


beyond   > 20 GeV the mesons rise 

gently while anti-baryons continue to have a 

strong rise,

2. Yield of p and  decrease with 

increase in ,

3. The phase space integrated hadron yield 

can provide information about the 

thermodynamic conditions of the surface of last 

scattering. Good agreement between LQCD and 

HRG motivates fitting the yields with HRG   

sNN

sNN

Λ
sNN



Mean hadron yields: Establish freeze out

Ref: arXiv: 0511071



Mean hadron yields: Establish freeze out

Ref: arXiv: 0511071



QCD Phase Diagram

Ref: 1504.05274

Chiral crossover temperature 

in (2+1) flavor physical QCD: 

  

Curvature of the Chiral crossover temperature 

in (2+1) flavor physical QCD: 

  


NOTE: this result is for real ; approaches with imaginary 

get a factor of 2 larger curvature

μB μB

QCD CEP: ?

Freezeout curve



2. Contact with experiments via 
phase space integrated observables:  
II. Fluctuations of conserved charges



Fluctuations of conserved charges

From theory From experiments



Fluctuations of conserved charges: HRG

Ref: 1708.08152



Fluctuations of conserved charges

LQCD meets experiments: construct suitable volume independent ratios



Fluctuations of conserved charges: LQCD

Ref: 1504.05274



Freezeout: mean, higher moments

Ref:2103.13641

NOTE: higher order estimates of freeze out 

temperature are systematically lower, 

Does it imply mean and higher moments do 

not freezeout together? 
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3. Transport properties, Initial 
conditions: Contact with experiments 

via phase space differential observables



Static vs expanding medium
The HRG/LQCD represents a static medium in complete thermal and chemical 
equilibrium at freezeout. For example, in HRG

However, this is far from true! The fireball radius is about 10 fm with gradients in 

thermodynamic quantities.


Hence, there is a macroscopic response to counter the gradients - collective flow.



Evolution equations
Continuity equations of the conserved quantities: energy, momentum, B, Q, S

provide the evolution equations. Hence in an infinitesimal volume:


Rate of change of Q = - Outgoing net flux of Q, where Q is some conserved quantity. 
This is a differential equation. 


i. Needs initial condition. Further, 


ii. Typically, at the macroscopic level, the fluxes are proportion to gradients of different 

order. This brings in undetermined proportionality constants known as transport coefficients 

which in principle may be determined by the underlying microscopic theory. Else, to be 

extracted by comparing to suitable observables.


NOTE: standard assumption is that the gradients in Q are small allowing for a systematic 

order by order solution of the equations. 



Understanding Initial conditions
The HRG/LQCD represents a static medium in 

complete thermal and chemical equilibrium 

at freezeout. For example, in HRG

As a result, all directions are equivalent, at least 

the transverse directions at mid-rapidity 

The momentum space occupation of the 

emerging hadrons from the fireball at the

time of freezeout may be studied by suitable 

Fourier decomposition: 



Static vs expanding medium
Non-zero second harmonic flow coefficient 

at freezeout ! 


The phase space differential 

observable like the second harmonic flow 
coefficient reveal the medium at freezeout 
has more features than just being in 
thermal and chemical equilibrium. 


Non-zero flow coefficient reveal breaking 
of azimuthal symmetry in the transverse 
plane. Such breaking of azimuthal 
symmetry is only possible in the initial 
condition.   



Initial Geometry: Nucleus

NOTE: for A+A collision, there is symmetry 

of , thus only even 

harmonics contribute  

ϕ − ϕR → ϕ − ϕR + π



Initial Geometry
Sizable odd harmonic flow!


Need to break the 

symmetry in the initial geometry

ϕ − ϕR → ϕ − ϕR + π



Initial Geometry: Nucleus+nucleons

Sizable odd harmonic flow!


Need to break the 

symmetry in the initial geometry

ϕ − ϕR → ϕ − ϕR + π



Initial Geometry: Nucleus+nucleons

Dipole asymmetry

gives rise to v1

Triangular asymmetry 

gives rise to v3



Additional fluctuations within nucleons

Relevant effective QCD theory: Color Glass Condensate



Initial conditions

•
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saturation scale Q2
s depends nontrivially on x, with dimensions given by a fixed reference scale Q2

0.
However, calculations of Ref. [294] show that the standard linear leading-order DGLAP perturbative
evolution is able to explain the geometric scaling. The situation with CGC applicability at current
energies is thus unsettled (see also Refs. [253,254]). The experimental data from RHIC and the LHC, as
well as exploitation of non-CGC-based models [228] are needed to resolve this problem.

There are two popular representative models of the initial state which are based on the CGC—the
KLN model [295] and the IP Glasma model [296]. A Monte Carlo implementation of KLN CGC initial
state [174,207,297] is based on the number distribution of gluons produced in the transverse plane
given by the kT-factorisation formula [295]:

dNg

d2r?dy
= k

4Nc
N2

c � 1

Z d2 p?
p2
?

Z d2k?
4

as(Q2)

⇥ fA(x1, (p? + k?)
2/4) fB(x2, (p?�k?)

2/4) . (63)

Here, p? and y denote the transverse momentum and rapidity of the produced gluons, and
x1,2 = p? exp(±y)/psNN are the light-cone momentum fractions of the colliding gluons. The running
coupling as(Q2) is evaluated at the scale Q2 = max((p? � k?)

2/4, (p? + k?)
2/4). The gluon

distribution function is given by

fA(x, k2
?

; r?) ⇠
1

as(Q2
s,A)

Q2
s,A

max(Q2
s,A, k2

?
)

. (64)

An overall normalisation factor k is chosen to fit the multiplicity data in most central Au + Au
collisions at RHIC. In the MC-KLN model [295], the saturation momentum is parameterized by
assuming that the saturation momentum squared is 2 GeV2 at x = 0.01 in Au + Au collisions at b = 0
fm at RHIC, where rpart = 3.06 fm�2; i.e.,

Q2
s,A(x; r?) = 2 GeV2 rA(r?)

1.53 fm�2

✓
0.01

x

◆l

. (65)

Here, l is a free parameter which is expected to be in the range of 0.2 < l < 0.3 from the global
analysis of e + p scattering for x < 0.01 [241,293].

The IP-Glasma model [296] solves the classical Yang–Mills equations in which initial charge
distributions of two colliding nuclei are sampled from a Gaussian distribution with the impact
parameter and Bjorken x-dependent color charge distributions. A parameterization of x and impact
parameter dependence of the saturation scale is taken from the IP-Sat (Impact Parameter Saturation)
model [242,251]. Fluctuations in the IP-Glasma model have a length scale on the order of the inverse
of the saturation scale Q�1

s (x?) ⇠ 0.1– 0.2 fm. A comparison of the initial energy density distribution
among the IP-Glasma, MC-KLN, and MC-Glauber models is shown in Figure 14.

Figure 14. Examples of the initial energy density distribution from (left) the IP-Glasma model at t = 0
fm, (middle) the MC-KLN model, and (right) the MC-Glauber model. Reproduced from Ref. [296].IP-Glasma                                       MC-KLN                                 MC-Glauber                  
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Fig. 19. (Left) Thermal spectral function at 1.1 Tc calculated in quenched QCD.163 (Right)
Temperature dependence of the quark-antiquark annihilation contribution to the thermal dilepton
rate above Tc.163
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Fig. 20. (Left) Lattice QCD results for the electrical conductivity �/(CemT ) as function of T/Tc

including results obtained in quenched QCD,159,160,163 2-flavor QCD with m⇡ ' 270 MeV165

and (2+1)-flavor QCD with m⇡ ' 380MeV.166 Note that the values of Tc obtained in these

calculations are di↵erent, i.e. T
Nf=0
c ' 270 MeV, T

Nf=2
c ' 208 MeV and T

Nf=2+1
c ' 185 MeV.

(Right) Temperature dependence of charge di↵usion coe�cient 2⇡TDQ = 2⇡T�/�
Q

2 . The results
are obtained in (2+1)-flavor QCD calculations on anisotropic lattices at one value of the spatial
lattice cut-o↵, a ' 0.12 fm and with light quark masses corresponding to m⇡ ' 380 MeV.166

Recently the calculation of the electrical conductivity has also been performed
in QCD with dynamical quarks. The first calculation was done in 2-flavor QCD
using O(a) improved Wilson quarks corresponding to m⇡ ' 270 MeV. The electrical
conductivity of the quark-gluon plasma at T ' 250 MeV was found to be similar to
the quenched result, �/(CemT ) = 0.40(12).165

First results from a calculation in (2+1)-flavor QCD performed on anisotropic
lattices with quark masses corresponding to a pion mass m⇡ ' 380 MeV166,167 are
shown in Fig. 20. The simulation is performed at one value of the lattice cut-o↵.

by T
3 which are temperature independent for this temperature range.163
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Fig. 21. (Left) The low frequency transport part of the charmonium vector spectral function
obtained from a MEM analysis of vector correlation functions in quenched lattice QCD.174 The
central lines are mean values while the bands reflect the statistical uncertainties. (Right) Temper-
ature dependence of heavy quark di↵usion coe�cients multiplied by 2⇡T in pure gluonic matter.
The charm di↵usion coe�cients are obtained from the spectral functions shown in the left plot.174

Also shown are results for the static quark di↵usion coe�cient obtained by using the lattice dis-
cretized versions of HQEFT.177,178 The boxes show the statistical error while the error bars reflect
the systematic uncertainties. The horizontal dotted line labels the value of 2⇡TD in the heavy
quark limit from the AdS/CFT correspondence 176 and the short, horizontal solid line indicates
the value of 2⇡TD from next-to-leading order pQCD calculations at ↵s ' 0.2.175

.

theory. This leads to the spectral analysis of a “color-electric correlator”179,180

GE(⌧) = �
1

3

3X

i=1

hReTr [U(1/T ; ⌧)gEi(⌧,0) U(⌧ ; 0)gEi(0,0)]i

hRe Tr [U(1/T ; 0)]i
, (60)

where U(⌧2; ⌧1) is a Wilson line in the Euclidean time direction and gEi(⌧,x) denotes
the color-electric field at time-space (⌧,x). The momentum di↵usion coe�cient 

can then be extracted from the slope of the corresponding spectral function in the
limit of vanishing frequency !,

/T
3 = lim

!!0

2 ⇢E(!)

!T 2
. (61)

Here ⇢E(!) is the corresponding spectral function that is related to GE(⌧) via
Eq. 50. In the non-relativistic limit, i.e. for a heavy quark mass M � ⇡T , the
momentum di↵usion coe�cient  is related to the (spatial) heavy quark di↵usion
coe�cient D via Eq. 56.

The color-electric correlator GE(⌧) is defined in terms of gluonic observables
only. It thus su↵ers from a small signal to noise ratio, a problem similar to what
one encounters in the calculation of viscosities181 (see next subsection). In both
cases e�cient noise reduction techniques are needed for a calculation of the gluonic
correlation functions. In a recent study177 the correlator GE(⌧) has been calculated
using multi-level updates181,182 as well as the link integration technique.183,184 The
improved correlator Gimp(⌧T ) obtained this way at T ' 1.4 Tc for four di↵erent
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The ratio obtained in the former calculation are smaller than those obtained in the
earlier direct simulations; ⌘/s = 0.102(56) at 1.24 Tc and 0.134(33) at 1.65 Tc

obtained in quenched QCD on lattices with temporal extent N⌧ = 8.181 This shows
that noise reduction techniques like the multi-level algorithm are mandatory for a
successful calculation of viscosities. Results on the bulk viscosity to entropy ratio
⇣/s show that this ratio rapidly becomes small above Tc.189 At T & 1.2 Tc it is
smaller than ⌘/s and, in fact, within errors it is consistent with zero.181,188,189

Still the calculations of viscosities are performed on lattices with rather small
temporal extent compared to those used in calculations of the electrical conductivity
and di↵usion constants. Systematic uncertainties in these calculations need to be
better controlled in future. Here it will also be helpful to combine lattice QCD
calculations with information from analytic approaches that put constraints on the
structure of spectral functions, e.g. QCD sum rules.190–192
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Fig. 23. (Left) Temperature dependence of the shear viscosity, ⌘/s, of gluonic matter obtained by
using noise-reduction techniques (squares)181 and direct high statistical calculations (circles)188

on N⌧ = 8 lattices. The dotted line corresponds to the conjectured lower bound of ⌘/s from
AdS/CFT correspondence.176 (Right) Temperature dependence of the bulk viscosity, ⇣/s, of
gluonic matter.189 The square points include the statistical uncertainties while the solid black
bars denote the systematic uncertainties. Results for the same quantity from Ref. 188 which are
not shown are consistent with zero at T 2 [1.4 Tc, 1.8 Tc]. Data are taken from Refs. 181,188,189.

6.4. Transport coe�cients of second order hydrodynamics

Due to the importance of viscous e↵ects in the evolution of hot and dense matter
created in heavy ion collision there is considerable interest in extending the hydrody-
namic modeling beyond leading order gradient expansions of the energy momentum
tensor. A second order gradient expansion is parameterized by additional transport
coe�cients,193 which may become accessible to lattice QCD calculations.194–196

One of these new transport coe�cientsf is , which controls the momentum depen-

fAlthough this particular second order coe�cient is also called  it should be noted that it is not
related to the momentum di↵usion coe�cient  introduced in Eq. 56



Data driven transport coefficients

• Currently, large uncertainties in transport coefficients from LQCD. Hence, 
a more preferred approach is to extract transport coefficients by data-
model comparison



Uncertainties in IC -> Transport coefficient

•
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Figure 15 provides two examples of transport model calculations. The left panel shows
the location of freeze-out surfaces for central Au + Au collisions at several fixed values of the
shear viscosity-to-entropy density ratio h/s obtained from a numerical solution of viscosious
hydrodynamics [103]. The shading corresponds to the freeze-out temperature. The freeze-out occurs
when the viscous terms become large compared to the ideal terms. Note that hydrodynamics breaks
down not only at late, but also at early times (see the curve h/s = 0.4 in Figure 15). The right panel
displays the centrality dependence of the elliptic flow coefficient v2 (Equation 66) for two models
for the initial density in the transverse plane—one is motivated by the parton saturation (CGC), and
the other exploits nucleons only (Glauber). The calculations [298] were done within a hybrid model,
where the expansion of the QGP starting at t0 = 0.6 fm/c is described by ideal hydrodynamics with a
state-of-the-art lattice QCD EoS, and the subsequent evolution of hadronic matter below switching
temperature Tsw = 155 MeV is described using a hadronic cascade model. This nicely illustrates the
strength of hydrodynamics—either the viscosity of QGP from RHIC to the LHC increases, or the CGC
initial condition is ruled out [298].
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Figure 15. Left: Location of freeze-out surfaces for central Au + Au collisions [103]; Right:
The centrality dependence of the elliptic flow of charged hadrons from Pb–Pb collisions at
psNN = 2.76 TeV [298]. The ALICE data are from Ref. [299].

4.4.4. Other Initial State Models

For completeness, let us here briefly list some other approaches to initial state description used
in the analysis of ultra-relativistic heavy ion collisions. Fluctuating initial conditions given by a
multi-phase transport (AMPT) model [165] were applied in an event-by-event partonic transport plus
hydrodynamics hybrid approach [166,300,301] to study collective flow. In Refs. [302,303], NLO pQCD
together with saturation-like suppression of low-energy partons were used to calculate the initial
energy densities and formation times which have been used further on in 3D hydro calculations of
space-time evolution of the QCD matter with dissipative fluid dynamics, event by event. A new initial
conditions model for high-energy p + p, p + A, and A+A collisions that deposit entropy proportional
to the generalized mean of nuclear overlap density was introduced in Ref. [304]. The model assumes
that N one-on-one nucleon collisions produce the same amount of entropy as a single N-on-N collision.

5. Experimental Signatures of Deconfined QCD Matter

Evolution of the high energy nucleus–nucleus collision is schematically depicted in Figure 16.
Two Lorentz-contracted pancakes of nuclear matter collide, thermalize, and form a deconfined QGP
medium which expands, cools down, and hadronises to final state hadrons. Experimentally we do
not observe each stage separately, but only through the time-integrated final state quantities—the
momentum spectra of hadrons, photons, or leptons, particle multiplicities, energy flow, etc.
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Figure 2: (Color online) Left: Example plot of chi-squared per degree of freedom for a one-parameter simultaneous fit of
integrated vn for n = 2–6 at 0–1% centrality, as a function of the ratio of shear viscosity to entropy density η/s. Right: Fit
values corresponding to the minimum chi-squared curves in the left plot. The green bars represent measured values from
the ATLAS collaboration [13]; the vertical thickness represents the combined statistical and systematic error. Models
with large fluctuations and a correspondingly large best-fit η/s tend to have a steeper slope than models with smaller
eccentricities. The range of best-fit viscosity values for the curves in the left plot gives an indication of the uncertainty in
an extraction of η/s due to the uncertain initial anisotropy in the initial state (∼ ± 0.05).

odd harmonics, such as triangular flow v3, which is generated from a spatial “triangularity”, de-
fined similarly to the eccentricity v3 ∝ ε3 This would be zero at midrapidity in the absence of
event-by-event fluctuations. The triangularity that one sees in a calculation is largely determined
by the strength of these fluctuations. In contrast, the differences in particle production mecha-
nisms that lead to very different ε2 in non-central collisions has very little effect on ε3. Compare,
for example, the triangularities of the MC-KLN model versus Glauber (discs) in Fig. 1, which
contain only fluctuations from random position of nucleons in the colliding nuclei, implemented
in exactly the same way in the MC-KLN code. The triangularity ε3 is very similar, despite the
fact that the two pictures of particle production result in a very different eccentricity ε2.

By comparing the results from other models, it is clear that there still remains some uncer-
tainty due to different way fluctuations are implemented. Despite the seemingly modest reduction
in uncertainty (as compared to the uncertainty in ε2), one can reasonably argue that the results
in the second panel of Fig. 1 represent the full range of results that can be expected, in marked
contrast to the results in the first panel. The models with the lowest triangularity are known to
be missing important sources of fluctuations, while the large fluctuations in the models with the
largest ε3 cannot be reconciled with constraints from v1 measurements [11].

One might thus propose to extract η/s from measurements of v3 to minimize uncertainty from
the initial conditions. However, we can make use of more experimental constraints by noting
that in the most central collisions, all harmonics are generated entirely from fluctuations, and the
above discussion still applies. One further convenient factor is that, for ultra-central collisions,
the approximate proportionality vn ∝ εn holds for all n [12]. This allows for a comprehensive
parameter study with reasonable computing resources.

Thus, our proposal is to extract η/s from a simultaneous fit to pT -integrated vn measurements
from ultra-central collisions at the highest-energy heavy-ion collisions. These data are least
sensitive to uncertain aspects of theory, and therefore allow for the the most precise extraction of
η/swith the smallest possible uncertainty. Such data are available from the ATLAS collaboration
for v2–v6 in the 1% of most central collisions [13].
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the two choices of � in this work compared to results from lattice calculations [22], quasiparticle models [18, 23] and Bayesian
analysis of the data [24].
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FIG. 3. (a) Rapidity dependence of v1 for D mesons as ob-
tained for ⌘T = 3.36 and � = 0.2T (filled circles). The STAR
measurements [11] (open triangles), as well as our results from
the hydrodynamic model (shaded band) for charged particle
v1 is also shown for comparison. (b) Same as (a) for pT dif-
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are the nuclear suppression factor

RAA =
dNAA/dpT

NcolldNpp/dpT
, (6)

defined as the scaled ratio of pT spectra in Au+Au and

p+p collisions, and the directed v1 and elliptic v2 har-
monic flow coe�cients of the azimuthal angle distribution
for D mesons

dN

d�
/ 1+2v1 cos(�� 1)+2v2 cos (2(�� 2)) +. . . . (7)

The elliptic flow is defined with respect to the second or-
der event plane direction  2 for charged particles and the
rapidity odd directed flow is defined with respect to the
reaction plane  1. In the simulation the reaction plane is
well defined, in the experiment it is usually defined from
the spectators (e.g. see [5] for a discussion).

The jury is still out on the determination of the drag
experienced by the charm quark in the medium [18, 23,
24, 27–29]. We work with a simple ansatz,

� = �0T (T/m)x (8)

and adjust �0 and x for a qualitative description of the
measured values of RAA (pT )[20] and v2 (pT )[21] at mid-
rapidity. The results are shown in Fig. 2. A good qual-
itative description of the data is found for �0 = 0.2 and
x = 0 � 0.5. A di↵erent choice, � = �0T (T/E)x does
not lead to further improvements. In Fig. 2 (c), we have
compare the T dependence of the dimensionless quantity
2⇡DsT (Ds is the charm quark di↵usion coe�cient in
the coordinate space) to results from lattice calculations
[22], quasiparticle models [18, 23] and Bayesian analysis
of the data [24], lattice data slightly favors the choice
� / T for the ansatz in Eq. 8. Nevertheless, we study
also the case � / T 1.5 for completeness. Di↵erent choices
do not modify our conclusions qualitatively.

To make a useful prediction for v1 for experiments with
limited statistics we show the 0-80 % centrality results.
This corresponds to a choice of the impact parameter
b = 8.3 fm in the Glauber model to generate the initial
conditions. The results shown in Fig. 3 correspond to � /
T . Charged particle spectra are calculated in a statistical
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Initial Geometry+medium transport properties

To explain the phase space differential 

observables like flow at freezeout one needs 

to model the evolution of the fireball with 

appropriate initial conditions (where the 

symmetries are broken) and then appropriate 

medium transport properties like shear, bulk 

viscosities etc that control the magnitude of 

these flow coefficients


Thus one learns about initial condition as well 

as medium properties by phase space 

differential observables
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