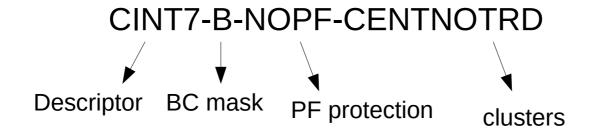
Analysis framework

Prottay Das
Niser, Jatni
Email:
prottay.das@niser.ac.in

ALICE-INDIA School IOP, Bhubhaneswar 11/11/2022

Event selection

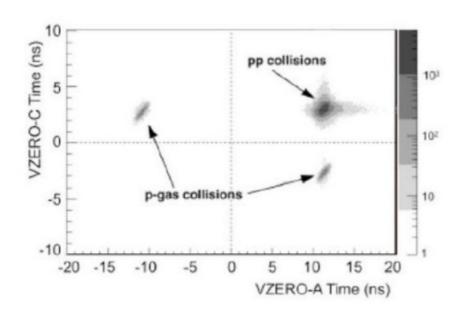

- ✔ Trigger selection
- ✔ Physics selection
- ✔ Pile-up rejection
- ✓ Vertex selection
- ✓ Centrality estimation

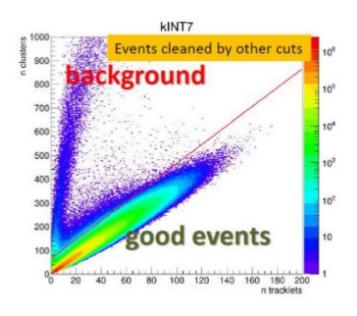
Trigger selection

- ✓ ALICE experiment cannot record all events
- Large readut time of the detectors
- Data storage limitations
- ✓Non negligible activity in ALICE detectors are necessary to start the data acquisition SPD | VOA | VOC (kMB) VOA & VOC (kINT7)
- ✓ May be interested in rare observables for which we need to collect enough statistics only requiring specific signatures in ALICE detectors (rare triggers)
- Muon triggers
- Calorimeter triggers
- Ultra-peripheral collisions
- ✓ Desired triggers in the analysis framework is selected using AliVEvent::EOfflineTriggerTypes

Trigger classes

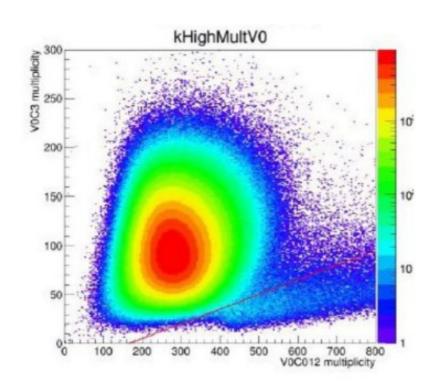
✓ Triggers are combination of several classes

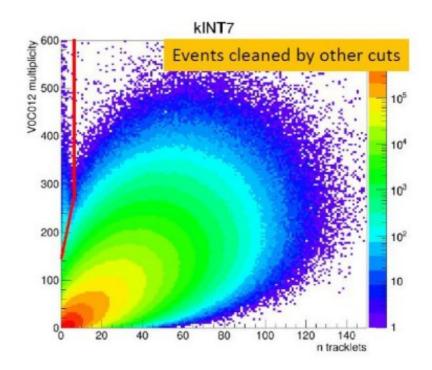

- ✓ Descriptor: combination of trigger inputs (AND, OR, VETO)
- ✓ BC mask: type of interactions (beam-beam, beam-gas)
- ✓ PastFuture (PF) protection: reject events from out of bunch pileup
- ✓ Cluster: group of detectors to be readout if the trigger condition is satisfied


kINT7

- ✓ kINT7 select events if at least one of the given below classes are fired:
 - CINT7-B-NOPF-ALL
 - CINT7-S-NOPF-ALL
 - CINT7-I-NOPF-ALL
 - CINT7-B-NOPF-CENT
 - CINT7-S-NOPF-CENT
 - CINT7-I-NOPF-CENT
 - CINT7-B-NOPF-ALLNOTRD
 - CINT7-S-NOPF-ALLNOTRD
 - CINT7-I-NOPF-ALLNOTRD
 - CINT7-B-NOPF-CENTNOTRD
 - CINT7-S-NOPF-CENTNOTRD
 - CINT7-I-NOPF-CENTNOTRD

Physics Selection

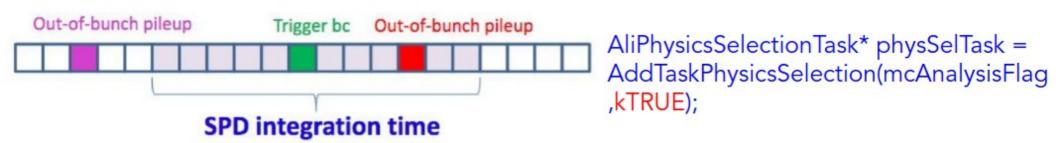

- ✔ Physics Selection class: AliPhysicsSelection
- Select events with the fired trigger class
- Rejection of background and bad quality events
- Reject out of bunch pileup in SPD readout time
- ✓ Rejection of beam induced background (using V0, SPD, ZDC)



Physics Selection

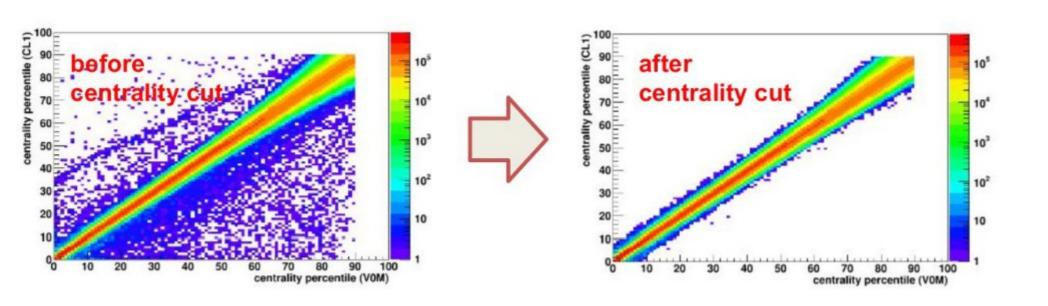
- Further background rejection cuts
- V0C012 vs V0C3 asymmetry cut
- V0C012 vs tracklet background cut

Pileup


Same bunch pile-up

- ✓ Two or more collisions in the same bunch
- ✓ Seen by all detectors
- ✓ Can be removed at the event selection level with cuts based on multiple reconstructed vertices

Out of bunch pile-up


- ✓One or more collisions occuring in bunch crossing
- ✓ Detectors are affected differently depending on their readout time
- ✓ Can be removed at the event selection level and also based on track selection cuts

- ✓ Past-Future protection: allows to remove out of bunch pileup outside the SPD readout time (300 ns)
- Based on V0 detector, which records on +/- 10 bunch crossings around the triggered event
- Reject events based on correlation of SPD with V0M

- ✓ Multiple vertices with the SPD: sensitive to same-bunch and out-of-bunch pileup within the SPD readout window
- ✓ Event is tagged as pileup event if more than one vertex is found
- Accessed by AliESDEvent::IsPileUpFromSPD()
- For low multiplicity pp events: IsPileupFromSPD(3,0.8,3,2,5)
- For high multiplicity pp and p-Pb events: IsPileupFromSPD(5,0.8,3,2,5)
- ✓ Arguments for tagging SPD pileup:
- Min. no. of contributors (tracklets) to the pileup candidate vertices
- Min. distance (cm) along z-direction between the main and candidate pileup vertices
- Min. distance (in sigmas) along z-direction between the main and candidate pileup vertices
- Max. distance (in sigmas) from the center of the diamond in the transverse plane
- Max. distance (in sigmas) from the center of diamond in z-direction 10

- ✓ Multiple vertices with tracks: Can be removed by simultaneous vertex finding using ITS, TPC and TOF
- ✓ Correlation between centrality estimaters (Pb-Pb): cut on correlation between V0 and CL0, CL1 centralities

- ✓ Can be removed in track level
- ✓ Require the track status to include kITSrefit
- ✓ fESDtrackCuts-> SetClusterRequirementITS(AliESDtrackCuts::kSPD, AliESDtrackCuts::kAny)
 AOD
 track->HasPointOnITSLayer(0)||track->HasPointOnITSLayer(1)
- ✓ Require matching to TOF track->GetTOFBunchCrossing()==0

Primary vertex selection

- ✓ Primary vertex information can be retrieved from ESD and AOD events AliVVertex* vtx = event->GetPrimaryVertex();
- ✓ This method will return:
- Vertex reconstructed from global tracks (ITS+TPC)
- The SPD vertex
- Vertex from TPC tracks
- More selections can be applied in order to reject events with poorly reconstructed vertex
- Selection on contributors to vertex, vtx->GetNContributors()>1
- Selection on SPD vertex type (3D or z reconstruction) AliVVertex* vtxSPD = event->GetPrimaryVertexSPD(); if(vtxSPD->IsFromVertexer3D()){ // vertex with 3D (x,y,z) reconstruction from SPD tracklets if(vtxSPD->IsFromVertexerZ()){ // vertex with Z reconstruction from SPD tracklets and x,y from mean vertex

Primary vertex selection

```
Further selections can be applied in order to reject events with poorly reconstructed vertex
Special selections for SPD vertex (based on z resolution/dispersion)
fMaxResol=0.25, fMaxDipersion=0.03;
AliESDVertex* esdVtxSPD = esdEvent->GetPrimaryVertexSPD();
 if ( esdVtxSPD->IsFromVertexerZ() && esdVtxSPD->GetDispersion()>fMaxDipersion ) {
   // vertex Z reconstructed with very poor resolution, suggestion is to reject these events
AliVVertex* vtxSPD = event->GetPrimaryVertexSPD();
 Double_t cov[6]=\{0\};
 vtxSPD->GetCovarianceMatrix(cov);
 Double_t zRes = TMath::Sqrt(cov[5]);
 if (vtxSPD->IsFromVertexerZ() && (zRes>fMaxResol)) {
   // vertex Z reconstructed with very poor resolution, suggestion is to reject these events
Cut on absolute distance between track and SPD vertices (Pb-Pb 2011)
const AliVVertex* vtx = event->GetPrimaryVertex();
const AliVVertex* vtxSPD = event->GetPrimaryVertexSPD();
 if(TMath::Abs(vSPD->GetZ()-vtx->GetZ())>0.5) {
   // reject, bad reconstructed track vertex
```

AliEventCuts usage

- ✓ All of the previous cuts can be accessed by AliEventCuts class
- Modify your header file AliEventCuts fEventCuts;
- ✓QA plots in the list can be added by following lines in the UserCreateOutputObjects function of your class fEventCuts.AddQAplotsToList(fList)
- ✓ In the UserExec method to reject events that do not pass the event cuts:

```
if (!fEventCuts.AcceptEvent(ev))
{
}
```

AliEventCuts usage

✓ AliEventCuts::AcceptEvent(AliVEvent* ev) retrieves the information about the centrality (Pb-Pb) and primary vertex. Can be obtained by: float centrality = fEventCuts.GetCentrality(); AliVVertex* vtx = fEventCuts.GetPrimaryVertex();

Advance setting manually:

```
fEventCuts.SetManualMode(); ///Enable manual mode //Example of manual settings (taken by the standard pp Run2 event selection)
```

```
fEventCuts.fRequireTrackVertex = true;

fEventCuts.fMinVtz = -10.f;

fEventCuts.fMaxVtz = 10.f;

fEventCuts.fMaxDeltaSpdTrackAbsolute = 0.5f;

fEventCuts.fMaxResolutionSPDvertex = 0.25f;

fEventCuts.fTriggerMask = AliVEvent::kINT7;

fEventCuts.fRejectDAQincomplete = true;

fEventCuts.fSPDpileupMinContributors = 3;

fEventCuts.fSPDpileupMinZdist = 0.8;

fEventCuts.fSPDpileupNsigmaZdist = 3.;

fEventCuts.fSPDpileupNsigmaDiamXY = 2.;

fEventCuts.fSPDpileupNsigmaDiamZ = 5.;

fEventCuts.fTrackletBGcut = true;
```

Correlation between number of TPC (100 µs) clusters and sum of SDD+SSD clusters: TPC pileup

- fEventCuts.SetRejectTPCPileupWithITSTPCnCluCorr(kTRUE) sets the default cut, which removes most of the pileup in TPC readout time (removes ~32% of events)
- fEventCuts.SetRejectTPCPileupWithITSTPCnCluCorr(kTRUE,2) sets a looser cut: removes 18% of the events with high multiplicity pileup
- fEventCuts.SetRejectTPCPileupWithITSTPCnCluCorr(kTRUE,3) sets an even more looser cut: removes 11% of the events with high multiplicity pileup
- fEventCuts.SetRejectTPCPileupWithITSTPCnCluCorr(kTRUE,4) sets a very loose cut: removes 6% of the events with high multiplicity pileup

Centrality estimation

- ✓ Add lines in UserExec
- Get AliMultSelection object
 AliMultSelection *obj = (AliMultSelection*) event->
 FindListObject("MultSelection");
- Get desired multiplicity percentile
 Float_t lcent;
 lcent = obj->GetMultiplicityPercentile ("V0M");

Reference links

- https://alice-doc.github.io/alice-analysis-tutorial/analysis/
- https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AliDPGtoolsEventProp#Primary_vertex
- ✓ https://twiki.cern.ch/twiki/bin/viewauth/ALICE/AliDPGtoolsPileup
- https://indico.cern.ch/event/586577/