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INTRODUCTION

e Transport properties of hot/dense matter are important for
heavy ion collision (HIC), cosmology and important for near
equillibrium evolution of any thermodynamic system

e The most studied transport coefficient is perhaps shear
viscosity 7. In HIC spatial anisotrpy of colliding nuclei gets
converted to momentum anisotropy throgh a hydro evoln.

' = the KSS bound)
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e The bulk viscosity ¢ - thought earlier to be not important for
HIC hydro evolution. Argument: ¢ ~ (e — 3p)/T* that
vanishes for ideal gas. However, lattice simulation = large
(e —3p)/ T* near T.. This,in turn, can give rise to different
physical effects (Cavitation).

The equllibriation is decided by 7. (



INTRODUCTION -CONTD.

e Otherthan viscosites, the electrical conductivies have been
studied on lattice, pQCD and effective models of strong
interaction physics. This coefficient has been important in
magneto hydrodynamical simulations. Time evolution of
magnetic field depend crucially on og.

e The temperature and chemical potential dependence of
transport coefficients may reveal the location of phase
transition

e In principle, one can estimate transport coefficients using
Kubo formulation but, QCD is strongly coupled for the
energies accessible at HIC. Lattice QCD simulation is
numerically challanging and also has problems in doing
simulations at finite baryon densities.

e We shall approach the problem here within Boltzmann kinetic
equation within relaxation time approximation

e Diffusion of conserved charges is usually neglected.



DIFFUSION COEFF.: - -

Diffusion is a dissipative process which occurs as soon as
inhomogenity arise in a conserved quantity.

Ficks Law: iqg = —rqVng(x) (non-relativistic)

e High energy heavy ion collisions, with almost vanishing pg,
effects of diffusion is expected to be small.

e It can be important for BES, FAIR, NICA physics.

e Fluctuations of conserved charges plays an important role to
find the critical point.

e Diffusion plays an important role in the time evolution of
conserved charges



DIFFUSION COEFF.: - -

e Strongly interacting matter carry a multitude of conserved
quantum numbers: B,S,Q.

e Diffusion currents of conserved charges must be coupled with
each other. Gradients of a given charge density can generate
diffusion current of any of the other charges.

Therefore, in the presence of multiple conserved charges, one has a
generalized Fick's law,

AJg ks keq kes\ [D'os
Ao | = | ke KQQ £Qs D'ag
AJS kse ksQ Hkss) \D'as

aq = g/ T with gq=B,S,Q and D = u"9,; D" = 0" — u"D and
AP = g — u* ¥ is the projector orthogonal to fluid four velocity
u". Kqq denotes the multicomponent diffusion matrix.We shall try
to estimate the diffusion matricx element for hadronic matterusing
Boltzman equation within relxation time approximation



FORMALISM: RELATIVISTIC BOLTZMANN EQUATION

In a mixture of multi component species, the single particle
distribution function f,(x, p,) (a = 1, N,:species index), in the
absence of any external force, evolves in space time through a
relativistic Boltzmann equation

Pa - 8fa(Xa Pa) = (U : Pa) anb[f] =C,
b

1 - .
Caplf] = 5 Z/dech’del [fcfdfafb - fafbfcfd] Wab—cd-
c,d

fa = (1 — kfa(x, pa)/ga) ;with k = £1,0 for fermions and bosons,
classical particles. The transition rate corresponding to binary

. 1
scattering Wap_cq = 176(2W)4‘Mab—>cd‘2 x 6*(pa + Pb — P — Ply)-

doab—sed
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BOLTZMANN EQUATION CONTD.

Consider small perturbation from equllibrium

f(x:p) = £2°(p) (1 + 6°(x, p))
The equilibrium distribution function in the classical limit is given

by,

fa(o) = gaexp(—fu-ps+ 8 Z Gakq) = 8aexp(—Bu- pa+ aa),
q

a? = Z Gallg = BZ Qaltq, Ctq = Pliq and pg corresponding to

q q
different chemical potentials (e.g. ¢ = B, S, Q). To identify the
transport cefficients, the energy momentum tensor and the
conserved current

TH = —Pgh” +wutu” + ATH, Ji = nqut + AJy.

u* is the velocity of energy flow normalized as u,u" =1 and
w = € + P is the enthalpy.



T+, Ji' CONTD.

The dissipative correction to the energy-momentum tensor due to
viscosity,

2
ATH =1 (D“u” + DV ut 3A“”9) + (ARG = T 4 (AR

and, the dissipative contribution to the conserved current is given
as,

AJy = anq/D g

which is a relativistic form of Fick’s law generalised to different
conserved charges g with kg being the diffusion matrix coefficient
The diffusion current is generated by the gradient in the thermal
potential aig. € = 0 - u is the expansion scalar; D = u"0y,;

D = 0" — u¥*D and A*Y = gh” — u#u¥ is the projector
orthogonal to u*.



T+, Ji' CONTD.

Interms of microscopic distribution functions

z:/dpapapaf_—a7 Ju*z /dpapa

The non-equilibrium part ¢, of the dlstrlbutlon function f; leads
to the non-equilibrium contributions AT*” and AJY. This means
¢a should have the same tensor structure as AT*” and AJY.

Ga = —Asl — Z nggDuaq + CaPS‘PZZW
q

where, the functions A,, B and C, are functions of magnitude of
momentum .

i d*pa p3 (0) pq’ pi
AJ ::;;qa / Gz, BB Dog

= Z Kgq D'arg, (1)
q'



BOLTZMANN EQUATION CONTD.

To obtain he departure from equllibrium functions A,BJ and C;
use Boltzmann equation within Chapman-Enscog approximation.
i.e. expand both sides of the equation upto first order in ¢,.Taking
the derivative of the LHS of the Boltzmann equation upto first
order leads to

plo, A = —£0) {EfDﬁ — E,Da?

1 1
+ ﬁpgpg <2zua + SAya9>

’ Ean
+pé’z< o Qa>DMQQ}
q

while the collision term becomes

dpydp-dp’
c. — EfO)Z/ b §X3df) W(a, blc,d) (¢ + bd — da — bb) -
b,c,d




BOLTZMANN EQUATION CONTD.

For diffusive processesp, = ¢a(ph) ~ Z BJD, g Solve for the

q
deviation function BY in the relaxation time approximation i.e.

all particles are in equllibrium except for the species a appearing in
Boltzmann equation for f; This leads to

T E.n
Bg part — Ea (qa ;q>-
a

with the energy dependent relaxation time

3 3 3
N E) =Y - /d Pbd”p d pdf(O)W(a blc, d).
bcd

Z/ d3pa pa ( B ana>7_ (q/— nq/Ea> f(o)
7)3 3E2 9=, 2\ w 2



DIFFUSION COEFFICIENTS IN HRG MODEL

We shall estimate diffusion matrix elements within HRG model.
This needs thermodynamics for the hadrons and the relaxation
time for them. Both of these we estimate in Hdaron resonance gas
model.

( ldeal HRG)

InZz = Z InZ = Z - /e /000 dp p? In[1 £ exp(—B(Ea — pa))].

Here V is the volume of the system, g, is the degeneracy factor,
E, is the single-particle energy,

Ha = Z daltqg = BaNB + Sa,uS + Qa,uQ

q
Excluded volume HRG

PeX(Tnu/lv/*Q? ) = Z P;d(Tﬂ /'117/7’27 )v /]a = Ha — VaEXPEX(Tv M1,
a



RELAXATION TIME

_ d3
Ta L= Wa(Ea) = Z/ (27rp)go'abvabfb(0)
b

Energy averaged relaxation time

3
-1 f ((;WP)‘?B fa(O)(Ea)Wa(Ea) Z < >
Ty = = Np(TabVab
N CO N

Thermal averaged cross section
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RELAXATION TIME CONTD.- - -

Assuming hard sphere scatterring for the hadrons

7—a_l == Z nb<aabvab>

b

8Tm2 iKg(ma/T)Kz(mb/T)
= [s — (ma — mp)?]
X /(ma+mb)2 ds x NE
* [s = (ma + mp)’]K1(v/s/ T),

where, the hard sphere scattering cross section can be expressed
as o = 47R?,

d3pa pa nqgE;, / ng E, (0)
Qa — ——— a - f .
Z / 213 3E2 w )\ )

<Uab Vab>




RESULTS: kpgp
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Figure: left : variation of kpg/T? with T and ug. pg = 0 = us.
Among all the hadrons baryonic contribution is dominant over mesonic
contribution in rgg/T2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering ns = 0 and pq = 0.



RESULTS: kgs
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Figure: left : variation of kss/ T2 with T and ug. pg = 0 = ps. Among
all the hadrons mesonic contribution is dominant over baryonic
contribution in rgg/T2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering ns = 0 and pq = 0.



RESULTS: k@g
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Figure: left : variation of kgg/T? with T and ug. pg = 0 = us.
Among all the hadrons mesonic contribution is dominant over baryonic
contribution in rgg/T2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering ns = 0 and pq = 0.



RESULTS: MIXED DIFFUSION COEFFICIENTKpgQ
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Figure: left : variation of o/ T2 with T and pg. pg =0 = us.
Among all the hadrons mesonic contribution is dominant over baryonic
contribution in rgg/ T2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering ns = 0 and pq = 0.



RESULTS: MIXED DIFFUSION COEFFICIENTKRS
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Figure: left : variation of kgs/T? with T and ug. pg = 0 = ps. Among
all the hadrons mesonic contribution is dominant over baryonic
contribution in rgg/T2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering ns = 0 and pq = 0.



RESULTS: MIXED DIFFUSION COEFFICIENT KsQ
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Figure: left : variation of rsg/T? with T and pg. pg =0 = yus.
Among all the hadrons mesonic contribution is dominant over baryonic
contribution in g/ T2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering ns = 0 and pq = 0.



SUMMARY,CONCLUSION AND OUTLOOK

e We consiidered here the diffusuion matrix associated with
various conserved charges.The diagonal components here are
manifestly positive. The off diagonal components can be
positive or negative.

e Using HRG model within the hard sphere scatterring
approximation, we estimated various elements of xqq .

e The off diagonal elements are of similar order as the diagonal
elements. The cross conductivities are non negligible.

e Need to study hydrodynamics with multiple conserved charges.

e Fluctuation of conserved charges need to be explored with
cross dissipation coefficients.



