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Introduction

• Transport properties of hot/dense matter are important for
heavy ion collision (HIC), cosmology and important for near
equillibrium evolution of any thermodynamic system

• The most studied transport coefficient is perhaps shear
viscosity η. In HIC spatial anisotrpy of colliding nuclei gets
converted to momentum anisotropy throgh a hydro evoln.

The equllibriation is decided by η. (
η

s
∼ 1

4π
, the KSS bound)

• The bulk viscosity ζ - thought earlier to be not important for
HIC hydro evolution. Argument: ζ ∼ (ε− 3p)/T 4 that
vanishes for ideal gas. However, lattice simulation ⇒ large
(ε− 3p)/T 4 near Tc . This,in turn, can give rise to different
physical effects (Cavitation).



Introduction -Contd. · · ·
• Otherthan viscosites, the electrical conductivies have been

studied on lattice, pQCD and effective models of strong
interaction physics. This coefficient has been important in
magneto hydrodynamical simulations. Time evolution of
magnetic field depend crucially on σel .

• The temperature and chemical potential dependence of
transport coefficients may reveal the location of phase
transition

• In principle, one can estimate transport coefficients using
Kubo formulation but, QCD is strongly coupled for the
energies accessible at HIC. Lattice QCD simulation is
numerically challanging and also has problems in doing
simulations at finite baryon densities.

• We shall approach the problem here within Boltzmann kinetic
equation within relaxation time approximation

• Diffusion of conserved charges is usually neglected.



Diffusion coeff.· · ·

Diffusion is a dissipative process which occurs as soon as
inhomogenity arise in a conserved quantity.

Ficks Law: jq = −κq∇nq(x) (non-relativistic)

• High energy heavy ion collisions, with almost vanishing ρB ,
effects of diffusion is expected to be small.

• It can be important for BES, FAIR, NICA physics.

• Fluctuations of conserved charges plays an important role to
find the critical point.

• Diffusion plays an important role in the time evolution of
conserved charges



Diffusion coeff.· · ·
• Strongly interacting matter carry a multitude of conserved

quantum numbers: B,S,Q.

• Diffusion currents of conserved charges must be coupled with
each other. Gradients of a given charge density can generate
diffusion current of any of the other charges.

Therefore, in the presence of multiple conserved charges, one has a
generalized Fick’s law,∆J iB

∆J iQ
∆J iS

 =

κBB κBQ κBS
κQB κQQ κQS

κSB κSQ κSS

D iαB

D iαQ

D iαS

 .

αq = µq/T with q = B,S ,Q and D = uµ∂µ; Dµ = ∂µ − uµD and
∆µν = gµν − uµuν is the projector orthogonal to fluid four velocity
uµ. κqq′ denotes the multicomponent diffusion matrix.We shall try
to estimate the diffusion matricx element for hadronic matterusing
Boltzman equation within relxation time approximation



Formalism: Relativistic Boltzmann Equation

In a mixture of multi component species, the single particle
distribution function fa(x , pa) (a = 1,N,:species index), in the
absence of any external force, evolves in space time through a
relativistic Boltzmann equation

pa · ∂fa(x , pa) = (u · pa)
∑
b

Cab[f ] ≡ Ca

Cab[f ] =
1

2

∑
c,d

∫
dPbdPc

′dPd
′
[
fc fd f̃a f̃b − fafb f̃c f̃d

]
Wab→cd .

f̃a = (1− κfa(x , pa)/ga) ;with κ = ±1, 0 for fermions and bosons,
classical particles. The transition rate corresponding to binary

scattering Wab→cd =
1

16
(2π)4|Mab→cd |2 × δ4(pa + pb − p′c − p′d).

|Mab→cd(
√
s,Ω)|2 = 64π2s

pab
pcd

dσab→cd

dΩ



Boltzmann Equation contd. · · ·
Consider small perturbation from equllibrium

fa(x , p) = f
(0)
a (p) (1 + φa(x , p))

The equilibrium distribution function in the classical limit is given
by,

f
(0)
a = ga exp(−βu · pa + β

∑
q

qaµq) ≡ ga exp(−βu · pa + αa),

αa =
∑
q

qaαq ≡ β
∑
q

qaµq, αq = βµq and µq corresponding to

different chemical potentials (e.g. q = B, S ,Q). To identify the
transport cefficients, the energy momentum tensor and the
conserved current

Tµν = −Pgµν + ωuµuν + ∆Tµν , Jµq = nqu
µ + ∆Jµq .

uµ is the velocity of energy flow normalized as uµu
µ = 1 and

ω = ε+ P is the enthalpy.



T µν, Jµq contd. · · ·
The dissipative correction to the energy-momentum tensor due to
viscosity,

∆Tµν = η

(
Dµuν + Dνuµ − 2

3
∆µνθ

)
+ ζ∆µνθ ≡ ηΣµν + ζ∆µνθ

and, the dissipative contribution to the conserved current is given
as,

∆Jµq =
∑
q′

κqq′D
µαq′ ,

which is a relativistic form of Fick’s law generalised to different
conserved charges q with κqq′ being the diffusion matrix coefficient
The diffusion current is generated by the gradient in the thermal
potential αq. θ = ∂ · u is the expansion scalar; D = uµ∂µ;
Dµ = ∂µ − uµD and ∆µν = gµν − uµuν is the projector
orthogonal to uµ.



T µν, Jµq contd. · · ·
Interms of microscopic distribution functions

Tµν =
∑
a

∫
d3pa
(2π)3

pµa pνa
Ea

fa, Jµq =
∑
a

qa

∫
d3pa
(2π)3

pµa
Ea

fa.

The non-equilibrium part φa of the distribution function fa leads
to the non-equilibrium contributions ∆Tµν and ∆Jµq . This means
φa should have the same tensor structure as ∆Tµν and ∆Jµq .

φa = −Aaθ −
∑
q

Bq
a p

µ
aDµαq + Cap

µ
a p

ν
aΣµν

where, the functions Aa, Bq
a and Ca are functions of magnitude of

momentum .

∆J iq ==
∑
a,q′

qa

∫
d3pa
(2π)3

p2a
3Ea

f
(0)
a Bq′

a D iαq′

=
∑
q′

κqq′D
iαq′ , (1)

here the diffusion matrix κqq′ can be identified as,

κqq′ =
∑
a

qa

∫
d3pa
(2π)3

p2a
3Ea

f
(0)
a Bq′

a . (2)



Boltzmann equation contd. · · ·
To obtain he departure from equllibrium functions A,Bq

a and Ca;
use Boltzmann equation within Chapman-Enscog approximation.
i.e. expand both sides of the equation upto first order in φa.Taking
the derivative of the LHS of the Boltzmann equation upto first
order leads to

pµa ∂µf
(0)
a = −f (0)a

[
E 2
aDβ − EaDα

a

+ βpµa p
α
a

(
1

2
Σµα +

1

3
∆µαθ

)
+ pµa

∑
q

(
Eanq
ω
− qa

)
Dµαq

]
.

while the collision term becomes

Ca =
1

2
Eaf

(0)
a

∑
b,c,d

∫
dpbdp

′
cdp
′
d

(2π)3×3
f
(0)
b W (a, b|c , d) (φc + φd − φa − φb) .



Boltzmann equation contd. · · ·
For diffusive processesφa = φa(pµa ) ' −

∑
q

Bq
aDµαq Solve for the

deviation function Bq
a in the relaxation time approximation i.e.

all particles are in equllibrium except for the species a appearing in
Boltzmann equation for fa This leads to

Bq
a−part =

τa
Ea

(
qa −

Eanq
ω

)
.

with the energy dependent relaxation time

τ−1a (Ea) =
∑
b,c,d

1

2

∫
d3pbd

3p′cd
3p′d

(2π)3
f
(0)
b W (a, b|c , d).

⇒

κqq′ =
∑
a

∫
d3pa
(2π)3

p2a
3E 2

a

(
qa −

nqEa

ω

)
τa

(
q′a −

nq′Ea

ω

)
f
(0)
a .



Diffusion coefficients in HRG model

We shall estimate diffusion matrix elements within HRG model.
This needs thermodynamics for the hadrons and the relaxation
time for them. Both of these we estimate in Hdaron resonance gas
model.
( Ideal HRG)

lnZ id =
∑
a

lnZ id
a =

∑
a

±Vga
2π2

∫ ∞
0

dp p2 ln[1± exp(−β(Ea − µa))].

Here V is the volume of the system, ga is the degeneracy factor,
Ea is the single-particle energy,

µa =
∑
q

qaµq ≡ BaµB + SaµS + QaµQ

Excluded volume HRG

Pex(T , µ1, µ2, ...) =
∑
a

P id
a (T , µ̃1, µ̃2, ..); µ̃a = µa − V ex

a Pex(T , µ1, µ2, ..)

V ex
a = (16/3)πR3

a is the excluded volume for the ‘a’ th hadron.
Once partition function is known other thermodynamic quantities
can be estimated



Relaxation time

τ−1a ≡ wa(Ea) =
∑
b

∫
d3pb
(2π)3

σabvabf
(0)
b

Energy averaged relaxation time

τ−1a =

∫ d3pa
(2π)3

f
(0)
a (Ea)wa(Ea)∫ d3pa

(2π)3
f
(0)
a (Ea)

≡
∑
b

nb〈σabvab〉

Thermal averaged cross section

〈σabvab〉 =

∫
d3pad

3pbf
(0)
a (Ea)f

(0)
b (Eb)σabvab∫

d3pad3pbf
(0)
a (Ea)f

(0)
b (Eb)

.



Relaxation time contd.· · ·
Assuming hard sphere scatterring for the hadrons

τ−1a ==
∑
b

nb〈σabvab〉

〈σabvab〉 =
σ

8Tm2
am

2
bK2(ma/T )K2(mb/T )

×
∫ ∞
(ma+mb)2

ds × [s − (ma −mb)2]√
s

× [s − (ma + mb)2]K1(
√
s/T ),

where, the hard sphere scattering cross section can be expressed
as σ = 4πR2.

κqq′ =
∑
a

∫
d3pa
(2π)3

p2a
3E 2

a

(
qa −

nqEa

ω

)
τa

(
q′a −

nq′Ea

ω

)
f
(0)
a .



Results: κBB

2

5

10
-3

2

5

10
-2

2

80 90 100 110 120 130 140 150 160 170

κ
B
B
/
T
2

T (MeV)

IHRG µB = 0.0

IHRG µB = 300 MeV

IHRG µB = 600 MeV

EVHRG µB = 0.0

EVHRG µB = 300 MeV

EVHRG µB = 600 MeV
10

-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

80 90 100 110 120 130 140 150 160 170

κ
B
B
/
T
2

T (MeV)

IHRG µB = 0.0
IHRG µB = 0.3 GeV
IHRG µB = 0.6 GeV
Fotakis et.al. µB = 0.0
Fotakis et.al. µB = 0.3 GeV
Fotakis et.al. µB = 0.6 GeV

Fig. 1-a Fig. 1-b

Figure: left : variation of κBB/T
2 with T and µB . µQ = 0 = µS .

Among all the hadrons baryonic contribution is dominant over mesonic
contribution in κBB/T

2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering nS = 0 and µQ = 0.



Results: κSS
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Fig. 2-a Fig. 2-b

Figure: left : variation of κSS/T
2 with T and µB . µQ = 0 = µS . Among

all the hadrons mesonic contribution is dominant over baryonic
contribution in κBB/T

2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering nS = 0 and µQ = 0.



Results: κQQ
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Fig. 3-a Fig. 3-b

Figure: left : variation of κQQ/T
2 with T and µB . µQ = 0 = µS .

Among all the hadrons mesonic contribution is dominant over baryonic
contribution in κBB/T

2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering nS = 0 and µQ = 0.



Results: Mixed diffusion coefficientκBQ
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Fig. 4-a Fig. 4-b

Figure: left : variation of κBQ/T
2 with T and µB . µQ = 0 = µS .

Among all the hadrons mesonic contribution is dominant over baryonic
contribution in κBB/T

2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering nS = 0 and µQ = 0.



Results: Mixed diffusion coefficientκBS
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Figure: left : variation of κBS/T
2 with T and µB . µQ = 0 = µS . Among

all the hadrons mesonic contribution is dominant over baryonic
contribution in κBB/T

2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering nS = 0 and µQ = 0.



Results: Mixed diffusion coefficient κSQ
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Figure: left : variation of κSQ/T
2 with T and µB . µQ = 0 = µS .

Among all the hadrons mesonic contribution is dominant over baryonic
contribution in κBB/T

2. right we show the qualitative and quantitative
comparison among the results as obtained in thea IHRG model and the
results obtained in Ref. Fotakis etal. In this case we obtained our results
in the IHRG model considering nS = 0 and µQ = 0.



Summary,Conclusion and Outlook

• We consiidered here the diffusuion matrix associated with
various conserved charges.The diagonal components here are
manifestly positive. The off diagonal components can be
positive or negative.

• Using HRG model within the hard sphere scatterring
approximation, we estimated various elements of κqq′ .

• The off diagonal elements are of similar order as the diagonal
elements. The cross conductivities are non negligible.

• Need to study hydrodynamics with multiple conserved charges.

• Fluctuation of conserved charges need to be explored with
cross dissipation coefficients.

• · · ·
• · · ·


