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All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 
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This is an entirely new term which implies:

Fermion number violation → Baryogenesis via Leptogenesis

All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 

𝑀𝑁
ഥ𝑁𝑅𝑁𝑅

𝑐

SSB
𝑌𝑓 ҧ𝑓𝑅𝜙𝑓𝐿

𝜙 =
𝑌𝑓𝑣

2

𝑌𝑓𝑣

2
ҧ𝑓𝑅𝑓𝐿 𝑚𝐷 =

𝑌𝑓𝑣

2



n mass from right-handed neutrinos

This is an entirely new term which implies:

Fermion number violation → Baryogenesis via Leptogenesis

The first mass scale not related to the EW scale and the Higgs

All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 

All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 

𝑀𝑁
ഥ𝑁𝑅𝑁𝑅

𝑐

SSB
𝑌𝑓 ҧ𝑓𝑅𝜙𝑓𝐿

𝜙 =
𝑌𝑓𝑣

2

𝑌𝑓𝑣

2
ҧ𝑓𝑅𝑓𝐿 𝑚𝐷 =

𝑌𝑓𝑣

2



n mass from right-handed neutrinos

This is an entirely new term which implies:

Fermion number violation → Baryogenesis via Leptogenesis

The first mass scale not related to the EW scale and the Higgs

To be searched for at experiments!!

All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 

𝑀𝑁
ഥ𝑁𝑅𝑁𝑅

𝑐

SSB
𝑌𝑓 ҧ𝑓𝑅𝜙𝑓𝐿

𝜙 =
𝑌𝑓𝑣

2

𝑌𝑓𝑣

2
ҧ𝑓𝑅𝑓𝐿 𝑚𝐷 =

𝑌𝑓𝑣

2



n mass from right-handed neutrinos

All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 

𝑀𝑁
ഥ𝑁𝑅𝑁𝑅

𝑐

SSB
𝑌𝑓 ҧ𝑓𝑅𝜙𝑓𝐿

𝜙 =
𝑌𝑓𝑣

2

𝑌𝑓𝑣

2
ҧ𝑓𝑅𝑓𝐿 𝑚𝐷 =

𝑌𝑓𝑣

2



n mass from right-handed neutrinos

𝑚𝜈 =
0 𝑚𝐷

𝑡

𝑚𝐷 𝑀𝑁
𝑈𝑡 0 𝑚𝐷

𝑡

𝑚𝐷 𝑀𝑁
𝑈 =

𝑚 0
0 𝑀

All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 

𝑀𝑁
ഥ𝑁𝑅𝑁𝑅

𝑐

SSB
𝑌𝑓 ҧ𝑓𝑅𝜙𝑓𝐿

𝜙 =
𝑌𝑓𝑣

2

𝑌𝑓𝑣

2
ҧ𝑓𝑅𝑓𝐿 𝑚𝐷 =

𝑌𝑓𝑣

2



n mass from right-handed neutrinos

Seesaw

If                 then              and                         → lightness of n𝑀𝑁 ≫ 𝑚𝐷 𝑀 ≈ 𝑀𝑁 𝑚 ≈ 𝑚𝐷
𝑡𝑀𝑁

−1𝑚𝐷

𝑚𝜈 =
0 𝑚𝐷

𝑡

𝑚𝐷 𝑀𝑁
𝑈𝑡 0 𝑚𝐷

𝑡

𝑚𝐷 𝑀𝑁
𝑈 =

𝑚 0
0 𝑀

All SM fermions acquire Dirac masses via Yukawa couplings

Simplest option add NR : a Majorana mass is also allowed 

𝑀𝑁
ഥ𝑁𝑅𝑁𝑅

𝑐

SSB
𝑌𝑓 ҧ𝑓𝑅𝜙𝑓𝐿

𝜙 =
𝑌𝑓𝑣

2

𝑌𝑓𝑣

2
ҧ𝑓𝑅𝑓𝐿 𝑚𝐷 =

𝑌𝑓𝑣

2



n mass from right-handed neutrinos

Seesaw

If                 then              and                         → lightness of n𝑀𝑁 ≫ 𝑚𝐷 𝑀 ≈ 𝑀𝑁 𝑚 ≈ 𝑚𝐷
𝑡𝑀𝑁

−1𝑚𝐷

𝑚𝜈 =
0 𝑚𝐷

𝑡

𝑚𝐷 𝑀𝑁
𝑈𝑡 0 𝑚𝐷

𝑡

𝑚𝐷 𝑀𝑁
𝑈 =

𝑚 0
0 𝑀



This simplest SM extension may connect to other open 
problems:

-L is produced in the heavy N decays

Leptogenesis

M. Fukugita and T. Yanagida 1986



This simplest SM extension may connect to other open 
problems:

-L is produced in the heavy N decays

B←

Leptogenesis

M. Fukugita and T. Yanagida 1986

W

W

B or L
current

← -L

and partially
converted to B by the 
SM sphalerons
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A new physics scale

But a very high MN worsens the Higgs hierarchy problem

Lightness of n masses could also come naturally from an 

approximate symmetry (B-L) 
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𝑚𝐷
2

𝑀𝑁
2 Θ ≈ 𝑚𝐷

†
𝑀𝑁
−1

“inverse Seesaw”

R. Mohapatra and J. Valle 1986
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Connexions with other open problems

With lower MN possible connections with other open problems 

are easier to probe

ARS leptogenesis and DM possible in the nMSM
E. K. Akhmedov, V. A. Rubakov and A. Yu. Smirnov hep-ph/9803255

T. Asaka and M. Shaposhnikov hep-ph/0505013

But also neutrino portals to DM
M. Blennow, EFM, A. Olivares-Del Campo, 

S. Pascoli, S. Rosauro arXiv:1903.00006

Or other baryogenesis scenarios

EFM, J. López-Pavón, T. Ota, S. Rosauro-Alcaraz arXiv: 2007.11008

See talk by Salvador Rosauro

also Stefan Sander, Garv Chauhan, Xunjie Xu, Kai Schmitz…
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A new physics scale

But a very high MN worsens the Higgs hierarchy problem

Lightness of n masses could also come naturally from an 

approximate symmetry (B-L)   

eV keV MeV GeV TeV

Very different phenomenology at different scales 

MN could be anywhere…



Looking for NR: Non-Unitarity
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When the W and Z are integrated out to obtain the Fermi 
theory NSI are recovered!

see e.g. M. Blennow, P.Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 
arXiv:1609.08637 for the dictionary
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Just replace U by N
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𝑖,𝑗

𝑁𝛽𝑖𝑁𝛼𝑖
∗ 𝑁𝛼𝑗𝑁𝛽𝑗

∗ 𝑒
−Δ𝑚𝑖𝑗

2 𝐿

2𝐸

At L=0,  Pb ≠ db this “zero distance effect” can be striking 

and is usually the source of the most stringent constraints

Careful!! These “probabilities” are not observables…

…they don’t even add up to 1, not really probabilities!

The “zero distance effect” will also be present in the data 
used to estimate the flux and cross section
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The real observable is the number of events

The measured probability is the ratio of the events
over the prediction from the flux and cross section in 
absence of oscillations

For instance, if the prediction for Pme comes from near

detector data on Pmm :

Notice that, in general, this is different to normalizing as 

෠𝑃𝜇𝑒 𝐿
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𝑁𝛼𝑖ȁ ۧ𝜈𝑖
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M. Blennow, P.Coloma, EFM, J. Hernandez-
Garcia and J. Lopez-Pavon arXiv:1609.08637
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But these are more efficiently constraint
from LFU bounds, from instance p decay
ratios, no need to also detect the n… 
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GF from m decay is affected!

𝐺𝜇 = 𝐺𝐹 𝑁𝑁†
𝑒𝑒

𝑁𝑁†
𝜇𝜇

But this agrees at ~10-3 with
GF from MW (modulo CDF), 

measurents of sinqw from

LEP, Tevatron and LHC and b
and K decays

LFU also strong bounds on
ratios:

From ratios of p, K, and lepton

decays

Also the invisible width of the Z
since NC are also affected

And LFV processes such as        
m → e g since the GIM

cancellation is lost
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Bounds from a global fit to flavour and Electroweak precision 
data

Looking for NR: Non-Unitarity

with

See also P. Langaker and D. London 1988; S. M. Bilenky and C. Giunti hep-ph/9211269 ; E. 
Nardi, E. Roulet and D. Tommasini hep-ph/9503228; D. Tommasini, G. Barenboim, J. Bernabeu

and C. Jarlskog hep-ph/9503228; S. Antusch, C. Biggio, EFM, B. Gavela and J. López Pavón hep-
ph/0607020; S. Antusch, J. Baumann and EFM 0807.1003; D. V. Forero, S. Morisi, M. Tortola, 

and J. W. F. Valle 1107.6009; S. Antusch and O. Fischer 1407.6607; F.J. Escrihuela, D.V. Forero, 
O.G. Miranda, M. Tórtola, J.W.F. Valle 1612.07377, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 

1605.08774…

𝑁 =

1 − 𝛼𝑒𝑒 0 0
−𝛼𝜇𝑒 1 − 𝛼𝜇𝜇 0
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Looking for NR: Non-Unitarity

It has become common to call them:

But they all involve

it’s where the sensitivity comes from… 

So they are all equally “direct” and they all have a neutrino
and a charged lepton…

“Indirect” or “charged leptons” “Direct” or “neutrinos”

W 
-

ni

−

l
iN 
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Looking for NR: Non-Unitarity

Which one is more robust/model-independent?

“Indirect” or “charged leptons” “Direct” or “neutrinos”

Introducing an NSI 
operator with u and d 
quarks the zero
distance effect could
be cancelled
They also come from
zero-distance effect…

GF from m decay
compared to from MW , 
measurents of sinqw at 
different energies
(Moller, colliders) and 
b and K decays. Very

different physics! 

But in the literature the “neutrino” bounds are assumed to be more robust…



For very light (< keV) extra neutrinos these strong constraints

are lost and n oscillations are our best probe of this scale.

The only? Way out: lighter Steriles

S. Parke and M. Ross-Lonergan arXiv:1508.05095
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Steriles vs NU
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If oscillations too

fast to resolve and only see

average effect

M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1609.08637

C. S. Fong, H. Minakata and H. Nunokawa 1609.08623 
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Steriles vs NU

“Heavy n” Non-Unitarity

“Light n” Steriles E

Lmi

ji

jjii

ij

eNNNNP 2

,

**

2−

= bbb
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Lmi

JI

JJII

IJ

e 2

,

**

2−

 + bb

E

Lmi

ji

jjii

ij

eNNNNP 2

,

**

2−

= bbb

At leading order “heavy” non-unitarity and avergaed-out
“light” steriles have the same impact in oscillations

M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon arXiv:1609.08637
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“Heavy n” Non-Unitarity

“Light n” Steriles E
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jjii
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,

**
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,

**
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If at the near detector or in the data to estimate

the flux and cross section, the zero distance effect is

recovered and bounds apply
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Non-unitarity at DUNE

M. Blennow, P. Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon arXiv:1609.08637

The far detector would suffer from degeneracies but they are lifted with
present bounds



Non-unitarity at DUNE

P. Coloma, J. Lopez-Pavon, S. Rosauro-Alcaraz and S. Urrea arXiv:2105.11466

The posible improvements by the near detector depend critically on the level
of systematic uncertainties, particularly affecting the shape of the spectra
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Looking for NR: Beam Dumps

Sensitivity of DUNE ND to NR

P. Coloma, EFM, M. González-López, J. Hernández-García arXiv:2007.03701

A FeynRules file with interactions between mesons and NR (HNLs) is provided

See also: P. Ballett, T. Boschi, and S. Pascoli arXiv:1905.00284

J. M. Berryman, A. de Gouvea, P. J. Fox, B. J. Kayser, K. J. Kelly, and J. L. Raaf arXiv:1912.07622

I. Krasnov arXiv:1902.06099

M. Breitbach, L. Buonocore, C. Frugiuele, J Kopp, L. Mittnacht arXiv:2102.03383 

A. M. Abdullahi, P. Barham Alzas et al. arXiv:2203.08039
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Cosmology

A. C Vincent, EFM, P. Hernandez, M. Lattanzi and O. Mena arXiv:1408.1956
See also K. Langhoff, N. J. Outmezguine, and N. L. Rodd arXiv:2209.06216  



A new physics scale

Neutrinoless double beta decay

Kinks in b decay spectrum

Meson decays
peak searches

Fixed
target 

searches

Collider
searches

Precision
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violation

eV keV MeV GeV TeV

Cosmology
Short and long

baseline
n oscillations

See talk by Patrick Bolton



Conclusions

◼ Neutrino masses and mixings imply new BSM physics 

◼ The simplest extension, right-handed neutrinos, already
imply a lot of new phenomenology to search for:

◼ Non-unitarity, searches at colliders, fixed targets, 
cosmology, 0nbb,…

◼ Also offers conexions to other open problems of the SM

◼ Baryogenesis, Dark Matter, Flavour puzzle...



Non-unitarity and MW from CDF

M. Blennow, P. Coloma, EFM, M-González-Lopez Phys.Rev.D 106 (2022) 7



Looking for NR: Non-Unitarity

PMNSUN −= )1( Or with =− )1( 

Triangular structure more convinient for oscillations
Z.-z. Xing 0709.2220 and 1110.0083. 

F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tortola, and J. W. F. Valle 1503.08879.

Dictionary

M. Blennow, P.Coloma, EFM, J. Hernandez-Garcia and J. Lopez-Pavon 1609.08637



Probing the Seesaw: Non-Unitarity

All constraints are for the limit of very heavy extra neutrinos
OK for all processes except maybe the loop LFV

Cancellations of these diagrams explored in: 
D.V. Forero, S. Morisi, 

M. Tortola, J.W.F. Valle 1107.6009
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Cosmology and lab constraints

A. C Vincent, EFM, P. Hernandez, M. Lattanzi and O. Mena arXiv:1408.1956 

At intermediate

scales very strong

constraints from

direct searches

and cosmology
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